Солнечные батареи космических аппаратов. Датчик слежения за солнцем двухосной системы ориентации солнечных батарей Датчики поворота крыльев солнечных батарей космических аппаратов

02.07.2020 Звуковые устройства

В настоящее время множество людей переходит на солнечные фонарики для сада, к примеру, или на зарядное устройство для телефона. Как всем известно, и понятно, работает такая зарядка от полученной днем солнечной энергии. Однако светило не стоит на месте целый день, а потому, создав поворотное устройство для солнечной батареи своими руками, можно повысить эффективность зарядка примерно в половину, передвигая батарею по направлению к солнцу на протяжении всего дня.

Трекер для солнечных панелей своими руками обладает несколькими очень весомыми преимуществами, которые стоят того, чтобы потратить время на его изготовление и установку.

  1. Первое и наиболее важное преимущество – это то, что поворот солнечного элемента в течение всего дня может повысить КПД батареи примерно в половину. Достигается это за счет того, что максимально эффективная работа солнечных батарей достигается в период, когда лучи от светила падают перпендикулярно на фотоэлемент.
  2. Второе преимущество устройства создается под влиянием первого. Из-за того, что батарея повышает свою эффективность и производит вполовину больше энергии, отпадает необходимость установки дополнительных стационарных батарей. К тому же сама поворотная батарея может обладать меньшим фотоэлементом, чем при стационарном способе. Все это экономит большие материальные средства.

Составные элементы трекера

Создание поворотного устройства для солнечных панелей своими руками включает в себя те же комплектующие, что и заводские товары.

Список обязательных деталей для создания такого устройства:

  1. Основа или каркас – состоит из несущих деталей, которые подразделяются на две категории – это подвижные и неподвижные. В некоторых случаях каркас имеет подвижную часть лишь с одной осью – горизонтальной. Однако есть модели и с двумя осями. В таких случаях нужны актуаторы, которые управляют вертикальной осью.
  2. Описанный ранее актуатор также должен входить в конструкцию и обладать устройствами не только поворота, но и устройствами контроля за этими действиями.
  3. Необходимы детали, которые будут защищать устройство от капризов погоды – гроза, сильный ветер, дождь.
  4. Возможность удаленного управления и доступа к поворотному устройству.
  5. Элемент, преобразующий энергию.

Но стоит отметить, что сбор такого устройства иногда дороже, чем покупка уже готового, а потому в некоторых случаях упрощается до несущих деталей, актуатора, управление актуатором.

Электронные системы поворота

Принцип работы

Принцип работы поворотного устройства очень прост и держится на двух деталях, одна из которых механическая, а другая электронная. Механическая часть поворотного устройства соответственно отвечает за поворот и наклон батареи. А электронная часть регулирует моменты времени и углы наклона, по которым действует механическая часть.

Электрооборудование, используемое вместе с солнечными батареями, заряжается от самих же батарей, что в некотором роде также экономит средства на подпитку электроники.

Положительные стороны

Если говорить о достоинствах электронного оборудования для поворотного устройства, то стоит отметить удобство. Удобство заключается в том, что электронная часть устройства будет в автоматическом режиме управлять процессом поворота батареи.

Данное преимущество не единственное, а является лишь еще одним в списке тех, что были перечислены ранее. То есть помимо экономии средств и повышения КПД, электроника освобождает человека от надобности вручную осуществлять поворот.

Как сделать своими руками

Создать трекер для солнечных батарей своими руками несложно, так как схема его создания проста. Для того чтобы создать работоспособную схему трекера своими руками необходимо иметь в наличии два фоторезистора. Кроме этих составляющих, нужно также приобрести моторное устройство, которое будет поворачивать батареи.

Подключение этого устройства осуществляется при помощи Н – моста. Этот метод подключения позволит преобразовывать ток силой до 500 мА с напряжением от 6 до 15 В. Схема сборки позволить не только понять, как работает трекер для солнечных батарей, но и создать его самому.

Чтобы настроить работу схемы, необходимо провести следующие действия:

  1. Удостовериться в наличия питания на схему.
  2. Провести подключение двигателя с постоянным током.
  3. Установить фотоэлементы нужно рядом, чтобы добиться одинакового количества солнечных лучей на них.
  4. Необходимо выкрутить два подстроечных резистора. Сделать это нужно против часовой стрелки.
  5. Запускается подача тока на схему. Должен включиться двигатель.
  6. Вкручиваем один из подстроечников до тех пор, пока он не упрется. Помечаем это положение.
  7. Продолжить вкручивание элемента до тех пор, пока двигатель не начнет крутиться в противоположную сторону. Помечаем и это положение.
  8. Делим полученное пространство на равные отделы и посередине устанавливаем подстроечник.
  9. Вкручиваем другой подстроечник до тех пор, пока двигатель не начнет немного дергаться.
  10. Возвращаем подстроечник немного назад и оставляем в таком положении.
  11. Для проверки правильности работы можно закрывать участки солнечной батареи и смотреть за реакцией схемы.

Часовой механизм поворота

Устройство часового механизма поворота в основе своей довольное простое. Для того чтобы создать такой принцип работы, нужно взять любые механические часы и соединить их с двигателем солнечной батареи.

Для того чтобы заставить работать двигатель, необходимо установить один подвижный контакт на длинную стрелку механических часов. Второй неподвижный закрепляется на двенадцати часах. Таким образом, каждый час, когда длинная стрелка будет проходить через двенадцать часов, контакты будут замыкаться, и двигатель будет поворачивать панель.

Временной промежуток в один час, выбран исходя из того, что за это время солнечное светило проходит по небу около 15 градусов. Установить еще один неподвижный контакт можно на шесть часов. Таким образом, поворот будет проходить каждые полчаса.

Водяные часы

Данный способ управления поворотным устройством был изобретен одной предприимчивой канадской студенткой лет и отвечает за поворот лишь одной оси, горизонтальной.

Принцип работы также прост и заключается в следующем:

  1. Солнечная батарея устанавливается в изначальное положение, когда солнечные лучи попадают на фотоэлемент перпендикулярно.
  2. После этого к одной из сторон цепляют емкость с водой, а к другой стороне цепляют какой-нибудь предмет такого же веса, что и емкость с водой. Дно емкости должно обладать небольшим отверстием.
  3. Через него вода будет понемногу вытекать из емкости, из-за чего будет уменьшаться вес, а панель будет потихоньку наклоняться в сторону противовеса. Определить размеры отверстия для емкости придется экспериментально.

