Электросхема шума двигателя самолета для сборной модели. Имитатор необычных звуков

14.04.2019 Игры

Это устройство имитирует звук работающего двигателя автомобиля и может служить хорошим дополнением для детских игрушек.
Кроме этого предусмотрена еще и имитация автомобильного сигнала (при нажатии на кнопку).

Схема имитатора звука мотора

Основой устройства является несимметричный мультивибратор, собранный на транзисторах VT1 и VT2 фазной структуры. Расширить возможности имитатора удалось за счет применения двух отдельных частотозависимых цепей с различной постоянной времени, коммутируемых кнопочным переключателем SB1. Включают устройство тумблером SA1, подав Напряжение батареи GB1.


В положении SB1, показанном на схеме, частота колебаний мультивибратора определяется параметрами времязадающей цепи R1R3C1, соединенной с базой транзистора VT1. Генератор работает в режиме метронома, вырабатывая периодически повторяющиеся импульсы со значительными паузами между ними - работает "мотор". Его звуки воспроизводит динамическая головка ВА1, включенная через трансформатор Т1, служащий коллекторной нагрузкой транзистора VT2. Частоту "выхлопов" регулируют переменным резистором R1. В верхнем по схеме положении его движка "выхлопы" редки. Переводя движок в нижнее положение, Сопротивление резистора уменьшают - "мотор" прибавляет обороты, скорость увеличивается.

Если нужно подать звуковой тональный сигнал, нажимают на кнопку SB1, и с базой транзистора VT1 окажется соединенной другая цепь R2C2R4, преобразующая устройство в генератор звуковой частоты. Длительность звукового сигнала зависит от времени нажатия кнопки.

Транзисторы кремниевые маломощные: VT1 (n-p-n) любой серий КТ201, КТ301, КТ306, КТ312, КТ315, КТ342, КТ373; VT2 (p-n-p) - любой серий КТ208, КТ209, КТ351, КТ352, КТ361. Постоянные резисторы МЛТ-0,125-МЛТ-0,5; переменный резистор любого типа, желательно группы А. Оксидные конденсаторы К50-3, К50-6; C2 - бумажный, металлобумажный или керамический (БМ, МБМ, КЛС).

Трансформатор - выходной, от любого транзисторного радиоприемника. Используется лишь одна половина первичной обмотки, имеющей средний вывод. Динамическая головка - мощностью 0,1-2 Вт и с сопротивлением звуковой катушки постоянному току 6 - 10 Ом. SA1 - тумблер любого типа, например П1Т-1-1, МТ-1; SB1 - кнопка с самовозвратом типа КМ1-1, КМД1-1 или самодельная на базе микропереключателя МП, а также П2К без фиксатора. GB1-батарея 3336Л ("Рубин") или три последовательно соединенных элемента 343, 373.

Собранное без ошибок устройство с применением исправных элементов начинает функционировать сразу. Но поскольку максимум и минимум оборотов двигателя у разных машин неодинаков, емкость конденсатора C1 следует подобрать в пределах 1-5 мкф. Тональность сигнала определяет в основном емкость конденсатора C2, которая колеблется от 0,033 до 0,25 мкф, а громкость (и в небольших пределах тональность) устанавливают подбором номинала резистора R4, изменяя тем самым скважность импульсов звуковой частоты. Чтобы получить более глухие "выхлопы", обмотку I шунтируют конденсатором емкостью 0,047 мкф.

Иногда регулятор частоты оборотов "мотора" (резистор R1) совмещают с выключателем питания. В этом случае рекомендуем применить переменный резистор с выключателем - ТК, ТКД или СП3-106.

Системы имитации звука двигателя - это оборудование, установка которого позволит почувствовать себя за рулём мощного автомобиля. Если вы хотите изменить звучание своей машины, то обратитесь в автосервис «РамФлоу». Мы используем оригинальные запчасти, предлагаем демократичные цены и предоставляем гарантию на работы. Ждём вас центре выхлопных систем с 10:00 до 22:00 без перерывов и выходных.

Наши работы

Типы систем имитации звучания движка

В Европе был разработан законопроект, предписывающий производителям автомобилей с гибридными и электрическими моторами использовать системы имитации звука двигателя. Они должны включаться, когда машина сдаёт назад или движется на низкой скорости (от 1 до 20 км/ч).

