Цепи формирования сигнала. Дифференцирующая и интегрирующая цепь

16.09.2020 Интернет

Дифференцирующей называется цепь, сигнал на выходе которой пропорционален производной от входного сигнала.

Сигналом называют физическую величину, несущую информацию. Нижу будем рассматривать импульсивные сигналы напряжения – импульсы напряжения.

Схема реальных дифференцирующих цепей показана на рис 13-33 а и 13-33 б.

Коэффициент пропорциональности М представляет собой постоянную времени цепи .

Для цепи RC=RC, для цепиRL=L/R.

Рис 13-33. Схема дифференцирующих цепей.

Дифференцирующая RC-цепь. (фильтр нижних частот)

Эта цепь является также четырехполюсником. В дифференцирующей RC-цепи сигнал снимается с резистораR, то есть
(см рис 13-33 а). Дифференцирующий (входной) сигнал имеет прямоугольную форму(см ниже рис 13-33 а).

Рассмотрим действие такого сигнала (импульса напряжения) на дифференцирующую RC-цепь.

Рис 13-34. Дифференцируемый сигнал (а) и сигнал на выходе дифференцирующей RC-цепи (б),

В момент (включение цепи) напряжение на выходе
. Это следует из того, что в момент включения в цепи по второму закону коммутации напряжение на конденсаторе сохраняет свое значение, которое было до коммутации, то есть равно 0, следовательно, все напряжение будет приложено к резисторуR(
).

Затем
будет уменьшаться по экспоненциальному закону

(13.29)

Если
,за время действия входного импульса (
)конденсатор почти полностью зарядится и в момент, когда действие импульса закончится
0, напряжение на конденсаторестанет равно(на рис 13-34 бпоказано пунктиром), а в напряжение на резистореRупадет до 0. Так как теперь цепь отключена от входного напряжения (
=0,
), конденсатор начнет разряжаться и через время
напряжение на нем станет равно 0. Ток в цепи с моментаизменит направление, а напряжение на резистореRв моментскачком станет равно
и начнет спадать по экспоненте
, а через время
станет равно 0.

Таким образом, на выходе цепи образуется два остроконечных импульса положительной и отрицательной полярностей, площади которых равны, а амплитуда равна
.

Если
форма выходного импульса
будет иметь другой вид, чем на рис

Рассмотрим два крайних случая:
и
(смотри рис 13-35 б и 13-35 в)

Рис 13-35. Изменение формы импульса на выходе дифференцирующей цепи в зависимости от соотношения между и.

А.
(см рис 13-35 б)

В этом случае за время длительности импульса конденсатор успевает полностью зарядиться еще до того, как окончится действие импульса. На резисторе в момент включения получается скачок напряжения положительной полярности, равный амплитуде прямоугольного импульса , а затем напряжение убывает по крутой экспоненте и по мере зарядки конденсатора спадает до нуля до окончания действия импульса. По окончании действия импульса (в момент) конденсатор начнет разряжаться, а за счет прохождения тока через резисторRна входе образуется импульс отрицательной полярности амплитудной -. Площадь этого импульса будет равна площади положительного импульса. Такие цепи называются дифференцирующими укорачивающими.

Б.
(см рис 13-35).

Так как время зарядки конденсатора примерно равно
, конденсатор успеет зарядиться не ранее, чем через
. Следовательно, и напряжение на резисторе
, равное в момент, уменьшится по экспоненте, станет равно нулю через
. Поэтому за время
импульс
на сопротивлениеRпрактически не искажается и повторяет по форме импульс на входе.

Такая цепь используется как переходная между усилительными каскадами и предназначается для исключения влияния действия постоянной составляющей напряжение с коллектора транзистора предшествующего каскада на последующий.

Из формул и рис 13-34 и 13-35 можно заключить, что амплитуда выходных импульсов при различных соотношениях между иостается неизменной и равной, а длительность их с уменьшениемуменьшается. Точность дифференцирования будет тем выше, чем меньшепо сравнению с.

Наиболее точное дифференцирование можно получиться с помощью операционных усилителей.

Рассмотрим АЧХ дифференцирующей RC-цепи, изображённой на рис. 13-35а.

Рис. 13-35 а. АЧХ дифференцирующей цепи RC-цепи.

Частотный коэффициент передачи дифференцирующей RC-цепи равен:

Если приравнять
к 1/
, то получают нижнюю границу полосы пропускания дефференцирующейRC-цепи
.

Из графика 2-35а видно, что полоса пропускания дифференцирующей RC-цепи ограничена только со стороны нижних частот.