Данный способ является наиболее простым. К тому же он экономит материальные средства, которые ушли бы на покупку двигателя, как в случае с часовым механизмом. К тому же, провести монтаж поворотного механизма в виде водяных часов можно самостоятельно, даже не обладая какими-либо специальными знаниями.

Видео

Как сделать трекер для солнечной батареи своими руками, вы узнаете из нашего видео.

Система поворота солнечной батареи содержит корпус, полый вал с фланцем для стыковки солнечной батареи, привод для ее вращения, силовое и телеметрическое токосъемные устройства. Выходной вал функционально разделен на силовой фланец и вал с силовым токосъемным устройством. Телеметрическое токосъемное устройство установлено на своем валу и связано с выходным валом. Фланец выходного вала установлен в корпусе системы поворота солнечной батареи на опорном подшипнике с предварительным натягом или его поджатием через опорный подшипник к корпусу системы поворота солнечной батареи пружинами. Повышается надежность и снижаютса массы и габариты устройства. 1 з.п. ф-лы, 1 ил.

Изобретение относится к космической технике и может быть использовано при проектировании системы поворота солнечной батареи (СПСБ).

Настоящее изобретение предназначено для вращения солнечной батареи (СБ) и передачи электроэнергий с солнечной батарей на космический аппарат.

Известна система поворота солнечной батарей (СПБС), патент US №4076191, состоящая из корпуса, вала с двумя фланцами для стыковки двух крыльев солнечной батарей, привода, токосъемных устройств. Силовые, передающие электрическую энергию, и телеметрические, передающие команды и телеметрическую информацию, токосъемные устройства расположены на валу, при этом привод поворачивает оба крыла СБ. Данное изобретение взято в качестве прототипа.

Недостатком этого устройства является наличие одного нерезервированного привода и, как следствие, пониженная живучесть аппарата. Вторым недостатком является массивная конструкция вала, обусловленная выполнением требования по необходимой изгибной жесткости вала. Кроме того, большой диаметр вала приводит к повышенному трению и износу токосъемных устройств.

Технической задачей изобретения является повышение надежности системы, снижение массы конструкции и повышение функциональных возможностей.

Поставленная задача достигается тем, что у СПБС, имеющего корпус, привод и вал, выходной вал устройства выполняется полым с силовым фланцем на конце. При этом силовое токосъемное устройство расположено на выходном валу снаружи, а телеметрическое установлено на своем валу. Телеметрическое токосъемное устройство соединено с выходным валом СПБС. Фланец выходного вала установлен на опорный подшипник с плоскими кольцами или поджат к корпусу пружинами. Участок выходного вала с установленным силовым токосъемным устройством исключен из жесткостной схемы конструкции и имеет размеры, оптимальные для обеспечения минимальной массы и необходимого ресурса токосъемного устройства.

Суть изобретения поясняется чертежом, где на фиг.1 изображен общий вид заявленного устройства с разрезом.

Система поворота солнечной батареи состоит из корпуса 1, привода 2, выходного вала 3, установленного на опорном подшипнике 4, силового токосъемного устройства 6, расположенного на выходном валу 3, и телеметрического токосъемного устройства 7, установленного на своем валу. Телеметрическое токосъемное устройство 7 может быть установлено во внутренней полости выходного вала 3 или снаружи и с ним связано. Повышенная жесткость конструкций достигается постоянным поджатием вала 3 к корпусу 1 за счет предварительного натяга опорного подшипника или поджатия тарельчатыми пружинами 8. Повышенная точность положения оси вращения выходного вала 3 достигается опорным подшипником с плоскими опорными кольцами 9. Зубчатое колесо 10 установлено на валу 5 привода 2. Зубчатое колесо 11 установлено на выходном валу 3.

При работе СПСБ привод 2 передает вращение на выходной вал 3. Вращение от привода на выходной вал 3 передается зубчатой передачей с зубчатыми колесами 10, 11.

Токосъемные устройства 6 и 7 передают электрическую энергию, команды и сигналы с вращающейся солнечной батареи на космический аппарат как при вращении, так и в остановленном состоянии. Постоянное поджатие выходного вала 3 к корпусу 1 через опорный подшипник 4 обеспечивается тарельчатыми пружинами 8 как при вращении, так и при остановке выходного вала.

Повышенная живучесть космического аппарата обеспечивается применением по одной СПСБ на каждое крыло СБ. Даже при отказе СПСБ одного крыла аппарат будет получать электрическую энергию с другого крыла и обеспечивать работу главных потребителей.

Снижение веса конструкции обеспечивается тем, что выходной вал 3 функционально разделен на силовой фланец до опорного подшипника 4 и вал силового токосъемного устройства. Силовой фланец может располагаться как внутри корпуса СПСБ, так и снаружи, как показано на фиг 1. Вал имеет меньшие габариты, меньшую массу и увеличенную изгибную жесткость за счет замыкания силовой схемы конструкции с фланца выходного вала непосредственно на корпус через опорный подшипник.

Усилие поджатия опорного подшипника (или предварительный натяг опорного четырехточечного подшипника) выбрано из следующего условия нераскрытия стыка при эксплуатационных нагрузках:

P>2·K·M/D, где

Р - усилие поджатия опорного подшипника, Н·м;

M - приведенный изгибающий момент при работе в штатном режиме, Н;

Уменьшение массы токосъемных устройств и повышение их ресурса работы достигается за счет того, что участок вала с установленным силовым токосъемным устройством исключен из жесткостной схемы конструкции и имеет размеры, оптимальные для токосъемного устройства. Телеметрическое токосъемное устройство капсульного типа установлено на своем валу, например, внутри выходного вала или стыкуется снаружи и имеет минимальную массу. Повышенный ресурс токосъемных устройств достигается возможностью реализации их с минимальным диаметром скользящих колец и, соответственно, пониженным трением.

Меньшие потери на трение токосъемных устройств позволяют уменьшить мощность привода, что приводит к снижению массы приводной части СПСБ.

В настоящее время на предприятии выпущена конструкторская документация на СПСБ заявленной конструкции и проведена наземная экспериментальная отработка системы. Испытания показали существенное уменьшение массы системы, увеличение ресурса работы, повышение жесткостных характеристик и надежности системы.

1. Система поворота солнечной батареи, имеющая корпус, полый вал с фланцем для стыковки солнечной батареи, привод для ее вращения, силовое и телеметрическое токосъемные устройства, отличающаяся тем, что выходной вал функционально разделен на силовой фланец и вал с силовым токосъемным устройством, а телеметрическое токосъемное устройство установлено на своем валу и связано с выходным валом, при этом фланец выходного вала установлен в корпусе системы поворота солнечной батареи на опорном подшипнике с предварительным натягом или его поджатием через опорный подшипник к корпусу системы поворота солнечной батареи пружинами.