  • Active Sound Design (Renault и BMW). На акустическую систему подаётся обработанный и усиленный звук мотора. Характер звучания постоянно меняется. На него влияют скорость, передача и частота кручения коленчатого вала.
  • Active Sound Control (Lexus). Микрофон устанавливается под крышку капота. Звук, поступающий от работы мотора, обрабатывается эквалайзером. Это позволяет добиться более объёмного звучания. Во время работы ASC на передние динамики передаётся звук мотора. Звучание меняется в зависимости от частоты вращения движка. На задние динамики транслируется красивый звук выхлопа. Включение и выключение системы осуществляется автоматом, который срабатывает при определённом режиме работы авто.
  • Имитатор звука двигателя (Audi). Система состоит из возбудителя, выполняющего функцию колонки, и блока управления, содержащего несколько аудиодорожек. Звук меняется в зависимости от того, с какой скоростью движется машина. Установка возбудителя осуществляется под лобовое стекло.

Схемы простейших электронных устройств для начинающих радиолюбителей. Простые электронные игрушки и устройства которые могут быть полезны для дома. Схемы построены на основе транзисторов и не содержат деффицитных компонентов. Имитаторы голосов птиц, музыкальные инструменты, светомузыка на светодиодах и другие.

Генератор трелей соловья

Генератор трелей соловья, выполненный на асимметричном мультивибраторе, собран по схеме, приведенной на рис. 1. Низкочастотный колебательный контур, образованный телефонным капсюлем и конденсатором СЗ, периодически возбуждается импульсами, вырабатываемыми мультивибратором. В итоге формируются звуковые сигналы, напоминающие соловьиные трели. В отличие от предыдущей схемы звучание этого имитатора не управляемое и, следовательно, более однообраз ное. Тембр звучания можно подбирать, меняя емкость конденса тора СЗ.

Рис. 1. Генератор-иммитатор трелей соловья, схема устройства.

Электронный подражатель пения канарейки

Рис. 2. Схема электронного подражателя пения канарейки.

Электронный подражатель пения канарейки описан в книге Б.С. Иванова (рис. 2). В его основе также асимметричный мультивибратор. Основное отличие от предыдущей схемы — это RC-цепочка, включенная между базами транзисторов мультивибратора. Однако это несложное нововведение позволяет радикально изменить характер генерируемых звуков.

Имитатор кряканья утки

Имитатор кряканья утки (рис. 3), предложенный Е. Бри-гиневичем, как и другие схемы имитаторов, реализован на асимметричном мультивибраторе [Р 6/88-36]. В одно плечо мультивибратора включен телефонный капсюль BF1, а в другое — последовательно соединенные светодиоды HL1 и HL2.

Обе нагрузки работают поочередно: то издается звук, то вспыхивают светодиоды — глаза «утки». Тональность звука подбирается резистором R1. Выключатель устройства желательно выполнить на основе магнитоуправляемого контакта, можно самодельного.

Тогда игрушка будет включаться при поднесении к ней замаскированного магнита.

Рис. 3. Схема имитатора кряканья утки.

Генератор «шума дождя»

Рис. 4. Принципиальная схема генератора "шума дождя" на транзисторах.

Генератор «шума дождя», описанный в монографии В.В. Мацкевича (рис. 4), вырабатывает звуковые импульсы, поочередно воспроизводимые в каждом из телефонных капсюлей. Эти щелчки отдаленно напоминают падение капель дождя на подоконник.

Для того чтобы придать случайность характеру падения капель, схему (рис. 4) можно усовершенствовать, введя, например, последовательно с одним из резисторов канал полевого транзистора. Затвор полевого транзистора будет представлять собой антенну, а сам транзистор будет являться управляемым переменным резистором, сопротивление которого будет зависеть от напряженности электрического поля вблизи антенны.

Электронный барабан-приставка

Электронный барабан — схема, генерирующая звуковой сигнал соответствующего звучания при прикосновении к сенсорному контакту (рис. 5) [МК 4/82-7]. Рабочая частота генерации находится в пределах 50...400 Гц и определяется параметрами RC-элементов устройства. Подобные генераторы могут быть использованы для создания простейшего электромузыкального инструмента с сенсорным управлением.

Рис. 5. Принципиальная схема электронного барабана.

