Что такое терморезисторы где их используют. Терморезисторы

02.07.2020 Android

В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы - электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.

Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике - познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.

На принципиальных схемах терморезистор обозначается вот так.

В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или .

Основная характеристика терморезистора - это его ТКС . ТКС - это температурный коэффициент сопротивления . Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.

У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.

На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.

Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.

Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор - контролирует температуру ключевых транзисторов.

Второй. Это так называемый NTC-термистор (JNR10S080L ). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.

Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.

Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.

Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его "потроха". Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.

Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.

Прямой и косвенный нагрев.

По способу нагрева терморезисторы делят на две группы:

    Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).

    Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.

NTC-термисторы и позисторы.

По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

    PTC-термисторы (они же позисторы ).

Давайте разберёмся, какая между ними разница.

Своё название NTC-термисторы получили от сокращения NTC - Negative Temperature Coefficient , или "Отрицательный Коэффициент Сопротивления". Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается . Кстати, вот так обозначается NTC-термистор на схеме.

Обозначение термистора на схеме

Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.

На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР"а, только там он был серо-зелёного цвета.

На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.

Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.

Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.

Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 - VD4).

При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его. После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить "плавный запуск" электроприбора и уберечь от пробоя диоды выпрямителя.

Понятно, что пока импульсный блок питания включен, NTC-термистор находится в "подогретом" состоянии.

Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.

Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.

Позисторы. PTC-термисторы.

Термисторы, сопротивление которых при нагреве растёт , называют позисторами. Они же PTC-термисторы (PTC - Positive Temperature Coefficient , "Положительный Коэффициент Сопротивления").

Стоит отметить, что позисторы получили менее широкое распространение, чем NTC-термисторы.

Позисторы легко обнаружить на плате любого цветного CRT-телевизора (с кинескопом). Там он установлен в цепи размагничивания. В природе встречаются как двухвыводные позисторы, так и трёхвыводные.

На фото представитель двухвыводного позистора, который применяется в цепи размагничивания кинескопа.

Внутри корпуса между выводами-пружинами установлено рабочее тело позистора. По сути это и есть сам позистор. Внешне выглядит как таблетка с напылением контактного слоя по бокам.

Как я уже говорил, позисторы используются для размагничивания кинескопа, а точнее его маски. Из-за магнитного поля Земли или влияния внешних магнитов маска намагничивается, и цветное изображение на экране кинескопа искажается, появляются пятна.

Наверное, каждый помнит характерный звук "бдзынь", когда включается телевизор - это и есть тот момент, когда работает петля размагничивания.

Кроме двухвыводных позисторов широко применяются трёхвыводные позисторы. Вот такие.

Отличие их от двухвыводных заключается в том, что они состоят из двух позисторов-"таблеток", которые установлены в одном корпусе. На вид эти "таблетки" абсолютно одинаковые. Но это не так. Кроме того, что одна таблетка чуть меньше другой, так ещё и сопротивление их в холодном состоянии (при комнатной температуре) разное. У одной таблетки сопротивление около 1,3 ~ 3,6 кОм, а у другой всего лишь 18 ~ 24 Ом.

Трёхвыводные позисторы также применяются в цепи размагничивания кинескопа, как и двухвыводные, но только схема их включения немного иная. Если вдруг позистор выходит из строя, а такое бывает довольно часто, то на экране телевизора появляются пятна с неестественным отображением цвета.

И конденсаторы. Маркировка на них не наносится, что затрудняет их идентификацию. По внешнему виду SMD-терморезисторы очень похожи на керамические SMD-конденсаторы.

Встроенные терморезисторы.

В электронике активно применяются и встроенные терморезисторы. Если у вас паяльная станция с контролем температуры жала , то в нагревательный элемент встроен тонкоплёночный терморезистор. Также терморезисторы встраиваются и в фен термовоздушных паяльных станций , но там он является отдельным элементом.

Стоит отметить, что в электронике наряду с терморезисторами активно применяются термопредохранители и термореле (например, типа KSD), которые также легко обнаружить в электронных приборах.

Теперь, когда мы познакомились с терморезисторами, пора .