2. Устройство по п.1, отличающееся тем, что усилие предварительного натяга или поджатия опорного подшипника выбрано из следующего условия нераскрытия стыка при эксплуатационных нагрузках:
P>2·K·M/D,
где Р - усилие предварительного натяга или поджатия опорного подшипника, Н·м;
K - коэффициент запаса по внешним нагрузкам;
М - приведенный изгибающий момент при работе в штатном режиме, Н;
D - рабочий диаметр опорного подшипника (по шарикам), м.

Похожие патенты:

Изобретение относится к оборудованию космических аппаратов (КА) и, в частности, к подвижным элементам конструкции КА, имеющим электрическую связь с системой управления КА, например батареям солнечным (БС), антеннам, подвижным крышкам и др.

Изобретение относится к управлению ориентацией космического аппарата (КА) с неподвижными относительно корпуса КА панелями солнечных батарей (СБ). .

Изобретение относится к области космической техники и может быть использовано для определения и контроля интегральных параметров лучистого теплообмена планеты, вокруг которой обращается космический аппарат (КА).

Изобретение относится к космической технике и может быть использовано при проектировании выносных конструкций космических аппаратов, преимущественно антенн и солнечных батарей. Подкос солнечной батареи содержит двухзвенный механизм, на общей двум звеньям оси которого установлена пружина кручения с устройствами взведения. Одно звено установлено на раме солнечной батареи, а другое на корпусе космического аппарата. Перпендикулярно оси на одном из звеньев расположен подпружиненный шток для фиксации в конечном положении. На конце подпружиненного штока с возможностью поворота установлено коромысло, на обоих концах которого жестко закреплены подшипники качения, взаимодействующие с конусными пазами копиров, жестко установленных на противоположном подпружиненному штоку звене. В звеньях двухзвенного механизма выполнены отверстия под устройство фиксации начального положения звеньев, закрепленное посредством резьбового соединения. Достигается повышение надежности в работе подкоса и упрощение процесса установки солнечной батареи на корпус космического аппарата. 13 ил.

Изобретение относится к системам электроснабжения космических аппаратов (КА) с использованием солнечных батарей (СБ). Способ заключается в том, что определяют заданный угол СБ, измеряют ее текущий угол и вычисляют расчетный угол по угловой скорости СБ и времени ее вращения. Определяют углы разгона (αРАЗГ) и торможения (αТОРМ) СБ. Вращают СБ до достижения порога отпускания (αОТП ≈ αТОРМ), когда прекращается рассогласование между заданным и расчетным углами СБ. Перед началом управления запоминают заданный угол и принимают начальное значение расчетного угла за достоверное значение текущего угла. Задают порог рассогласования (αПР) этих углов исходя из углов αРАЗГ и αТОРМ, а также минимально допустимого и максимально возможного токов СБ. Разбивают круг датчика угла на равные дискретные сектора (ДС) величиной σ при условии: αРАЗГ + αТОРМ < σ < αПР. Биссектрисы ДС принимают за измеряемые значения. Задают период определения достоверного значения текущего угла на порядок и более превышающим максимальную длительность сбоя информации датчика и менее минимального интервала следования сбоев. Разбивают данный период на четыре равных интервала, и из анализа измеренных и запомненных значений на этих интервалах сбрасывают или формируют сигнал достоверности. В последнем случае вращают СБ до достижения рассогласованием между расчетным и заданным углами значения αОТП и тогда запоминают новое значение заданного угла. Техническим результатом изобретения является повышение живучести и эффективности системы управления ориентацией СБ при кратковременных сбоях информации, поступающей от датчика угла СБ. 4 ил.

Изобретение относится к системам электроснабжения космического аппарата (КА) с помощью солнечных батарей (СБ). Способ включает определение заданного и текущего углов ориентации СБ и угловой скорости (ωСБ) СБ. Вычисляют также расчетный угол и перед началом управления СБ присваивают ему значение измеренного угла, который запоминают. Вращают СБ в направлении уменьшения рассогласования между заданным и расчетным углами. Определяют времена и углы разгона (tРАЗГ, αРАЗГ) и торможения (tТОРМ, αТОРМ) СБ, а также максимально допустимый угол (αMAX) отклонения СБ, исходя из минимально допустимого и максимально возможного токов СБ. По этим углам задают порог срабатывания (αCP), при превышении которого формируют указанное рассогласование. Последнее не учитывают ниже порога отпускания (αОТП), по достижении которого вращение СБ прекращают. Расчетный угол СБ корректируют в пределах одного дискретного сектора (ДС) круга вращения СБ. Величина ДС зависит от углов αРАЗГ, αТОРМ и αCР. В зависимости от αCP и ωСБ задают пороговую величину времени контроля непрерывности изменения информации об угловом положении СБ. Отсчет этого времени контроля проводят, если текущий измеренный угол отличается от запомненного более, чем на один ДС, и прекращают в противном случае. Задают пороговую величину времени контроля направления вращения СБ в зависимости от tРАЗГ, tТОРМ, αMAX, ωСБ и величины ДС. Это время отсчитывают при нулевом времени контроля непрерывности, если знак рассогласования между измеренным и запомненным углами СБ не отвечает заданному направлению вращения СБ. В противном случае отсчет прекращают и обнуляют время контроля направления вращения. При этом в момент изменения текущего измеренного угла на один ДС задают расчетному углу значение границы между ДС и присваивают запомненному углу новое значение измеренного угла. Если время контроля непрерывности или время контроля направления вращения превышает свою пороговую величину, то формируют сигнал отказа и прекращают управление СБ. Техническим результатом изобретения является повышение живучести и эффективности системы управления ориентацией СБ. 3 ил.

