Охлаждающие пластины. Что можно сделать из элементов Пельтье

14.09.2019 Сотовые операторы

Элемент Пельтье это термоэлектрический преобразователь, который создает разность температур на своих поверхностях при протекании электрического тока. Принцип действия основан на эффекте Пельтье – возникновении разности температур в месте контакта проводников под действием электрического тока.

Устройство и принцип действия элемента Пельтье.

Думаю, что только знатоки физики могут понять, как на самом деле работает элемент Пельтье. Для практиков главное, что существует минимальная единица модуля – термопара, представляющая из себя два соединенных проводника p и n типа.

При пропускании через термопару тока, происходит поглощение тепла на контакте n-p и выделение тепла на p-n контакте. В результате, участок полупроводника, примыкающий к n-p переходу, будет охлаждаться, а противоположный участок – нагреваться. Если поменять полярность тока, то на оборот, n-p участок будет нагреваться, а противоположный – охлаждаться.

Существует и обратный эффект. При нагревании одной из сторон термопары, вырабатывается электрический ток.

Для практического применения энергии поглощения тепла одной термопары недостаточно. В термоэлектрическом модуле используется много термопар. Электрически их соединяют последовательно. А конструктивно – так, что охлаждающие и нагревающие переходы расположены на разных сторонах модуля.

Термопары установлены между двух керамических пластин. Соединяются они медными шинами. Количество термопар может доходить до нескольких сотен. От их количества зависит мощность модуля.

Разность температур между горячей и холодной стороной модуля Пельтье может достигать 70 °C.

Надо понимать, что термоэлектрический модуль Пельтье снижает температуру одной стороны, относительно другой. Т.е. чтобы холодная сторона имела низкую температуру, необходимо отводить тепло от горячей поверхности, снижая ее температуру.

Для увеличения перепада температур, возможно последовательное (каскадное) соединение модулей.

Применение.

Термоэлектрические модули Пельтье применяются:

  • в небольших бытовых и автомобильных холодильниках;
  • в охладителях воды;
  • в системах охлаждения электронных приборов;
  • в термоэлектрических генераторах.

Я, используя элемент Пельтье, сделал .

Достоинства и недостатки модулей Пельтье.

Как-то неправильно сравнивать элементы Пельтье с компрессорными охлаждающими установками. Совсем разные устройства – большая механическая система с компрессором, газом, жидкостью и маленький полупроводниковый компонент. А больше сравнивать не с чем. Поэтому достоинства и недостатки модулей Пельтье весьма условное понятие. Есть области, в которых они не заменимы, а в других случаях их применение совершенно нецелесообразно.

К достоинству элементов Пельтье можно отнести:

  • отсутствие механически движущихся частей, газов, жидкостей;
  • бесшумная работа;
  • небольшие размеры;
  • возможность обеспечивать как охлаждение, так и нагревание;
  • возможность плавного регулирования мощности охлаждения.

Недостатки:

  • низкий кпд;
  • необходимость в источнике питания;
  • ограниченное число старт-стопов ;
  • высокая стоимость мощных модулей.

Параметры элементов Пельтье.

  • Qmax (Вт) – холодопроизводительность, при максимально-допустимом токе и разности температур между горячей и холодной сторонами равной 0. Считается, что вся тепловая энергия поступающая на холодную поверхность, мгновенно, без потерь передается на горячую.
  • Delta Tmax (град) - максимальная разность температур между поверхностями модуля при идеальных условиях: температура горячей стороны – 27 °C и холодная сторона с нулевой отдачей тепла.
  • Imax (А) – ток, обеспечивающий перепад температур delta Tmax.
  • Umax (В) – напряжение, при токе Imax и разности температур delta Tmax.
  • Resistance (Ом) – сопротивление модуля постоянному току.
  • COP (Сoefficient Of Рerformance) – коэффициент, отношение мощности охлаждения к электрической мощности, потребляемой модулем. Т.е. подобие кпд. Обычно 0.3-0.5.

Эксплуатационные требования к элементам Пельтье.

Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.

  • Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор . Иначе:
    • Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
    • Допустимый нагрев горячей стороны как правило + 80 °C (в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
    • При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
  • Важен надежный тепловой контакт модуля с радиатором охлаждения.
  • Источник питания для модуля должен обеспечивать ток с пульсациями не более 5% . При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
  • Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют количество циклов старт-стопов модуля. Для бытовых модулей это порядка 5000 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
  • К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
  • Недопустимо , для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию .
  • Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность , т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
  • Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В , или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
  • Модули имеют герметичное исполнение, их можно использовать даже в воде.
  • Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.