При ремонте бытовой техники приходится сталкиваться с большим разнообразием деталей и компонентов. Часто новички не знают, что такое терморезистор и какими они бывают. Это полупроводниковые компоненты, сопротивление которых изменяется под воздействием температуры. Благодаря этим свойствам они нашли широкий диапазон применений. Начиная от термометров, заканчивая ограничителями пускового тока. В этой статье мы ответим на все интересующие вас вопросы простыми словами.

Устройство и виды

Терморезистор – это полупроводниковый прибор, сопротивление которого зависит от его температуры. В зависимости от типа элемента сопротивление может повышаться или падать при нагреве. Различают два вида терморезисторов:

  • NTC (Negative Temperature Coefficient) – с отрицательным температурным коэффициентом сопротивления (ТКС). Часто их называют «Термисторы».
  • PTC (Positive Temperature Coefficient) – с положительным ТКС. Их также называют «Позисторы».

Важно! Температурный коэффициент электрического сопротивления – это зависимость сопротивления от температуры. Описывает, на сколько Ом или процентов от номинальной величины изменяется сопротивление элемента при повышении его температуры на 1 градус Цельсия. Например, у обычных положительный ТКС (при нагреве сопротивление проводников повышается).

Терморезисторы бывают низкотемпературными (до 170К), среднетемпературными (170-510К) и высокотемпературными (900-1300К). Корпус элемента может быть выполнен из пластика, стекла, металла или керамики.

Условное графическое обозначение терморезисторов на схеме напоминает обычные резисторы, а отличием является лишь то, что они перечеркнуты полосой и рядом указывается буква t.

Кстати, так обозначаются любые резисторы, сопротивление которых изменяется под воздействием окружающей среды, а род воздействующих величин и указывается буквой, t – температура.

Основные характеристики:

  • Номинальное сопротивление при 25 градусах Цельсия.
  • Максимальный ток или мощность рассеяния.
  • Интервал рабочих температур.

Интересный факт : Терморезистор изобретен в 1930 году ученым Самюэлем Рубеном.

Давайте подробнее рассмотрим, как устроен и для чего нужен каждый из них.

NTC

Основные сведения

Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.

Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.

Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.

Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров. Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.

Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.

Где используется

Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).

На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.

На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.

Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.

Принцип работы такой схемы:

Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.

Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.

Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.

Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.

Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.

Маркировка

Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:

На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:

Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:

Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.

Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.

PTC

Основные сведения

Позисторы, как было сказано, имеют положительный ТКС, то есть их сопротивление повышается при нагреве. Их изготавливают на основе титаната бария (BaTiO 3). У позистора такой график температуры и сопротивления:

Кроме этого нужно обратить внимание на его вольтамперную характеристику:

Рабочий режим зависит от выбора рабочей точки позистора на ВАХ, например:

  • Линейный участок используется для измерения температуры;
  • Нисходящий участок используется в пусковых реле, измерения мощности ЭМИ на СВЧ, противопожарной сигнализации и прочего.

На видео ниже рассказывается, что такое позисторы:

Где применяется

Сфера применения позисторов достаточно широка. В основном они используются в схемах защиты оборудования и устройств от перегрева или , реже для измерения температуры, а также в качестве автостабилизирующих нагревательного элемента. Кратко перечислим примеры использования:


Терморезисторы – это группа устройств, способных преобразовать температуру в электрический сигнал, который считывают посредством измерения падения напряжения или силы тока в цепи, где он установлен. Или же они сами по себе могут являться регулирующим органом, если это позволяют сделать его параметры. Простота и доступность этих устройств позволяет их широко использовать как для профессионального конструирования приборов, так и для радиолюбительской практики.

Наверняка вы не знаете:

Терморезистором называется полупроводниковый компонент с температурозависимым электрическим сопротивлением. Изобретенный в далеком 1930 году ученым Самюэлем Рубеном, по сей день данный компонент находит самое широкое применение в технике.

Изготавливают терморезисторы из различных материалов, которых достаточно высок, - значительно превосходит металлические сплавы и чистые металлы, то есть именно из особых, специфичных полупроводников.

Непосредственно основной резистивный элемент получают посредством порошковой металлургии, обрабатывая халькогениды, галогениды и оксиды определенных металлов, придавая им различные формы, например форму дисков или стержней различных размеров, больших шайб, средних трубок, тонких пластинок, маленьких бусинок, размерами от единиц микрон до десятков миллиметров.