Электронная скрипка с сенсорным управлением

Рис. 6. Схема электронной скрипки на транзисторах.

Электронная «скрипка» сенсорного типа представлена схемой, приведенной в книге Б.С. Иванова (рис. 6). Если к сенсорным контактам «скрипки» приложить палец, включается генератор импульсов, выполненный на транзисторах VT1 и VT2. В телефонном капсюле раздастся звук, высота которого определяется величиной электрического сопротивления участка пальца, приложенного к сенсорным пластинкам.

Если сильнее прижать палец, его сопротивление понизится, соответственно возрастет высота звукового тона. Сопротивление пальца зависит также от его влажности. Изменяя степень прижатия пальца к контактам, можно исполнять незамысловатую мелодию. Начальную частоту генератора устанавливают потенциометром R2.

Электромузыкальный инструмент

Рис. 7. Схема простого самодельного электромузыкального инструмента.

Электромузыкальный инструмент на основе мультивибратора [В.В. Мацкевич] вырабатывает электрические импульсы прямоугольной формы, частота которых зависит от величины сопротивления Ra — Rn (рис. 7). При помощи подобного генератора можно синтезировать звуковую гамму в пределах одной-двух октав.

Звучание сигналов прямоугольной формы очень напоминает органную музыку. На основе этого устройства может быть создана музыкальная шкатулка или шарманка. Для этого на диск, вращаемый ручкой или электродвигателем, наносят по окружности контакты различной длины.

К этим контактам напаивают предварительно подобранные резисторы Ra — Rn, которые определяют частоту импульсов. Длина контактной полоски задает длительность звучания той или иной ноты при скольжении общего подвижного контакта.

Простая цветомузыка на светодиодах

Устройство цветомузыкального сопровождения с разноцветными светодиодами, так называемая «мигалка», украсит музыкальное звучание дополнительным эффектом (рис. 8).

Входной сигнал звуковой частоты простейшими частотными фильтрами разделяется на три канала, условно называемые низкочастотным (светодиод красного свечения); среднечастотным (светодиод зеленого. свечения) и высокочастотным (желтый светодиод).

Высокочастотная составляющая выделяется цепочкой С1 и R2. «Среднечастотная» компонента сигнала выделяется LC-фильтром последовательного типа (L1, С2). В качестве катушки индуктивности фильтра можно использовать старую универсальную головку от магнитофона, либо обмотку малогабаритного трансформатора или дросселя.

В любом случае при настройке устройства потребуется индивидуальный подбор емкости конденсаторов С1 — СЗ. Низкочастотная составляющая звукового сигнала беспрепятственно проходит через цепь R4, СЗ на базу транзистора VT3, управляющего свечением «красного» светодиода. Токи «высокой» частоты закорачиваются конденсатором СЗ, т.к. он имеет для них крайне малое сопротивление.

Рис. 8. Простая цветомузыкальная установка на транзисторах и светодиодах.

Электронная игрушка "угадай цвет" на светодиодах

Электронный автомат предназначен для отгадывания цвета включившегося светодиода (рис. 9) [Б.С. Иванов]. Устройство содержит генератор импульсов — мультивибратор на транзисторах VT1 и VT2, связанный с триггером на транзисторах VT3, VT4. Триггер, или устройство с двумя устойчивыми состояниями, поочередно переключается после каждого из пришедших на его вход импульсов.

Соответственно, поочередно высвечиваются и разноцветные светодиоды, включенные в каждое из плеч триггера в качестве нагрузки. Поскольку частота генерации достаточно высока, мигание светодиодов при включении генератора импульсов (нажатии на кнопку SB1) сливается в непрерывное свечение. Если отпустить кнопку SB1, генерация прекращается. Триггер устанавливается в одно из двух возможных устойчивых состояний.

Поскольку частота переключений триггера была достаточно велика, заранее предсказать, в каком состоянии окажется триггер, невозможно. Хотя из каждого правила есть исключения. Играющим предлагается определить (предсказать), какой именно цвет появится после очередного запуска генератора.

Либо предлагается угадать, какой цвет загорится после отпускания кнопки. При большом наборе статистики вероятность равновесного, равновероятного высвечивания светодиодов должна приблизиться к значению 50:50. Для малого числа попыток это соотношение может не выполняться.