Мы имеем полное право перейти к рассмотрению цепей, состоящих из этих элементов 🙂 Этим мы сегодня и займемся.

И первая цепь, работу которой мы рассмотрим – дифференцирующая RC-цепь.

Дифференцирующая RC-цепь.

Из названия цепи, в принципе, уже понятно, что за элементы входят в ее состав – это конденсатор и резистор 🙂 И выглядит она следующим образом:

Работа данной схемы основана на том, что ток, протекающий через конденсатор , прямо пропорционален скорости изменения напряжения, приложенного к нему:

Напряжения в цепи связаны следующим образом (по закону Кирхгофа):

В то же время, по закону Ома мы можем записать:

Выразим из первого выражения и подставим во второе:

При условии, что (то есть скорость изменения напряжения низкая) мы получаем приближенную зависимость для напряжения на выходе:

Таким образом, цепь полностью оправдывает свое название, ведь напряжение на выходе представляет из себя дифференциал входного сигнала.

Но возможен еще и другой случай, когда title="Rendered by QuickLaTeX.com" height="22" width="134" style="vertical-align: -6px;"> (быстрое изменение напряжения). При выполнении этого равенства мы получаем такую ситуацию:

То есть: .

Можно заметить, что условие будет лучше выполняться при небольших значениях произведения , которое называют постоянной времени цепи :

Давайте разберемся, какой смысл несет в себе эта характеристика цепи 🙂

Заряд и разряд конденсатора происходит по экспоненциальному закону:

Здесь – напряжение на заряженном конденсаторе в начальный момент времени. Давайте посмотрим, каким будет значение напряжения по истечении времени :

Напряжение на конденсаторе уменьшится до 37% от первоначального.

Получается, что – это время, за которое конденсатор:

  • при заряде – зарядится до 63%
  • при разряде – разрядится на 63% (разрядится до 37%)

С постоянной времени цепи мы разобрались, давайте вернемся к дифференцирующей RC-цепи 🙂

Теоретические аспекты функционирования цепи мы разобрали, так что давайте посмотрим, как она работает на практике. А для этого попробуем подавать на вход какой-нибудь сигнал и посмотрим, что получится на выходе. В качестве примера, подадим на вход последовательность прямоугольных импульсов:

А вот как выглядит осциллограмма выходного сигнала (второй канал – синий цвет):

Что же мы тут видим?

Большую часть времени напряжение на входе неизменно, а значит его дифференцаил равен 0 (производная константы = 0). Именно это мы и видим на графике, значит цепь выполняет свою дифференцирующую функцию. А с чем же связаны всплески на выходной осциллограмме? Все просто – при “включении” входного сигнала происходит процесс зарядки конденсатора, то есть по цепи проходит ток зарядки и напряжение на выходе максимально. А затем по мере протекания процесса зарядки ток уменьшается по экспоненциальному закону до нулевого значения, а вместе с ним уменьшается напряжение на выходе, ведь оно равно . Давайте увеличим масштаб осциллограммы и тогда мы получим наглядную иллюстрацию процесса зарядки:

При “отключении” сигнала на входе дифференцирующей цепи происходит аналогичный переходный процесс, но только вызван он не зарядкой, а разрядкой конденсатора:

В данном случае постоянная времени цепи у нас имеет небольшую величину, поэтому цепь хорошо дифференцирует входной сигнал. По нашим теоретическим расчетам, чем больше мы будем увеличивать постоянную времени, тем больше выходной сигнал будет похож на входной. Давай проверим это на практике 🙂

Будем увеличивать сопротивление резистора, что и приведет к росту :

Тут даже не надо ничего комментировать – результат налицо 🙂 Мы подтвердили теоретические выкладки, проведя практические эксперименты, так что давайте переходить к следующему вопросу – к интергрирующим RC-цепям .


Запишем выражения для вычисления тока и напряжения данной цепи:

В то же время ток мы можем определить из Закона Ома:

Приравниваем эти выражения и получаем:

Проинтегрируем правую и левую части равенства:

Как и в случае с дифференцирующей RC-цепочкой здесь возможны два случая:

Для того, чтобы убедиться в работоспособности цепи, давайте подадим на ее вход точно такой же сигнал, какой мы использовали при анализе работы дифференцирующей цепи, то есть последовательность прямоугольных импульсов. При малых значениях сигнал на выходе будет очень похож на входной сигнал, а при больших величинах постоянной времени цепи, на выходе мы увидим сигнал, приближенно равный интегралу входного. А какой это будет сигнал? Последовательность импульсов представляет собой участки равного напряжения, а интеграл от константы представляет из себя линейную функцию (). Таким образом, на выходе мы должны увидеть пилообразное напряжение. Проверим теоретические выкладки на практике:

Желтым цветом здесь изображен сигнал на входе, а синим, соответственно, выходные сигналы при разных значениях постоянной времени цепи. Как видите, мы получили именно такой результат, который и ожидали увидеть 🙂

На этом мы и заканчиваем сегодняшнюю статью, но не заканчиваем изучать электронику, так что до встречи в новых статьях! 🙂

В импульсных устройствах задающий генератор часто вырабатывает импульсы прямоугольной формы определенной длительности и амплитуды, которые предназначаются для представления чисел и управления элементами вычислительных устройств, устройств обработки информации и др. Однако для правильного функционирования различных элементов в общем случае требуются импульсы вполне определенной формы, отличной от прямоугольной, имеющие заданные длительность и амплитуду. Вследствие этого возникает необходимость предварительно преобразовывать импульсы задающего генератора. Характер преобразования может быть разным. Так, может потребоваться изменить амплитуду или полярность, длительность задающих импульсов, осуществить их задержку во времени.

Преобразования в основном осуществляются с помощью линейных цепей - четырехполюсников, которые могут быть пассивными и актив­ными. В рассматриваемых цепях пассивные четырехполюсники не содер­жат в своем составе источников питания, активные используют энергию внутренних или внешних источников питания. С помощью линейных цепей осуществляются такие преобразования, как дифференцирование, интегрирование, укорочение импульсов, изменение амплитуды и поляр­ности, задержка импульсов во времени. Операции дифференцирования, интегрирования и укорочения импульсов выполняются соответственно дифференцирующими, интегрирующими и укорачивающими цепями. Изменение амплитуды и полярности импульса может производиться с помощью импульсного трансформатора, а задержка его во времени - линией задержки.

Интегрирующая цепь . На рис. 19.5 приведена схема простейшей цепи (пассивного четырехполюсника), с помощью которой можно выполнить операцию интегрирования входного электрического сигнала, подан­ного на зажимы 1-1 | , если выходной сигнал снимать с зажимов 2-2".

Составим уравнение цепи для мгновенных значений токов и напря­жений по второму закону Кирхгофа:

Отсюда следует, что ток цепи будет изменяться по закону

Если выбрать постоянную временидостаточно большой, то вторым слагаемым в последнем уравнении можно пренебречь, тогдаi(t) = u вх (t)/R.

Напряжение на конденсаторе (на зажимах 2-2") будет равно

(19.1)

Из (19.1) видно, что цепь, приведенная на рис. 19.5, выполняет опе­рацию интегрирования входного напряжения и умножения его на коэф­фициент пропорциональности, равный обратному значению постоянной времени цепи:

Временная диаграмма выходного напряжения интегрирующей цепи при подаче на вход последовательности прямоугольных импульсов показана на рис. 19.6.

Дифференцирующая цепь . С помощью цепи, схема которой приведена на рис. 19.7 (пассивного четырехполюсника), можно выполнять операцию дифференцирования входного электрического сигнала, поданного на зажимы 1-1", если выходной сигнал снимать с зажимов 2-2". Составим уравнение цепи для мгновенных значений тока и напряжений по второму закону Кирхгофа:

Если сопротивление R мало и членом i(t)R можно пренебречь, то ток в цепи и выходное напряжение цепи, снимаемое с R,

(19.2)

Анализируя (19.2), можно видеть, что с помощью рассматриваемой цепи выполняют операции дифференцирования входного напряжения и умножения его на коэффициент пропорциональности, равный постоян­ной времени τ = RC. Форма выходного напряжения дифференцирующей цепи при подаче на вход серии прямоугольных импульсов приведена на рис. 19.8. В этом случае теоретически выходное напряжение должно представлять собой знакопеременные импульсы бесконечно большой амплитуды и малой (близкой к нулю) длительности.

Однако вследствие различия свойств реальной и идеальной диф­ференцирующих цепей, а также конечной крутизны фронта импульса на выходе получают импульсы, амплитуда которых меньше амплитуды входного сигнала, а длительность их определяется как t и = (3 ÷ 4) τ = (3 ÷ 4)RС.

В общем случае форма выходного напряжения зависит от соотно­шения длительности импульса входного сигнала t и и постоянной вре­мени дифференцирующей цепи τ. В момент t 1 входное напряжение при­ложено к резистору R, так как напряжение на конденсаторе скачком изменяться не может. Затем напряжение на конденсаторе возрастает по экспоненциальному закону, а напряжение на резисторе R, т. е. выходное напряжение, снижается по экспоненциальному закону и становится рав­ным нулю в момент t 2 , когда зарядка конденсатора закончится. При малых значениях τ длительность выходного напряжения мала. Когда напряжение u BX (t) становится равным нулю, конденсатор начинает разряжаться через резистор R. Таким образом формируется импульс обратной полярности.