Изобретение относится к системам электроснабжения космического аппарата (КА) с помощью солнечных батарей (СБ). Способ включает определение заданного угла ориентации СБ на Солнце по измеренному угловому положению нормали к рабочей поверхности СБ и вычисление расчетного угла относительно указанного положения нормали. Вращают СБ в направлении уменьшения рассогласования между заданным и расчетным углами. Определяют углы разгона (αРАЗГ) и торможения (αТОРМ) СБ. Корректируют расчетный угол в моменты изменения значений датчика угла на величину дискретного сектора (ДС) поворота СБ. Задают пороги срабатывания (αСР) и отпускания (αОТП), прекращая вращение СБ, если рассогласование между заданным и текущим углами начинает увеличиваться, но не более αСР. Задают угловую скорость вращения СБ на порядок и выше максимальной угловой скорости обращения КА вокруг Земли, а величину ДС - менее αСР. Задают рабочий угол (αРАБ) СБ из условия: αСР< αРАБ < (αГОР - 2·(αРАЗГ + αТОРМ)). Присваивают заданному углу значение углового положения ближайшего к нему луча угла αРАБ, если направление на Солнце в проекции на плоскость вращения указанной нормали находится вне αРАБ. Если угловое положение данной нормали находится вне αРАБ, изменяясь в направлении увеличения угла относительно ближайшего к нему луча угла αРАБ, то формируют сигнал отказа и прекращают управление СБ. Техническим результатом изобретения является исключение заклинивания и поломки панели СБ или бортового оборудования КА, при обеспечении максимально возможного тока в условиях ограничений на углы поворота СБ (напр., от 90° до 180°). 3 ил.

Изобретение относится к электротехнике, в частности к устройствам для генерирования электрической энергии путем преобразования светового излучения в электрическую энергию, и может быть использовано при создании и производстве малоразмерных космических аппаратов с солнечными батареями (СБ). Техническим результатом изобретения является: повышение стойкости СБ к термоударам, к воздействию механических и термомеханических нагрузок, повышение технологичности конструкции, увеличение срока активного существования СБ космических аппаратов, повышение функциональных возможностей за счет расширения температурного диапазона функционирования и оптимизации конструкции СБ, упрощение коммутационной системы, что достигается путем повышения прочности соединения шунтирующих диодов и СЭ, повышение воспроизводимости процесса изготовления СБ космических аппаратов за счет оптимизации технологии изготовления шунтирующих диодов и СЭ СБ, а также коммутирующих шин, соединяющих СЭ и шунтирующие диоды, которые выполнены многослойными. Солнечная батарея для малоразмерных космических аппаратов содержит: панели с приклеенными на них модулями с солнечными элементами (СЭ), шунтирующий диод; коммутирующие шины, соединяющие лицевую и обратную стороны шунтирующего диода с СЭ, при этом шунтирующий диод установлен в вырезе в углу СЭ, при этом коммутирующие шины выполнены многослойными, состоящими из молибденовой фольги, с двух сторон которой последовательно нанесены слой ванадия или титана, слой никеля и слой серебра соответственно. 2 н. и 5 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к управлению движением космических аппаратов (КА) с использованием сил давления солнечного излучения, распределенных по рабочим зонам КА. Последние формируют в виде плоских параллельных оптически прозрачных капельных потоков. Расстояние между каплями радиусом R в каждом потоке вдоль него (Sx) и в его фронтально-поперечном направлении (Sy) кратно. Число потоков составляет. Смещением потоков относительно друг друга по направлению их движения на расстояние формируют потоки капельной пелены числом. Каждый из указанных потоков смещен относительно предыдущего во фронтально-поперечном направлении на расстояние. Этим создают непрозрачность во фронтально-поперечном направлении и прозрачность в направлении плоскости, перпендикулярной потоку. Единичную распределенную силу светового давления регулируют изменением радиуса и количества капель, приходящих в точку ее приложения в единицу времени. Величину суммарного воздействия регулируют изменением числа капельных струй. Технический результат изобретения направлен на повышение эффективности использования распределенных внешних сил светового давления путем уменьшения их возмущающего действия на относительное движение КА. 3 ил., 1 табл.

Изобретение относится к управлению движением космического аппарата (КА), на котором размещены теплоизлучающий радиатор и солнечная батарея (СБ). Способ включает выполнение полета КА по орбите вокруг планеты с разворотом СБ в положение, соответствующее совмещению нормали к рабочей поверхности СБ с направлением на Солнце. Строят орбитальную ориентацию КА, при которой плоскость вращения СБ параллельна плоскости орбиты КА и СБ расположена относительно плоскости орбиты со стороны Солнца. Определяют высоту орбиты КА и угол между направлением на Солнце и плоскостью орбиты КА. Определяют значение (β*) данного угла, при котором длительность теневой части витка равна необходимому времени сброса тепла радиатором на витке. Определяют витки орбиты, на которых текущее значение данного угла больше β*. На этих витках выполняют повороты СБ вокруг поперечной и продольной осей вращения до достижения условий затенения радиатора СБ. При этом обеспечивают минимальное отклонение ориентации рабочей поверхности СБ на Солнце. Орбитальный полет КА выполняют по околокруговой орбите высотой не более некоторого расчетного значения. Технический результат изобретения состоит в повышении эффективности функционирования радиатора путем создания условий его естественного охлаждения при затенении СБ в любом положении КА на витке орбиты. 3 ил.

Изобретение относится к космической технике и может быть использовано при проектировании системы поворота солнечной батареи

Римский философ Сенека сказал: "Если человек не знает, куда он плывет, то для него нет попутного ветра". В самом деле, какая нам польза от , если мы не знаем положения аппарата в пространстве? Этот рассказ о приборах, которые позволяют нам не заблудиться в космосе.

Технический прогресс сделал системы ориентации небольшими, дешевыми и доступными. Сейчас даже студенческий микроспутник может похвастаться системой ориентации, о которой пионеры космонавтики могли только мечтать. Ограниченность возможностей порождала остроумные решения.

Асимметричный ответ: никакой ориентации

Первые спутники и даже межпланетные станции летали неориентированными. Передача данных на Землю велась по радиоканалу, и несколько антенн, чтобы спутник был на связи при любом положении и любых кувырканиях, весили гораздо меньше, чем система ориентации. Даже первые межпланетные станции летали неориентированными:


Луна-2, первая станция, достигшая поверхности Луны. Четыре антенны по бокам обеспечивают связь при любом положении относительно Земли

Даже сегодня иногда бывает проще покрыть всю поверхность спутника солнечными батареями и поставить несколько антенн, нежели создавать систему ориентации. Тем более, что некоторые задачи нетребовательны к ориентации - например, фиксировать космические лучи можно в любом положении спутника.

Достоинства:


  • Максимальная простота и надежность. Отсутствующая система ориентации не может сломаться.

Недостатки:

  • Годится сейчас, в основном, для микроспутников, решающих сравнительно простые задачи. "Серьезным" спутникам без системы ориентации уже не обойтись.

Солнечный датчик

Фотоэлементы к середине XX века стали вещью привычной и освоенной, поэтому нет ничего удивительного, что они отправились в космос. Очевидным маяком для таких датчиков стало Солнце. Его яркий свет попадал на фоточувствительный элемент и позволял определять направление:


Различные схемы работы современных солнечных датчиков, внизу находится фоточувствительная матрица


Еще один вариант конструкции, здесь матрица изогнута


Современные солнечные датчики

Достоинства:


  • Простота.