По характеру корреляции сопротивления элемента и его температуры, разделяют терморезисторы на две большие группы - на позисторы и термисторы . Позисторы обладают положительным ТКС (по этой причине позисторы еще называют PTC-термисторами), а термисторы - отрицательным (их называют поэтому NTC-термисторами).

Термистор - температурно-зависимый резистор, изготавливается из полупроводникового материала, имеющего отрицательный температурный коэффициент и высокую чувствительность, позистор - температурно-зависимый резистор, имеющий положительный коэффициент. Так, с возрастанием температуры корпуса позистора растет и его сопротивление, а с ростом температуры термистора - его сопротивление соответственно уменьшается.

Материалами для терморезисторов сегодня служат: смеси поликристаллических оксидов переходных металлов, таких как кобальт, марганец, медь и никель, соединений AIIIBV-типа, а также легированных, стеклообразных полупроводников, таких как кремний и германий, и некоторых других веществ. Примечательны позисторы из твердых растворов на базе титаната бария.

Терморезисторы в целом можно классифицировать на:

    Низкотемпературного класса (рабочая температура ниже 170 К);

    Среднетемпературного класса (рабочая температура от 170 К до 510 К);

    Высокотемпературного класса (рабочая температура от 570 К и выше);

    Отдельный класс высокотемпературных (рабочая температура от 900 К до 1300 К).

Все эти элементы, как термисторы, так и позисторы, могут работать при разнообразных климатических внешних условиях и при существенных физических внешних и токовых нагрузках. Однако в жестких термоцикличных режимах, со временем меняются их исходные термоэлектрические характеристики, как то номинальное сопротивление при комнатной температуре и температурный коэффициент сопротивления.

Встречаются и комбинированные компоненты, например терморезисторы с косвенным нагревом . В корпусах таких приборов размещены сам и терморезистор и гальванически изолированный нагревательный элемент, задающий исходную температуру терморезистора, и, соответствующим образом, его начальное электрическое сопротивление.

Данные приборы применяются в качестве переменных резисторов, управляемых напряжением, приложенным к нагревательному элементу терморезистора.

В зависимости от того, как выбрана рабочая точка на ВАХ конкретного компонента, определяется и режим работы терморезистора в схеме. А сама ВАХ связана с конструктивными особенностями и с приложенной к корпусу компонента температурой.

Для контроля за вариациями температур и с целью компенсации динамически меняющихся параметров, таких как протекающий ток и приложенное напряжение в электрических цепях, изменяющихся вслед за изменениями температурных условий, применяют терморезисторы с выставлением рабочей точки на линейном участке ВАХ.

Но рабочая точка выставляется традиционно на спадающем участке ВАХ (NTC-термисторы), если термистор применяется, например, в качестве пускового устройства, реле времени, в системе отслеживания и измерения интенсивности СВЧ-излучения, в системах пожарной сигнализации, в установках управления расходом сыпучих веществ и жидкостей.

Наиболее популярны сегодня среднетемпературные термисторы и позисторы с ТКС от -2,4 до -8,4 % на 1 К . Они работают в широком диапазоне сопротивлений от единиц Ом до единиц мегаом.

Встречаются позисторы с относительно малым ТКС от 0,5% до 0,7% на 1 К, изготовленные на базе кремния. Их сопротивление изменяется практически линейно. Подобные позисторы широко применяются в системах температурной стабилизации и в системах активного охлаждения силовых полупроводниковых ключей в разнообразных современных электронных приборах, особенно - в мощных. Эти компоненты легко вписываются в схемы и не занимают много места на платах.

Типичный позистор имеет форму керамического диска, иногда в одном корпусе устанавливаются последовательно несколько элементов, но чаще - в одиночном исполнении в защитном покрытии из эмали. Позисторы часто применяют в качестве предохранителей для защиты электрических схем от перегрузок по напряжению и току, а также в качестве термодатчиков и автостабилизирующих элементов, в силу их неприхотливости и физической устойчивости.

Термисторы широко применяются в многочисленных областях электроники, особенно там, где важен точный контроль за температурным процессом. Это актуально для аппаратуры передачи данных, компьютерной техники, высокопроизводительных ЦПУ и промышленного оборудования высокой точности.