П
ассивные интегрирующие и дифференцирующие цепи имеют сле­дующие недостатки: обе математические операции реализуются прибли­женно, с известными погрешностями. Приходится вводить корректи­рующие звенья, которые, в свою очередь, сильно снижают амплитуду выходного импульса, т. е. без промежуточного усиления сигналов практически невозможныn-кратные дифференцирование и интегриро­вание.

Эти недостатки не свойственны активным дифференцирующему и интегрирующему устройствам. Одним из возможных способов реали­зации этих устройств является применение операционных усилителей (см. гл. 18).

Активное дифференцирующее устройство . Схема такого устройства на операционном усилителе приведена на рис. 19.9. Ко входу 1 подключен конденсатор С, а в цепь обратной связи включен резистор R oc . Так как входное сопротивление чрезвычайно велико (R вх -> ∞), то входной ток обтекает схему по пути, указанному пунктиром. С другой сторо­ны, напряжение и вхОУ в этом включении очень мало, так как К u -> ∞, поэтому потенциал точки В схемы практически равен нулю. Следовательно, ток на входе

(19.3)

Ток на выходе i(t) одновременно является зарядным током кон­денсатора С: dq= Сdu BX (t), откуда

(19.4)

Приравнивая левые части уравнений (19.3) и (19.4), можно написать -и вых (t)/R oc = С du вх (t)/dt, откуда

(19.5)

Таким образом, выходное напряжение операционного усилителя является произведением производной входного напряжения по времени, умноженной на постоянную времени τ = R ОС С.

А
ктивное интегрирующее устройство
. Схема интегрирующего устройст­ва на операционном усилителе, приведенная на рис. 19.10, отличается от дифференцирующего устройства рис. 19.9 только тем, что конденсатор С и резистор R oc (на рис. 19.10 -R 1) поменялись местами. По-прежнему R вх -> ∞ и коэффициент усиления по напряжению К u -> ∞. Следовательно, в устройстве конденсатор С заряжается током i(t) =u BX (t)/R 1 . Так как напряжение на конденсаторе практически равно выходному напряжению (φ B = 0), а операционный усилитель изменяет фазу входного сигнала на выходе на угол π, имеем

(19.6)

Таким образом, выходное напряжение активного интегрирующего устройства есть произведение определенного интеграла от входного напряжения по времени на коэффициент 1/τ.

RC цепь может изменять форму сложных сигналов так, что выходная форма будет совсем не похожа на входную. Величина искажения определяется постоянной времени RC цепи. Тип искажения определяется выходной компонентой, включенной параллельно выходу. Если параллельно выходу включен резистор, то цепь называется дифференцирующей. используется в цепях синхронизации, для получения узких импульсов из прямоугольных , а также для получения переключающих импульсов и меток. Если параллельно выходу включен конденсатор, то цепь называется интегрирующей. используется в цепях формирования сигналов в радио, телевидении, радиолокаторах и в компьютерах .

На рисунке изображена дифференцирующая цепь .

Напомним, что сложные сигналы состоят из основной частоты и большого числа гармоник. Когда сложный сигнал поступает на дифференцирующую цепь, она влияет на каждую частоту по разному. Отношение емкостного сопротивления (Х с) к R для каждой гармоники различно. Это приводит к тому, что каждая гармоника сдвигается по фазе и уменьшается по амплитуде в разной степени. В результате исходная форма сигнала искажается. На рисунке показано, что происходит с сигналом прямоугольной формы, прошедшим дифференцирующую цепь.

Подобна дифференцирующей, за исключением того, что параллельно выходу включен конденсатор.

На рисунке показано, как изменяется форма прямоугольного сигнала, прошедшего интегрирующую цепь.

Другим типом цепи, изменяющим форму сигнала, является ограничитель сигнала . На рисунке показана форма сигнала на входе ограничителя: отрицательная часть входного сигнала обрезана.

Цепь ограничения может быть использована для обрезания пиков приложенного сигнала, для получения прямоугольного сигнала из синусоидального, для удаления положительных или отрицательных частей сигнала или для поддержания амплитуды входного сигнала на постоянном уровне. Диод смещен в прямом направлении и проводит ток в течение положительного полупериода входного сигнала. В течение отрицательного полупериода входного сигнала диод смещен в обратном направлении и ток не проводит. Цепь является, по существу, однополупериодным выпрямителем .