  • Дешевизна.

  • Чем выше орбита, тем меньше участок тени, и тем дольше может работать датчик.

  • Точность примерно одна угловая минута.

Недостатки:


  • Не работают в тени Земли или другого небесного тела.

  • Могут быть подвержены помехам от Земли, Луны и т.п.

Всего одна ось, по которой могут стабилизировать аппарат солнечные датчики, не мешает их активному использованию. Во-первых, солнечный датчик можно дополнить другими сенсорами. Во-вторых, у космических аппаратов с солнечными батареями солнечный датчик позволяет легко организовать режим закрутки на Солнце, когда аппарат вращается направленный на него, и солнечные батареи работают в максимально комфортных условиях.
Космические корабли "Восток" остроумно использовали солнечный датчик - ось на Солнце использовалась при построении ориентации для торможения корабля. Также, солнечные датчики были крайне востребованы на межпланетных станциях, потому что многие другие типы датчиков не могут работать вне земной орбиты.
Благодаря простоте и дешевизне солнечные датчики сейчас очень распространены в космической технике.

Инфракрасная вертикаль

Аппараты, которые летают по орбите Земли, часто нуждаются в определении местной вертикали - направления на центр Земли. Фотоэлементы видимого диапазона для этого подходят не очень - на ночной стороне Земля гораздо хуже освещена. Но, к счастью, в инфракрасном диапазоне теплая Земля светит практически одинаково на дневном и ночном полушариях. На низких орбитах датчики определяют положение горизонта, на высоких - сканируют пространство в поисках теплого круга Земли.
Конструктивно, как правило, инфракрасные построители вертикали содержат систему зеркал или сканирующее зеркало:


Инфракрасная вертикаль в сборке с маховиком. Блок предназначен для точной ориентации на Землю для геостационарных спутников. Хорошо видно сканирующее зеркало


Пример поля зрения инфракрасной вертикали. Черный круг - Земля


Отечественные инфракрасные вертикали производства ОАО "ВНИИЭМ"

Достоинства:


  • Способны строить местную вертикаль на любом участке орбиты.

  • Как правило, высокая надежность.

  • Хорошая точность -

Недостатки:

  • Ориентация только по одной оси.

  • Для низких орбит нужны одни конструкции, для высоких - другие.

  • Сравнительно большие габариты и вес.

  • Только для орбиты Земли.

Тот факт, что ориентация строится только по одной оси, не мешает широкому использованию инфракрасных вертикалей. Они очень полезны для геостационарных спутников, которым необходимо нацеливать свои антенны на Землю. Также ИКВ используются в пилотируемой космонавтике, например, на современных модификациях корабля "Союз" ориентация на торможение производится только по ее данным:


Корабль "Союз". Дублированные датчики ИКВ показаны стрелками

Гироорбитант

Для того, чтобы выдать тормозной импульс, необходимо знать направление вектора орбитальной скорости. Солнечный датчик даст правильную ось примерно один раз в сутки. Для полетов космонавтов это нормально, в случае нештатной ситуации человек может вручную сориентировать корабль. Но корабли "Восток" имели "братьев-близнецов", разведывательные спутники "Зенит", которым тоже нужно было выдавать тормозной импульс, чтобы вернуть с орбиты отснятую пленку. Ограничения солнечного датчика были неприемлемы, поэтому пришлось придумывать что-то новое. Таким решением стал гироорбитант. Когда работает инфракрасная вертикаль, корабль вращается, потому что ось на Землю постоянно поворачивается. Направление орбитального движения известно, поэтому по тому, в какую сторону поворачивается корабль, можно определить его положение:

Например, если корабль постоянно кренится вправо, то мы летим правым боком вперед. А если корабль летит кормой вперед, то он будет постоянно поднимать нос вверх. С помощью гироскопа, который стремится сохранить свое положение, это вращение можно определить:

Чем сильнее отклонена стрелка, тем сильнее выражено вращение по этой оси. Три таких рамки позволяют замерить вращение по трем осям и развернуть корабль соответственно.
Гироорбитанты широко использовались в 60-80-х годах, но сейчас вымерли. Простые датчики угловых скоростей позволили эффективно измерять вращение аппарата, а бортовая ЭВМ без труда определит положение корабля по этим данным.

Ионный датчик

Красивой была идея дополнить инфракрасную вертикаль ионным датчиком. На низких земных орбитах попадаются молекулы атмосферы, которые могут быть ионами - нести электрический заряд. Поставив датчики, фиксирующие поток ионов, можно определить, какой стороной корабль летит вперед по орбите - там поток будет максимальным:


Научная аппаратура для измерения концентрации положительных ионов

Ионный датчик работал быстрее - на построение ориентации с гироорбитантом уходил почти целый виток, а ионный датчик был способен построить ориентацию за ~10 минут. К сожалению, в районе Южной Америки находится так называемая "ионная яма", которая делает работу ионного датчика нестабильной. По закону подлости именно в районе Южной Америки нашим кораблям надо строить ориентацию на торможение для посадки в районе Байконура. Ионные датчики стояли на первых "Союзах", но достаточно скоро от них отказались, и сейчас они нигде не используются.

Звездный датчик

Одной оси на Солнце часто бывает мало. Для навигации может быть нужен еще один яркий объект, направление на который вместе с осью на Солнце даст нужную ориентацию. Таким объектом стала звезда Канопус - она вторая по яркости в небе и находится далеко от Солнца. Первым аппаратом, который использовал звезду для ориентации, стал "Маринер-4", стартовавший к Марсу в 1964 году. Идея оказалась удачной, хотя звездный датчик выпил много крови ЦУПа - при построении ориентации он наводился не на те звезды, и приходилось "прыгать" по звездам несколько дней. После того, как датчик наконец навелся на Канопус, он стал постоянно его терять - летевший рядом с зондом мусор иногда ярко вспыхивал и перезапускал алгоритм поиска звезды.
Первые звездные датчики представляли собой фотоэлементы с небольшим полем зрения, которые умели наводиться только на одну яркую звезду. Несмотря на ограниченность возможностей, они активно использовались на межпланетных станциях. Сейчас технический прогресс, фактически, создал новый класс устройств. Современные звездные датчики используют матрицу фотоэлементов, работают в паре с компьютером с каталогом звезд и определяют ориентацию аппарата по тем звездам, которые видны в поле их зрения. Такие датчики не нуждаются в предварительном построении грубой ориентации другими приборами и способны определить положение аппарата вне зависимости от участка неба, в которое их направят.