Один из простейших и весьма популярных примеров применения термистора – эффективное ограничение пускового тока. В момент подачи напряжения к блоку питания от сети, происходит чрезвычайно резкий значительной емкости, и в первичной цепи протекает большой зарядный ток, способный сжечь диодный мост.

Этот ток здесь и ограничивается термистором, то есть данный компонент схемы изменяет свое сопротивление в зависимости от проходящего по нему тока, поскольку в соответствии с законом Ома происходит его нагрев. Термистор после этого восстанавливает свое исходное сопротивление, через несколько минут, как только остынет до комнатной температуры.

Большинство рассмотренных выше температурных датчиков не особенно популярны среди радиолюбителей, занимающихся творчеством в домашних условиях или на работе. Причин этого несколько - это и большая себестоимость, существенные размеры и необходимость применять специальные (достаточно сложные) электронные узлы для обеспечения их работы. Электронные конструкции, которые в изобилии предлагают своим читателям журналы по радиоэлектронике, используют в качестве термодат- чиков, в основном, терморезисторы. О них и пойдет речь ниже.

Терморезистор - это устройство, сопротивление которого значительно изменяется с изменением температуры. Это рези- стивный прибор, обладающий высоким ТКС (температурным коэффициентом сопротивления) в широком диапазоне температур. Различают терморезисторы с отрицательным ТКС, сопротивление которых падает с возрастанием температуры, часто называемые термисторами, и терморезисторы с положительным ТКС, сопротивление которых увеличивается с возрастанием температуры. Такие терморезисторы называются позисторами. обоих типов изготавливают из полупроводниковых материалов, диапазон изменения их ТКС - (-6,5…+70)%/С. Тер- морезисторный эффект заключается в изменении сопротивления полупроводника в большую или меньшую сторону за счет убывз ния или возрастания его темпера!уоы Однако сам м<*чанизм из менения сопро "^вмо’-‘ия с г емперасурой отличен п. подобно! о явления в металлах (о чем и говорит факт уменьшения сопротивления при увеличении температуры], а особенности э»ого физического эффекта будут подробнее рассмотрены ниже.

Известно, что в 1833 году Фарадей обнаружил отрицательный ТКС у сульфида серебра, но отсутствие сведений о явлении в контактах металл-полупроводник препятствовало изготовлению приборов с воспроизводимыми характеристиками. В 30-х г одах двадцатого века у оксидов Ге 3 0 4 и UO ? ученые химики обнаружили высокий отрицательный температурный ‘коэффициент со противления. В начале 40-х этот ряд пополнился NiO, СоО, соединениями NiO Со? 0 3 -Мп у О¦;. Интервал удельных сопротивлений расширился благодаря добавлению о-‘сида меди Мп л 0 4 в соединение Ni0-Mn ; -.0;;.

с отрицательным ГКС изготавливаются из оксидов металлов с незаполненными электронными уровнями, и при низких температурах обмен электронами соседних ионов за трудняется, при этом электропроводность вещества мала. Если температура увеличивается, го электроны приобретают энергию в виде тепла, процесс обмена электронами у ионов становится интенсивнее, поэтому резко увеличивается подвижность носителей заряда. Другие терморезисторы имеют положитепьный температурный коэффициент сопротивления в некотором интервале температур. Такие терморезисторы на жаргоне радиотехников называют позисторагии.

Терморезсст^рм с положительным ТКС можно разделить на 2 группы:

1. из полупроводникового материала (обычно Si) в форме небольших пластин о дзумя выводами на противоположных сторонах. Их применение основано на том, что легированные кристаллы St (кремния) как гь тэс и р-типе имеют положительный ТКС при температуре от криогенных до 150°С и выше причем ТКС нрп комнаг-юй температуре примерно равен 0,8% на 1 С,

2. Терморезисторн с большим ТКС -.до 70% на 1 е С), но в более ограниченном диапазоне темпеоятур Материалом в данном случае является поликристаллический полупроводниковый титанат бария с большим изменением ТКС при температуре 120°С, соответствующей сегнетоэлектрической точке Кюри этого материала. Добавляя другие материалы, например, титанат свинца или стронций, такое изменение ТКС можно получить при температурах от -100 до +250°С. Можно также изменить наклон кривой сопротивления так, что большее изменение температур будет происходить в более узком интервале температур, например О…ЮО°С.