Рис. 9. Принципиальная схема электронной игрушки на светодиодах.

Электронная игрушка "у кого лучше реакция"

Электронное устройство, позволяющее сопоставить скорость реакции двух испытуемых [Б.С. Иванов], может быть собрано по схеме, приведенной на рис. 10. Первым высвечивается индикатор — светодиод того, кто первый нажмет «свою» кнопку.

В основе устройства триггер на транзисторах VT1 и VT2. Для повторного тестирования скорости реакции питание устройства следует кратковременно отключить дополнительной кнопкой.

Рис. 10. Принципиальная схема игрушки "у кого лучше реакция".

Самодельный фототир

Рис. 11. Принципиальная схема фототира.

Светотир С. Гордеева (рис. 11) позволяет не только играть, но и тренироваться [Р 6/83-36]. Фотоэлемент (фотосопротивление, фотодиод — R3) направляют на светящуюся точку или солнечный зайчик и нажимают спусковой крючок (SA1). Конденсатор С1 разряжается через фотоэлемент на вход генератора импульсов, работающего в ждущем режиме. В телефонном капсюле раздается звук.

Если наводка неточна, и сопротивление резистора R3 велико, то энергии разряда недостаточно для запуска генератора. Для фокусировки света необходима линза.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Необычные звуки и звуковые эффекты, получаемые с помощью несложных радиоэлектронных приставок на микросхемах КМОП, способны поразить воображение читателей.

Схема одной из таких приставок, представленная на рисунке 1, родилась в процессе различных экспериментов с популярной КМОП-микросхемой К176ЛА7 (DD1).


Рис. 1. Электрическая схема "странных" звуковых эффектов.

Эта схема реализует целый каскад звуковых эффектов, в особенности из животного мира. В зависимости от положения движка переменного резистора, установленного на входе схемы, можно получить почти реальные на слух звуки: "кваканье лягушки", "соловьиную трель", "мяуканье кота", "мычание быка" и много-много других. Даже различные человеческие нечленораздельные сочетания звуков вроде нетрезвых возгласов и прочие.

Как известно, номинальное напряжение питания такой микросхемы - 9 В. Однако на практике для достижения особенных результатов возможно сознательное занижение напряжения до 4,5-5 В. При этом схема остается работоспособной. Вместо микросхемы 176-й серии в данном варианте вполне уместно использовать и ее более широко распространенный аналог серии К561 (К564, К1564).

Колебания на звуковой излучатель ВА1 подаются с выхода промежуточного логического элемента схемы.

Рассмотрим работу устройства в "неправильном" режиме питания- при напряжении 5 В. В качестве источника питания можно применить батареи из элементов (например, три элемента типа AAA, соединенные последовательно) или стабилизированный сетевой источник питания с установленным на выходе фильтром-оксидным конденсатором емкостью от 500 мкФ с рабочим напряжением не менее 12 В.

На элементах DD1.1 и DD1.2 собран генератор импульсов, запускаемый "высоким уровнем напряжения" на выводе 1 DD1.1. Частота импульсов генератора звуковой частоты (ЗЧ), при применении указанных RC-элементов, на выходе DD1.2 составит 2-2,5 кГц. Выходной сигнал первого генератора управляет частотой второго (собранного на элементах DD1.3 и DD1.4). Однако, если "снять" импульсы с вывода 11 элемента DD1.4-никакого эффекта не будет. Один из входов оконечного элемента управляется через резистор R5. Оба генератора работают в тесной связке друг с другом, самовозбуждаясь и реализуя зависимость от напряжения на входе в непредсказуемые пачки импульсов на выходе.

С выхода элемента DD1.3 импульсы поступают на простейший усилитель тока на транзисторе VT1 и, многократно усиленные, воспроизводятся пьезоизлучателем ВА1.

О деталях

В качестве VT1 подойдет любой маломощный кремниевый транзистор p-n-p проводимости, в том числе КТ361 с любым буквенным индексом. Вместо излучателя ВА1 можно использовать телефонный капсюль TESLA или отечественный капсюль ДЭМШ-4М с сопротивлением обмотки 180-250 Ом. При необходимости усиления громкости звучания необходимо дополнить базовую схему усилителем мощности и применить динамическую головку с сопротивлением обмотки 8-50 Ом.