Типичные звездные датчики


Чем больше поле зрения, тем проще ориентироваться


Иллюстрация работы датчика - по взаимному положению звезд по данным каталога рассчитывается направление взгляда

Достоинства:


  • Максимальная точность, может быть меньше угловой секунды.

  • Не нуждается в других приборах, может определить точное положение самостоятельно.

  • Работают на любых орбитах.

Недостатки:

  • Высокая цена.

  • Не работают при быстром вращении аппарата.

  • Чувствительны к засветке и помехам.

Сейчас звездные датчики используются там, где нужно знать положение аппарата очень точно - в телескопах и других научных спутниках.

Магнитометр

Сравнительно новым направлением является построение ориентации по магнитному полю Земли. Магнитометры для измерения магнитного поля часто ставились на межпланетные станции, но не использовались для построения ориентации.


Магнитное поле Земли позволяет строить ориентацию по всем трем осям


"Научный" магнитометр зондов "Пионер-10" и -11


Первый цифровой магнитометр. Эта модель появилась на станции "Мир" в 1998 г. и использовалась в посадочном модуле "Филы" зонда "Розетта"

Достоинства:


  • Простота, дешевизна, надежность, компактность.

  • Средняя точность, от угловых минут до нескольких угловых секунд.

  • Можно строить ориентацию по всем трем осям.

Недостатки:

  • Подвержен помехам в т.ч. и от оборудования космического аппарата.

  • Не работает выше 10 000 км от Земли.

Простота и дешевизна магнитометров сделала их очень популярными в микроспутниках.

Гиростабилизированная платформа

Исторически, космические аппараты часто летали неориентированными или в режиме солнечной закрутки. Только в районе цели миссии они включали активные системы, строили ориентацию по трем осям и выполняли свою задачу. Но что, если нам необходимо поддерживать произвольную ориентацию длительное время? В этом случае нам надо "помнить" текущее положение и фиксировать свои повороты и маневры. А для этого человечество не придумало ничего лучше гироскопов (измеряют углы поворота) и акселерометров (измеряют линейные ускорения).
Гироскопы
Широко известно свойство гироскопа стремиться сохранить свое положение в пространстве:

Изначально гироскопы были только механическими. Но технический прогресс привел к появлению множества других типов.
Оптические гироскопы . Очень высокой точностью и отсутствием движущихся деталей отличаются оптические гироскопы - лазерные и оптоволоконные. В этом случае используется эффект Саньяка - фазовый сдвиг волн во вращающемся кольцевом интерферометре.


Лазерный гироскоп

Твердотельные волновые гироскопы . В этом случае измеряется прецессия стоячей волны резонирующего твердого тела. Не содержат движущихся частей и отличаются очень высокой точностью.

Вибрационные гироскопы . Используют для работы эффект Кориолиса - колебания одной части гироскопа при повороте отклоняют чувствительную часть:

Вибрационные гироскопы производятся в MEMS-исполнении, отличаются дешевизной и очень маленькими размерами при сравнительно неплохой точности. Именно эти гироскопы стоят в телефонах, квадрокоптерах и тому подобной технике. MEMS-гироскоп может работать и в космосе, и их ставят на микроспутники.

Размер и точность гироскопов наглядно:

Акселерометры
Конструктивно, акселерометры представляют собой весы - фиксированный груз меняет свой вес под воздействием ускорений, и датчик переводит этот вес в величину ускорения. Сейчас акселерометры кроме больших и дорогих версий обзавелись MEMS-аналогами:


Пример "большого" акселерометра


Микрофотография MEMS-акселерометра

Комбинация трех акселерометров и трех гироскопов позволяет фиксировать поворот и ускорение по всем трем осям. Такое устройство называется гиростабилизированной платформой. На заре космонавтики они были возможны только на карданном подвесе, были очень сложными и дорогими.


Гиростабилизированная платформа кораблей Apollo. Синий цилиндр на переднем плане - гироскоп. Видео испытаний платформы

Вершиной механических систем были бескарданные системы, когда платформа висела неподвижно в потоках газа. Это был хайтек, результат работы больших коллективов, очень дорогие и секретные устройства.


Сфера в центре - гиростабилизированная платформа. Система наведения МБР Peacekeeper

Ну а сейчас развитие электроники привело к тому, что платформа с пригодной для простых спутников точностью умещается на ладони, ее разрабатывают студенты, и даже публикуют исходный код.

Интересным нововведением стали MARG-платформы. В них данные с гироскопов и акселерометров дополняются магнитными датчиками, что позволяет исправлять накапливающуюся ошибку гироскопов. MARG-датчик, наверное, самый подходящий вариант для микроспутников - он маленький, простой, дешевый, не имеет движущихся частей, потребляет мало энергии, обеспечивает ориентацию по трем осям с коррекцией ошибок.
В "серьезных" системах для исправления ошибок ориентации гиростабилизированной платформы обычно используют звездные датчики.

При строительстве загородных домов, домиков на дачных участках, теплиц, различных фермерских построек все чаще стали применяться автономные системы электрообеспечения. Солнечные батареи обеспечивают независимость от общих электрических сетей. Да и в городах в частном секторе нередко можно увидеть на крышах домов солнечные панели домашних электростанций.

Эти панели могут быть с моно- и поликристаллическими кремниевыми структурами, могут быть построены на базе батарей, выполненных по аморфной или микроморфной технологии, могут быть даже использованы солнечные батареи, выполненные по технологии «Moth Eye» («Глаз мотылька»). При этом каждое здание строится таким образом, чтобы солнечные панели были установлены в месте, максимально освещаемом солнцем.

Эффективность современных гелиевых систем в среднем не превышает 18% - 20%. У лучших образцов эффективность может достигать 25%. В 2014 году ученые Австралийского центра UNSW по усовершенствованию фотовольтаики сообщили, что им удалось добиться эффективности солнечных батарей в 40%.

При этом нужно понимать, что измерение величины эффективности производится, когда гелиевая панель освещается солнцем под прямым углом. Если солнечная батарея закреплена стационарно, то в течение дня, когда солнце перемещается по небосводу, период прямого освещения батареи солнцем будет относительно небольшим. И поэтому эффективность даже самых совершенных солнечных панелей будет снижаться.

Для того чтобы минимизировать снижение эффективности гелиевых систем, солнечные панели должны устанавливаться на поворотных модулях, которые позволят в течение всего светового дня ориентировать батареи на солнце. Такое поворотное устройство, на котором закреплена несущая конструкция с одной или несколькими солнечными панелями, называется трекером.