Устройство популярных терморезисторов

Температурная зависимость сопротивления является главной характеристикой терморезисторов, в значительной степени определяющей остальные характеристики этих изделий. Она амбивалентна на температурной зависимости удельного сопротивления полупроводника, из которого изготовлен данный терморезистор. Температурная зависимость сопротивления большинства типов отечественных терморезисторов с отрицательным ТКС во всем рабочем интервале температур определяется формулой

Примечание. Промежуточные значения номинальных сопротивлений соответствуют ряду Е6 с допуском ±20% (ММТ-1, КМТ-1); ряду Е12 с допусками ±10, ±20% (СТЗ-1).

Максимальная мощность рассеяния: КМТ-1: 1000 мВт ММТ-1, СТЗ-1: 600 мВт Температурный коэффициент сопротивления: КМТ-1: ~(4,2…8,4)%/°С ММТ-1: -(2,4…5,6)%/°С СТЗ-1: -(3,35…3,95)%/°С Коэффициент температурной чувствительности: КМТ-1: 3600…7200 К ММТ-1: 2060…4300 К СТЗ-1: 2870…3395 К Коэффициент рассеяния: 5 мВт/°С Коэффициент энергетической чувствительности: КМТ-1: 1 мВт ММТ-1, СТЗ-1: 1,3 мВт Постоянная времени: не более 85 с Температура окружающей среды: КМТ-1: от -60 до +155°С ММТ-1, СТЗ-1: от -60 до +125°С Относительная влажность воздуха:

КМТ-1, ММТ-1: до 98% при температуре ±25°С СТЗ-1: до 98%> при температуре +35°С Пониженное атмосферное давление: до 133 Па (1 мм рт. ст.) Минимальная наработка:

КМТ-1, ММТ-1: 15 000 часов СТЗ-1: 5 000 часов Срок сохраняемости:

КМТ-1, ММТ-1: 15 лет СТЗ-1: 12 лет

с отрицательным ТКС прямого подогрева бусинковые

ТР-4 - терморезисторы герметизированные изолированные - предназначены для использования в сигнализаторах уровня жидкости, измерения и регулирования температуры, а также для температурной компенсации элементов электрической цепи с положительным ТКС.

Масса: не более 0,3 г

Номинальное сопротивление: 1 -10 3 0м±20%.

Максимальная мощность рассеяния: 70 мВт

Коэффициент температурной чувствительности:

Температурный коэффициент сопротивления:

-(1,8…2,2)%/°С

Коэффициент температурной чувствительности: 0,15 мВт

Постоянная времени: не более 3 с

Предельные эксплуатационные данные:

Температура окружающей среды: от -60 до +200°С

Относительная влажность воздуха: до 98% при +35°С

Пониженное атмосферное давление:

до 0,00013 Па (Ю -6 мм рт. ст.)

Минимальная наработка: 20 000 часов

Срок сохраняемости: 15 лет.

Ограничение по частоте для применения данных терморезисторов в электронных устройствах составляет 1 кГц. В рабочем состоянии терморезисторы могут нагреваться до температуры 150…200°С. В схемах для ограничения пусковых токов (например, электродвигателей) этот прибор включают последовательно с нагрузкой, и нагревание выполняется за счет проходящего в цепи тока.

Кроме вышеперечисленных приборов популярны терморезисторы ТР-10, ТР-15. Пример полного условного обозначения в документации: терморезистор ТР-15-2200 Ом-1,2 Вт-ТУ11-97 АДПК.434.121.012ТУ. В этой аббревиатуре указаны тип, номинальное сопротивление, мощность рассеивания тепла при 25°С, технические условия завода-разработчика и производителя.

В табл. 1.1 приведены некоторые электрические параметры для терморезисторов ТР-15.