Все номиналы резисторов и конденсаторов советую применить указанные на схеме с отклонениями не более чем на 20 % у первых элементов (резисторов) и 5-10 %- у вторых (конденсаторов). Резисторы-типа МЛТ 0,25 или 0,125, конденсаторы -типа МБМ, КМ и другие, с незначительным допуском влияния окружающей температуры на их емкость.

Резистор R1 номиналом МОм 1 -переменный, с линейной характеристикой изменения сопротивления.

Если необходимо остановиться на каком-либо одном понравившемся эффекте, например "гоготании гусей" - следует добиться данного эффекта очень медленным вращением движка, затем отключить питание, выпаять переменный резистор из схемы и, замерив его сопротивление, установить в схему постоянный резистор такого же номинала.

При правильном монтаже и исправных деталях устройство начинает работать (издавать звуки) сразу.

В данном варианте звуковые эффекты (частота и взаимодействие генераторов) зависят от напряжения питания. При повышении напряжения питания более 5 В, для обеспечения безопасности входа первого элемента DD1.1, необходимо подключить в разрыв проводника между верхним по схеме контактом R1 и положительным полюсом источника питания ограничивающий резистор сопротивлением 50 - 80 кОм.

Устройство у меня в доме находит применение для игр с домашними животными, дрессировки собаки.

На рисунке 2 изображена схема генератора колебаний переменной звуковой частоты (ЗЧ).


Рис.2. Электрическая схема генератора звуковой частоты

Генератор ЗЧ реализован на логических элементах микросхемы К561ЛА7. На двух первых элементах собран низкочастотный генератор. Он управляет частотой колебаний высокочастотного генератора на элементах DD1.3 и DD1.4. От этого получается, что схема работает на двух частотах попеременно. На слух смешанные колебания воспринимаются как "трель".

Звуковым излучателем является пьезоэлектрический капсюль ЗП-х (ЗП-2, ЗП-З, ЗП-18 или аналогичный) или высокоомный телефонный капсюль с сопротивлением обмотки более 1600 Ом.

Свойство работоспособности КМОП-микросхемы К561 серии в широком диапазоне напряжений питания использовано в звуковой схеме на рисунке 3.


Рис.3. Электрическая схема автоколебательного генератора.

Автоколебательный генератор на микросхеме K561J1A7 (логические элементы DD1.1 и DD1.2-рис.). Заполучает напряжение питания от схемы управления (рис. 36), состоящей из RC-зарядной цепочки и истокового повторителя на полевом транзисторе VT1.

При нажатии кнопки SB1 конденсатор в цепи затвора транзистора быстро заряжается и затем медленно разряжается. Истоковый повторитель имеет очень большое сопротивление и на работу зарядной цепи почти не влияет. На выходе VT1 "повторяется" входное напряжение- и сила тока достаточна для питания элементов микросхемы.

На выходе генератора (точка соединения со звуковым излучателем) формируются колебания с убывающей амплитудой до тех пор, пока напряжение питания не станет меньше допустимого (+3 В для микросхем серии К561). После этого колебания срываются. Частота колебаний выбрана примерно 800 Гц. Она зависит и может быть скорректирована конденсатором С1. При подаче выходного сигнала ЗЧ на звуковой излучатель или усилитель можно услышать звуки "мяуканья кошки".

Схема, представленная на рисунке 4, позволяет воспроизводить звуки, издаваемые кукушкой.


Рис. 4. Электрическая схема устройства с имитацией "кукушки".

При нажатия на кнопку S1 конденсаторы С1 и С2 быстро заряжаются (С1 через диод VD1) до напряжения питания. Постоянная времени разряда для С1 около 1 с, для С2 - 2 с. Напряжение разряда С1 на двух инверторах микросхемы DD1 преобразуется в прямоугольный импульс длительностью около 1 с, который через резистор R4 модулирует частоту генератора на микросхеме DD2 и одном инверторе микросхемы DD1. Во время длительности импульса частота генератора составит 400-500 Гц, при его отсутствии - примерно 300 Гц.

Напряжение разряда С2 поступает на вход элемента И (DD2) и разрешает работу генератора примерно в течение 2 с. В результате на выходе схемы получается двухчастотный импульс.