Он предназначен для того, чтобы следить за солнцем, и, в зависимости от его положения, ориентировать на него солнечную панель. Это устройство, в зависимости от исполнения, включает в себя один или два датчика слежения за солнцем, а также поворотный механизм. Трекер должен быть установлен в хорошо освещаемом солнцем месте на земле, на стационарной станине, либо на мачте, которая поднимет трекер на такую высоту, чтобы солнечная батарея всегда была освещена солнцем.

Трекер с четырьмя солнечными панелями на мачте

Даже простейшее поворотное устройство с системой слежения за солнцем позволяет получить максимальный коэффициент полезного действия от гелиевых батарей. Как показали исследования, при отсутствии должной ориентации солнечных панелей на солнце теряется до 35% мощности. Поэтому, чтобы выйти на запланированную мощность в случае неподвижного крепления фотоэлементов, приходится устанавливать большее количество панелей.

Принцип построения систем управления поворотом солнечных батарей

Промышленностью выпускается несколько видов систем управления поворотом солнечных батарей. Это достаточно дорогие (до 100000 рублей) устройства, которые могут управлять положением сразу нескольких гелиевых панелей.

Поскольку солнце в течение дня перемещается не только по горизонтали, но и по вертикали, то эти системы управления отслеживают оба изменения положения и, в соответствии с полученной информацией, выдают команды на поворот панели вокруг горизонтальной или вертикальной осей. В общем случае такая система управления состоит из солнечного датчика, преобразователя (П) сигнала с этого датчика, усилителя (У) сигнала, микроконтроллера (МК), устройства управления двигателем (УУД), самого двигателя и, наконец, непосредственно рамы, на которой крепится гелиевая панель.


Схема управления трекера

Характерно, что для управления поворотом в обеих осях используется одна и та же схема. Различны только датчики положения солнца и двигатели. Простейший датчик положения солнца состоит из двух фотодиодов, разделенных непрозрачной перегородкой.

В зависимости от того, за каким перемещением следит этот датчик, перегородка устанавливается горизонтально или вертикально, но обязательно направлена строго на солнце. Пока оба фотодиода освещаются одинаково, сигналы, поступающие с них, равны. Как только солнце переместится настолько, что один из фотодиодов окажется в тени перегородки, происходит разбаланс сигналов и система управления вырабатывает соответствующую команду на поворот солнечной батареи.


Схема датчика положения солнца

В качестве двигателей для поворотной платформы используются, как правило, шаговые двигатели или реактивно-вентильные двигатели. В таких системах управления датчики слежения установлены на этой же платформе и поворачиваются вместе с нею, обеспечивая тем самым точную ориентацию гелиевой панели на солнце. Для надежной работы датчика необходимо предусмотреть защиту его от загрязнения, налипания снега, затенения оптики случайными предметами.

Существуют системы управления, в которых датчики слежения удалены от несущей поворотной платформы и находятся в месте, защищенном от подобных воздействий. В этом случае сигнал с датчиков поступает на сельсин-передатчик. Ориентируя датчик слежения на солнце, сельсин-передатчик передает управляющее воздействие на сельсин-приемник, который и поворачивает несущую платформу, направляя ее точно на солнце.

Система управления поворотом солнечных панелей на базе часового механизма

Промышленные установки – полностью укомплектованные гелиевые электростанции с двухосными поворотными модулями – достаточно дорогое удовольствие. Например, промышленный трекер UST-AADAT стоит порядка полутора миллионов рублей. Естественное желание всех владельцев солнечных электростанций – повысить выходную мощность, но при этом сократить расходы. В результате появились самодельные устройства, оригинальные по своему решению, в которых используются подручные материалы. И эти устройства вполне успешно управляют ориентацией панелей на солнце.

Один из вариантов такого устройства – система управления ориентацией гелиевых панелей, построенная на базе часового механизма. Для слежения за солнцем вовсе не обязательно использовать светоприемные устройства. Для этого достаточно взять обычные настенные механические часы. Подойдут даже старые ходики. Известно, что за один час солнце проходит по небосводу с востока на запад путь, соответствующий угловому перемещению на 15°. Поскольку для гелиевой панели такое угловое смещение не особенно критично, то достаточно включать поворотный механизм один раз в час.


Слежение за перемещением солнца по часам

Устройство для поворота гелиевой панели вокруг вертикальной оси может выглядеть следующим образом. В циферблате на расстоянии длины минутной стрелки от центра, в месте, соответствующем 12-ти часам, устанавливается неподвижный контакт. Подвижный контакт – на острие минутной стрелки.

Таким образом, каждые 60 минут будет происходить замыкание контактов и включаться двигатель, поворачивающий солнечную панель. Отключение двигателя можно организовать различными способами, например, конечным выключателем или реле времени. Если на циферблате установить еще один неподвижный контакт в месте, соответствующем 6-ти часам, то коррекция положения панели будет производиться через каждые полчаса.

В этом случае устройства отключения двигателя должны быть настроены на поворот несущей платформы на угол 7,5°.

Кроме того, при желании здесь же, на этом механизме, с помощью еще одной контактной группы, но уже на базе часовой стрелки можно собрать схему автоматического возврата солнечной панели в исходное положение. На базе этой же часовой стрелки можно собрать систему управления поворотом панели и вокруг горизонтальной оси. Пока часовая стрелка двигается до 12-ти часов, несущая рама поднимается вслед за солнцем. После 12-ти часов двигатель горизонтальной оси реверсируется, и солнечная панель начинает вращаться в обратном направлении.

Принцип водяных часов в системе управления поворотом солнечных панелей

Эта система была придумана девятнадцатилетней студенткой Иден Фулл из Канады. Она предназначена для управления одноосным трекером. Принцип работы следующий. Вращение производится вокруг горизонтальной оси. Солнечная панель устанавливается в начальное положение таким образом, чтобы солнечные лучи были перпендикулярны плоскости панели.

На одну сторону панели подвешивается емкость с водой, на противоположную сторону подвешивается груз, равновесный с емкостью, наполненной водой. В нижней части емкости проделывается небольшое отверстие, чтобы вода по каплям вытекала из этого сосуда. Размер этого отверстия подбирается экспериментально. По мере вытекания воды сосуд становится легче, и противовес медленно поворачивает раму с панелью.


Трекер на «водяных часах»

Подготовка трекера к работе заключается в том, что в опустевшую емкость заливается вода и солнечная панель устанавливается в исходное положение.