Таблица 1.1. Параметры терморезисторов ТР-15

Диапазон номинальных сопротивлений, 0м

Максимальная мощность, Вт

10…2200

10…2200

4,7…1000

4,7…1000

2,2…470

1,5…330

1,5…330

1,0…220

Промежуточные значения номинальных сопротивлений терморезисторов соответствуют ГОСТ 28884-90, то есть могут иметь значения 1,0; 1,5; 2,2; 3,3; 4,7; 6,8 (числовые коэффициенты умножаются на числа 10, 100, 1000). Допустимое отклонение сопротивления ±20%.

При нагреве до максимальной температуры сопротивление терморезисторов уменьшается более чем в 100 раз. Для некоторых приборов (в качестве примера) в табл. 1.2. приведены значения сопротивлений в нагретом состоянии при максимальной мощности рассеивания. Рабочий температурный диапазон для терморезисторов серии TP находится в пределах -60…+155°С. Допустимая мощность рассеяния при температурах выше +25°С пропорционально снижается по линейному закону до 0,25Р тах при максимальной рабочей температуре.

Существуют импортные аналоги, например, терморезисторы фирмы NTC (Negative Temperature Coefficient). Эти приборы выпускаются в различных корпусах, среди которых часть имеет

Таблица 1.2 Изменение со>ч–01ивления терморезистора ТР-15

при максимальном нагреве

Номинальное сопротивление при 25°С. Ом

Максимальная

мощность рассеяния Bi

Электрическое сопротивление при максимальной мощности рассеяния Ом,

не более:

крепления — это позволяв упростить задачу коне гру ктора – разработчика. Диапазон рабочих температур для этих приборов -55 , +) /’О С Внешний вид - в виде большой капли. для ограничения пусковых гокоь фирмы МТС представлено’ в габл 1.3.

Пример ночного обозначения зарубежных аналогов; В57 I53-S330-M здесь В?7 – фирменное обозначение терморе знечора. ! 53 S типовое обозначение, 330 кодовое обозна чениа сопротивления ‘де поспедняя цифр,? в обозначении указывает количество пулей, го ее гь УЮ со лвэ п. revei 33 Ом.

– I ОЧИОГ УЬ (;1.20%)

Таблица 1.3. NTC для ограничения пусковых токов

терморезистора

Сопротивление R, при 25°С, 0м

Точность

Максимальная мощность, Вт

Максимальный ток при 0…65°С, А

1; 2; 2,5; 4;5; 10

16; 12; 11; 9,5; 8,5; 7,5

с положительным ТКС - позисторы

СТ5-1, СТ6-1А, СТ6-1Б - терморезисторы негерметизи- рованные неизолированные - предназначены для измерения и регулирования температуры, противопожарной сигнализации, тепловой защиты, ограничения и стабилизации тока в электрических цепях постоянного тока.

Масса: не более 0,7 г

Диапазон номинальных сопротивлений: СТ5-1: 20…150 Ом СТ6-1 А: 40…400 Ом СТ6-1 Б: 180; 270 Ом

Примечание. Допуск для СТ6-1 Б: ±20%.

Максимальная мощность рассеяния: СТ5-1: 700 мВт СТ6-1 А: 1100 мВт СТ6-1Б: 800 мВт

Температурный коэффициент сопротивления, не менее:

СТ5-1: 20%/°С

СТ6-1 А: 10%/°С

СТ6-1Б: 15%/° С

Примерный температурный интервал положительного ТКС:

СТ5-1: от +120 до +200°С

СТ6-1 А: от +40 до +155°С

СТ6-1Б: от +20 до +125°С

Кратность изменения сопротивления в области положительного ТКС: не менее 10 3

Коэффициент рассеяния: 9 мВт/°С

Коэффициент энергетической чувствительности:

СТ5-1: 0,01 мВт

СТ6-1 А: 0,3 мВт

СТ6-1Б: 0,5 мВт

Постоянная времени: не более 20 с

Предельные эксплуатационные данные:

Температура окружающей среды:

СТ5-1: от-20 до+200°С

СТ6-1 А: от -60 до +155°С

СТ6-1 Б: от -60 до +125°С

Относительная влажность воздуха при +25°С:

СТ5-1: до 85%

СТ6-1А, СТ6-1Б: до 98%

Пониженное атмосферное давление: до 133 Па (1 мм рт. ст.)