Схемы находят применение в бытовых устройствах для привлечения внимания нестандартной звуковой индикацией к происходящим электронным процессам.

Еще один вариант электронного подражателя - он позволяет имитировать рокот работающего двигателя внутреннего сгорания и тональный сигнал гудка. Такое универсальное устройство поможет "оживать" различные игрушки, макеты и модели машин и механизмов, например автомобилей, мотоциклов, тракторов, тепловозов.

Основой устройства является несимметричный мультивибратор, собранный на транзисторах VT1 и VT2 фазной структуры (рис.1). Расширить возможности имитатора удалось за счет применения двух отдельных частотозависимых цепей с различной постоянной времени, коммутируемых кнопочным переключателем SB1. Включают устройство тумблером SA1, подав напряжение батареи GB1.

В положении SB1, показанном на схеме, частота колебаний мультивибратора определяется параметрами времязадающей цепи R1R3C1, соединенной с базой транзистора VT1. Генератор работает в режиме метронома, вырабатывая периодически повторяющиеся импульсы со значительными паузами между ними - работает "мотор". Его звуки воспроизводит динамическая головка ВА1, включенная через трансформатор Т1, служащий коллекторной нагрузкой транзистора VT2. Частоту "выхлопов" регулируют переменным резистором R1. В верхнем по схеме положении его движка "выхлопы" редки. Переводя движок в нижнее положение, сопротивление резистора уменьшают - "мотор" прибавляет обороты, скорость увеличивается.

Если нужно подать звуковой тональный сигнал, нажимают на кнопку SB1, и с базой транзистора VT1 окажется соединенной другая цепь R2C2R4, преобразующая устройство в генератор звуковой частоты. Длительность звукового сигнала зависит от времени нажатия кнопки.

В реальном механизме, скажем, в автомашине, громкий сигнал гудка заглушает шум работающего двигателя, это обстоятельство учтено и в имитаторе - стоит отпустить кнопку, сигналы переключаются и слышен шум работающего "мотора". Когда "двигатель" нужно "заглушить", его "обороты" снижают до минимума, а затем отключают питание - "мотор" перестает работать, но не сразу. Слышится еще один-три такта "холостого хода" с убывающей громкостью, что обусловлено энергией, запасенной конденсатором С3.

О деталях. Транзисторы кремниевые маломощные: VT1 (n-p-n) любой серий КТ201, КТ301, КТ306, КТ312, КТ315, КТ342, КТ373; VT2 (p-n-p) - любой серий КТ208, КТ209, КТ351, КТ352, КТ361. Постоянные резисторы МЛТ-0,125-МЛТ-0,5; переменный резистор любого типа, желательно группы А. Оксидные конденсаторы К50-3, К50-6; C2 - бумажный, металлобумажный или керамический (БМ, МБМ, КЛС).

Трансформатор - выходной, от любого транзисторного радиоприемника. Используется лишь одна половина первичной обмотки, имеющей средний вывод. Динамическая головка - мощностью 0,1-2 Вт и с сопротивлением звуковой катушки постоянному току 6 - 10 Ом. SA1 - тумблер любого типа, например П1Т-1-1, МТ-1; SB1 - кнопка с самовозвратом типа КМ1-1, КМД1-1 или самодельная на базе микропереключателя МП, а также П2К без фиксатора. GB1-батарея 3336Л ("Рубин") или три последовательно соединенных элемента 343, 373.

Собранное без ошибок устройство с применением исправных элементов начинает функционировать сразу. Но поскольку максимум и минимум оборотов двигателя у разных машин неодинаков, емкость конденсатора C1 следует подобрать в пределах 1-5 мкФ. Тональность сигнала определяет в основном емкость конденсатора C2, которая колеблется от 0,033 до 0,25 мкф, а громкость (и в небольших пределах тональность) устанавливают подбором номинала резистора R4, изменяя тем самым скважность импульсов звуковой частоты. Чтобы получить более глухие "выхлопы", обмотку I шунтируют конденсатором емкостью 0,047 мкФ.

Иногда регулятор частоты оборотов "мотора" (резистор R1) совмещают с выключателем питания. В этом случае рекомендуем применить переменный резистор с выключателем - ТК, ТКД или СП3-106.

г. Коростень, Житомирская обл., Моделист-Конструктор №8, 1989 г., стр.29