Эти два примера далеко не исчерпывают возможные варианты построения поворотных модулей. При небольшой фантазии можно получить простое, но очень эффективное устройство, которое гарантированно сможет повысить эффективность домашней гелиевой электростанции.

Солнечный трекер - это система, предназначенная для ориентации на Солнце рабочих поверхностей систем генерирующих электричество, либо систем концентрирующих (генерирующих) тепловую энергию, установленных на трекере.

Рабочей поверхностью в данном случае выступают:

— батарея, состоящая их солнечных фотоэлектрических модулей (панелей);
— зеркало параболического отражателя, фокусирующего солнечную энергию на двигателе Стирлинга, вырабатывающего электричество (Фото 2);
— зеркало отражателя, фокусирующего солнечную энергию на любой другой приёмник солнечной энергии, которым может выступать устройство или теплоноситель, в зависимости от типа системы (Фото 3).
— оптические устройства и др.

Точная ориентация рабочих поверхностей систем на Солнце необходима для достижения их максимальной производительности. При этом задача трекера — уменьшить угол падения солнца на рабочую поверхность солнечных панелей (PV- модулей, СPV-концентрированных фотоэлектрических модулей, CSP систем, HCPV систем, параболических отражателей и др.).

Состав солнечного трекера

Солнечный трекер в полной комплектации состоит из:

1. Несущей конструкции, состоящей из фиксированной и подвижной частей, подвижная часть имеет одну или две оси вращения (Рис.1);
2. Системы ориентации (позиционирования) подвижной части трекера, состоящей из актуаторов, и устройства управления ими;
3. Системы безопасности, включающей в себя:
— защиту от молнии,
— защиту от перегрузок,
— метеостанцию, предназначенную для предупреждения системы об урагане, граде, снеге, наледи, неблагоприятных погодных условиях. Анализируя данные метеостанции, система переориентирует трекер в положение, при котором неблагоприятные факторы будут минимизированы в период их действия, а рабочие поверхности защищены от разрушения или порчи.
— стабилизаторы;
4. Системы управления и интерфейс, предназначенные для настройки, контроля и обслуживания энергосистемы;
5. Системы удалённого доступа — для удалённого мониторинга и управления системой;
6. Система навигации — для определения географического положения системы, высоты над уровнем моря (для трекеров на мобильной базе). На стационарных трекерах навигация не обязательна. Установочные значения широты, долготы, высоты над уровнем моря места, где ставится трекер, вводятся поставщиком при монтаже системы.

7. Инвертор - преобразует, поступающее от полезной нагрузки трекера (PV-модулей и др.) постоянное напряжение в переменное 220В (110В) и передаёт его потребителю или на принимающую станцию, одновременно, запитывая трекер. Количество инверторов на трекере может быть от одного до трёх. Инверторы выполняются в защищенном варианте (полевом) или же в корпусе, устанавливаемом в помещении. Схемы подключения инверторов в системе могут быть различными.

Необходимость полной комплектации трекера не всегда экономически целесообразна, зависит от вида трекера, назначения, и других факторов, поэтому в практике часто многие указанные выше составляющие элементы трекера отсутствуют.

Виды солнечных трекеров

Системы ориентации солнечных батарей

Подвижная часть трекера может менять своё положение с помощью ручного привода, либо с помощью 1-2-х актуаторов — исполнительных устройств, выполненных на электродвигателях.

Задача трекера — установить углы наклона рабочей поверхности нагрузки, сориентировав, её строго на солнце. Проще говоря, солнечные лучи должны падать перпендикулярно плоскости солнечной батареи.

Рис. 1

Такой ориентации можно добиться несколькими способами:

В первом случае устройство управления актуаторами с помощью нескольких фотоприёмников анализирует освещённость при разных положениях трекера и передаёт управляющие сигналы на актуаторы до момента, когда поток света на всех фотоэлементах будет одинаков. Разбалансировка системы из-за движения солнца даст импульс для активации нового перемещения, в направлении к солнцу. Принципиальные схемы таких устройств несложные и недорогие. Но у них есть один существенный недостаток. В пасмурную погоду, при осадках и загрязнении фотоприёмников система неработоспособна.

Переориентировать систему можно вручную, либо, управляя актуаторами, подавая управляющие сигналы с помощью переключателей. Но такой способ приемлем в основном для сезонной ориентации трекеров, когда на какой то период времени выставляется соответствующий угол наклона (на картинке данный угол обозначен как Zenith (зенитный угол наклона солнца (Рис 1.)). Точность ориентации при этом невелика, постоянно оператор не может находиться у трекера, поэтому данный способ распространён мало, но для сезонной ориентации малобюджетных систем он вполне подходит.

Управление движением трекера по Азимутальному и Зенитному углам возможно устройством управления, в состав которого входит таймер. При этом актуаторы начинают свою работу по суточной программе таймера (при необходимости, и по годовой программе). Точность ориентации при этом не велика, так как солнце в течение года постоянно меняет время, место восхода и захода, зенитный угол.
К примеру, летом в наших широтах зенитный угол мал, а зимой солнце идёт по горизонту и зенитный угол велик. Данный способ приемлем для недорогих систем.

Наиболее эффективным стал способ управления актуаторами по программе, которая в определенные интервалы времени рассчитывает местоположение солнца. По внутренним часам устройства программа на блок управления будет выдавать информацию о значении Азимутального (Azimuth) и Зенитного(Zenith) углов (Рис.1), с учётом местоположения трекера (широта, долгота, высота над уровнем моря), после чего исполнительным устройством производится соответствующая переориентация трекера в расчётное положение. Данная программа для расчёта местоположения солнца, называется — SPA (Алгоритм солнечной позиции).

Устройства управления трекерами могут быть выполнены на защищённых компьютерах, PLC — Программируемых логических контроллерах, либо в виде отдельных законченных устройств, программируемых поставщиком при поставке трекера, с привязкой к местности своего изделия. Группа трекеров может управляться одним компьютером, что снижает себестоимось электростанции.

Особенности конструктива

Конструктив трекера должен обеспечивать способность выдерживать сильные ветровые нагрузки, при его работе в составе энергосистемы. С увеличением размеров рабочей поверхности полезной нагрузки увеличивается парусность комплекса. Вес полезной нагрузки тоже имеет значение. Поэтому проектировщикам часто приходится в своих решениях перераспределять нагрузки на трекер, увеличивая габариты системы (Фото 4;5). Надёжность при этом является определяющим фактором.

UST — Юрий Студёнов

Приобрести солнечный трекер вы можете . Выбирайте одноосевые и двухосевые трекеры производства .