Используя напряжение смещения можно регулировать величину обрезаемого сигнала. Параллельный ограничитель может быть смещен для изменения уровня ограничения сигнала. Если необходимо ограничить сигнал и с положительной, и с отрицательной сторон, используются два смещенных диода, включенных параллельно выходу. Это позволяет получить выходной сигнал с амплитудой, не превышающей заранее определенный положительный и отрицательный уровень. При таком преобразовании выходной сигнал приобретает форму, близкую к прямоугольной. Следовательно, эта цепь называется генератором прямоугольных колебаний. На рисунке изображена другая схема ограничителя, ограничивающего сигнал как с положительной стороны, так и с отрицательной с помощью двух стабилитронов.

Выходной сигнал ограничен с двух сторон напряжениями стабилизации стабилитронов. Между этими пределами ни один стабилитрон не проводит и входной сигнал проходит на выход.

Иногда желательно изменить уровень отсчета постоянного тока для сигнала переменного тока. Уровень отсчета постоянного тока — это уровень, относительно которого измеряется сигнал переменного тока. Фиксатор может использоваться для фиксации верхнего или нижнего значения сигнала при заданном постоянном напряжении. В отличие от ограничителя сигнала, фиксатор не изменяет форму сигнала. Диодный фиксатор называют восстановителем постоянной составляющей.

Эта цепь обычно используется в радиолокаторах, телевидении, телекоммуникациях и в компьютерах. В изображенной цепи на вход подан сигнал прямоугольной формы. Назначение цепи — ограничить максимальное значение сигнала напряжением 0 вольт без изменения формы сигнала.

ДИФФЕРЕНЦИРУЮЩАЯ ЦЕПЬ - устройство, предназначенное для дифференцирования по времени электрич. сигналов. Выходная реакция Д. ц. u вых (t ) связана со входным воздействием u вх (t ) соотношением , где - пост. величина, имеющая размерность времени. Различают пассивные и активные Д. ц. Пассивные Д. ц. применяют в импульсных и цифровых устройствах для укорачивания импульсов. Aктивные Д. ц. используют как дифференциаторы в аналоговых вычислит. устройствах. Простейшая пассивная Д. ц. показана на рис. 1, а . Ток через ёмкость пропорционален производной приложенного к ней напряжения . Если параметры Д. ц. выбраны т. о.,

что u c =u вх, то , a . Условие u c =u вх выполняется, если на самой верхней частоте спектра входного сигнала Вариант пассивной Д. ц. показан на рис. 1, б . При условии имеем и

Рис. 1. Схемы пассивных дифференцирующих цепей: а - ёмкостной RC; б - индуктивной RL .

Следовательно, при заданных параметрах Д. ц. дифференцирование тем точнее, чем ниже частоты, на к-рых концентрируется энергия входного сигнала. Однако чем точнее дифференцирование, тем меньше коэфф. передачи цепи и, следовательно, уровень выходного сигнала. Это противоречие устраняется в активных Д. ц., где процесс дифференцирования сочетается с процессом усиления. В активных Д. ц. используют операционные усилители (ОУ), охваченные отрицательной обратной связью (рис. 2). Входное напряжение u вх (t ) дифференцируется цепочкой, образованной последоват. соединением ёмкости С и R экв - эквивалентного сопротивления схемы между зажимами 2-2", а затем усиливается ОУ. Если подать напряжение на инвертирующий вход ОУ, то при условии, что его коэффициент усиления , , получим

Рис. 2. Схема активной дифференцирующей цепи.

Рис. 3. Прохождение импульса через дифференцирующую цепь RC: а - входной импульс, u вх =Е при ; б - напряжение на ёмкости u c (t); в - выходное напряжение .

Для сравнит. оценки активных и пассивных Д. ц. при прочих равных условиях можно использовать отношение . При прохождении через Д. ц. импульсных сигналов происходит уменьшение их длительности, отсюда понятие о Д. ц. как об укорачивающих. Временные диаграммы, иллюстрирующие прохождение импульса прямоугольной формы через пассивную Д. ц., приведены на рис. 3. Предполагается, что, источник входного напряжения характеризуется нулевым внутр. сопротивлением, а Д. ц.- отсутствием паразитных ёмкостей. Наличие внутр. сопротивления приводит к уменьшению амплитуды напряжения на входных клеммах и, следовательно, к уменьшению амплитуд выходных импульсов; наличие паразитных ёмкостей - к затягиванию процессов нарастания и спада выходных импульсов. Аналогичным укорачивающим действием обладают также активные Д. ц.