Минимальная наработка:

СТ5-1: 3 000 часов

СТ6-1 А, СТ6-1 Б: 10 000 часов

Срок сохраняемости:

СТ5-1: 3 года

СТ6-1 А, СТ6-1Б: 10 лет

Особенности применения терморезисторов

При монтаже всех типов терморезисторов рекомендуется применять припой марки ПОС-61 (ГОСТ 21930-76). При пайке температура припоя должна быть 260±5°С, а время пайки не более 4 секунд. Пайка выводов терморезисторов должна производиться не ближе 10 мм от его корпуса.

На основе терморезисторов действуют системы дистанционного и централизованного измерения и регулирования температуры, системы теплового контроля машин и механизмов, схемы температурной компенсации, схемы измерения мощности ВЧ. находят применение в промышленной электронике и бытовой аппаратуре: рефрижераторах (холодильных камерах), автомобилях, электронагревательных приборах, телевизорах, системах центрального отопления и пр. В телевизорах часто используются терморезисторы с положительным ТКС для устройства размагничивания кинескопа. Самые первые устройства, где применялись терморезисторы - датчики для измерения и регулирования температуры. массово используются в различных устройствах не только в качестве датчиков температуры. После модификации их можно использовать для изменения времени задержки в широком интервале, в качестве конденсаторов или катушек индуктивности в низкочастотных генераторах, для защиты от выбросов напряжения в емкостных, индуктивных или резистивных схемах, в качестве ограничителей тока, напряжения, для измерения давления газа или теплопроводности. Также они используются в температурных датчиках, термометрах, практически в любой, связанной с температурными режимами, электронике. Применение терморезисторов в военной технике актуально и значимо. являются составной частью электронных систем контроля за температурой ракет стратегического назначения. В противопожарной технике действуют температурные датчики. Датчик содержит два терморезистора с отрицательным температурным коэффициентом, которые установлены на печатной плате в поликарбонатном корпусе. Один выведен наружу - открытый терморезистор, он быстро реагирует на изменение температуры воздуха. Другой терморезистор находится в корпусе и реагирует на изменение температуры медленнее. При стабильных условиях оба терморезистора находятся в термическом равновесии с температурой воздуха и имеют некоторое сопротивление. Если температура воздуха быстро повышается, то сопротивление открытого терморезистора становится меньше, чем сопротивление закрытого. Отношение сопротивлений терморезисторов контролирует электронная схема, и если это отношение превышает пороговый уровень, установленный на заводе, она выдает сигнал тревоги. Такой принцип действия называется «реакцией на скорость повышения температуры». Если температура воздуха повышается медленно, то различие сопротивлений терморезисторов незначительно. Однако эта разница становится выше, если соединить последовательно с закрытым терморезистором резистор с высокой температурной стабильностью. Когда отношение суммы сопротивлений закрытого терморезистора и стабильного резистора и сопротивления открытого терморезистора превышает определенный порог, возникает режим тревоги. Датчик формирует режим «Тревога» при достижении внешней температуры 60°С вне зависимости от скорости нарастания температуры.

Применение терморезисторов в качестве датчиков температуры имеет не только плюсы, но и свои минусы. Так, например, это инерционность, обусловленная постоянной времени т, плохая стабильность в определенных условиях и т.д. Еще одна область применения терморезисторов - температурная компенсация электрических цепей в широком диапазоне температур. Такие электрические схемы популярны среди радиотехников и встречаются в усилителях мощности НЧ и многоплановых универсальных автоматических устройствах, предназначенных для применения в быту.

Как и любой технический прибор, терморезисторы имеют ряд параметров и характеристик, знание которых позволяет выяснить возможность использования данного терморезистора для решения определенной технической задачи.

Основные параметры терморезисторов:

    Величина сопротивления образцов: R t иR T (в Ом) при определенной температуре окружающей среды вt , °C, илиТ , К. Для терморезисторов, рассчитанных на рабочие температуры примерно от -100 до 125…200 °С, температуры окружающей среды принимается равной 20 или 25°С и величинаR t называется «холодным сопротивлением» или номинальным. У различных терморезисторов номинальное сопротивление лежит в пределах от десятков Ом до сотен килоОм, при этом допустимые отклонения от номинального сопротивления могут составлять ± 20%, ± 10%, ± 5%.

    Коэффициент температурной чувствительности В , размерность – Кельвин.

У основной массы терморезисторов величина В лежит в диапазоне 2000…7200K, но есть терморезисторы с величинойВ в пределах 700…15800K.

    Величина ТКС α в процентах на 1°С. Обычно она указывается для той же температуры t , что и холодное сопротивление, и в этом случае обозначается через α t :

.

Значения ТКС при комнатной температуре для термисторов находятся в пределах -(0,8…6) %/град., у позисторов – +(10…20) %/град.

    Постоянная времени τ (в секундах). Характеризует тепловую инерционность терморезистора. Она равна времени, в течение которого температура терморезистора изменяется на 63% от разности температур образца и окружающей среды. Чаще всего эту разность берут равной 100°С. Другими словами, τ – это промежуток времени, в течение которого температура терморезистора, перенесенного из спокойного воздуха Т = 0ºС в спокойный воздух приТ = 100ºС, достигнет температуры 63ºС (т.е. увеличится ве = 2,72 раза). Постоянная времени определяется конструкцией и размерами термистора, зависит от теплопроводности окружающей среды, составляет от 0,5 с до 140 с.

    Максимально допустимая температура t max , до которой характеристики терморезистора долгое время остаются стабильными.

    Максимально допустимая мощность рассеивания Р max в Вт, не вызывающая необратимых изменений характеристик терморезистора. Естественно, при нагрузке терморезистора мощностьюР max его температура не должна превышатьt max .

    Коэффициент рассеяния Н в Вт на 1°С (К). Численно равен мощности, рассеиваемой на терморезисторе при разности температур образца и окружающей среды в 1°С, или, другими словами, численно равен мощности, которую надо выделить в термисторе, чтобы нагреть его на один градус.

    Коэффициент энергетической чувствительности G в Bт/%, численно равен мощности, которую нужно рассеять на терморезисторе для уменьшения его сопротивления на 1%. Коэффициенты рассеяния и энергетической чувствительности зависят от параметров полупроводникового материала и от характера теплообмена между образцом и окружающей средой. ВеличиныG ,

Н и α связаны соотношением:
. В самом деле,

    Теплоемкость С в Дж на 1°С, равная количеству тепла (энергии), необходимому для повышения температуры терморезистора на 1°С. Можно доказать, что τ,Н иС связаны между собой следующим соотношением:

.

Для позисторов, кроме ряда приведенных выше параметров, обычно указывают также еще примерное положение интервала положительного температурного коэффициента сопротивления, а также кратность изменения сопротивления в области положительного ТКС.

Основные характеристики терморезисторов:

    ВАХ – зависимость напряжения на терморезисторе от тока, проходящего через него. Снимается в условиях теплового равновесия между теплотой, выделяемой в терморезисторе, и теплотой, отводимой от него в окружающую среду. Статическая ВАХ снимается в установившемся режиме с учетом постоянной времени терморезистора .

Начальные участки ВАХ и термисторов, и позисторов (ОА, ОС, ОЕ на рис. 11) практически линейны. При дальнейшем увеличении тока подводимая мощность возрастает, происходит саморазогрев терморезисторов и подводимое напряжение у термисторов (а, б) или незначительно возрастает (участок АВ рис. 11) или даже незначительно уменьшается (участок СД рис. 11) из-за уменьшения их сопротивления.

У позисторов (в) в точке Е происходит разогрев от подводимой мощности до температуры, соответствующей точке Кюри, и при дальнейшем увеличении подводимого напряжения ток резко уменьшается (участок EF), а сопротивление возрастает.

Рис. 11: Вольт-амперные характеристики терморезисторов: а, б – термисторы(ТКС<0), в – позистор(ТКС>0)

    Температурная характеристика – это зависимость R (Т ), снимается в установившемся режиме.

Рис. 12 Температурные характеристики терморезисторов:а – термистор с В = 2000 K; б – термистор с В = 5000K; в – Позистор

    Подогревная характеристика – характеристика, свойственная терморезисторам косвенного подогрева – зависимость сопротивления резистора от подводимой мощности.

Рис. 13. Подогревная характеристика термистора косвенного подогрева