Мною был разработан для холодильника, удовлетворяющим всем этим требованиям. Он:

  • Вырабатывает питание для элемента Пельтье с пульсациями не более 2%.
  • Стабилизирует на модуле электрическую мощность, т.е. произведение тока на напряжение.
  • Обеспечивает плавное включение модуля.
  • Регулировка температуры происходит по принципу аналогового регулирования, т.е. плавного изменения мощности на элементе пельтье.
  • Контроллер разработан для холодильника, поэтому математика регуляторов учитывает инерционность охлаждения воздуха в камере.
  • Обеспечивает контроль температуры горячей стороны модуля и управление вентилятором.
  • Имеет высокий кпд, широкие функциональные возможности.

Термоэлектрический модуль Пельтье TEC1-12706.

Это самый распространенный тип элемента Пельтье. Используется во многих бытовых приборах. Не дорогой, с неплохими параметрами. Хороший вариант для изготовления маломощных холодильников, охладителей воды и т.п.

Характеристики модуля TEC1-12706 привожу в переводе на русский из документации компании производителя – HB Corporation.

Технические параметры TEC1-12706.

Графические характеристики.

0 Рубрика: . Вы можете добавить в закладки.

Элемент Пельтье стал известен миру давно. Еще в 18 веке французский часовщик Жан-Шарль Пельтье совсем случайно для самого себя открыл новый эффект на границе двух металлов: висмута и сурьмы. Он заключался в резком изменении температуры помещенной между контактами капли воды, которая при подведении тока превратилась в лед. Это свойство стало новым для часовщика, потому что до того момента еще ни один ученый мира не излагал в своих материалах подобной информации.

Эффект хоть и был интересен, но не нашел практического применения в то время, что было связано с небольшим количеством электронной техники, которой требовалось бы интенсивное охлаждение. Спустя 2 столетия об открытии ученого вспомнили, потому что возникла острая необходимость изготовить устройство, которое могло бы обеспечить качественное охлаждение кристалла греющегося микропроцессора.

В результате многочисленных исследований в этой области и огромного количества практических опытов ученые выяснили, что термоэлектрическая пара может вырабатывать достаточное количество холода для нормальной работы практически любого микропроцессора. А благодаря небольшим размерам их научились встраивать в корпуса микросхем, обеспечивая, таким образом, собственный внутренний генератор холода.

Открытие Жан-Шарля Пельте стало огромным толчком для целой отрасли по производству мобильных холодильных установок. Сегодня свойство термоэлектрического элемента используется в следующей технике:

  • переносные холодильники;
  • автомобильные кондиционеры;
  • портативные охладители;
  • фотоаппараты, телескопы и многое другое.

Активно используют для охлаждения микропроцессоров и прочих элементов электронной техники. Кроме прямого эффекта охлаждения, элемент Пельтье многие стали использовать в качестве генератора. Примером чего может стать фонарик на 3 элементах .

Знают немногие, что для осуществления радиосвязи с командованием солдаты ставили на огонь специальный котелок и заваривали чай, готовили кашу и прочие бытовые вещи, а в это время осуществляли передачу необходимой информации по переносной радиостанции .

Как изготовить элемент Пельтье своими руками?

Многих интересует вопрос, что такое Пельтье элемент своими руками, как сделать его в домашних условиях? Для этого потребуется высокоточное дозированное добавление разных веществ и материалов. Изготовить в домашних условиях подобное устройство невозможно, потому что требуется иметь технологии и обладать необходимыми методами обработки металлов. Также требуются особо чистые материалы в таких же лабораториях, чего в домашних условиях добиться невозможно. Поэтому на вопрос, как сделать термоэлектрический модуль Пельтье, можно ответить однозначно. Никак. Но для построения эффективной системы охлаждения вполне достаточно имеющихся навыков.

Изготовление элемента Пельтье из диодов

Существует мнение о том, что можно сделать термоэлектрический модуль на диодах . Дело в том, что каждая пара разнородных полупроводников – это два материала с p и n -проводимостями. А диод как раз таковым и является. Чтобы выявить изменение проводимости при нагреве, необходимо выбирать определенные элементы. Но для получения низкой температуры на поверхности устройства никакие диоды не помогут. При подаче большого тока можно добиться лишь разогрева.

Радиолюбители используют в качестве датчика температуры диоды малой мощности в стеклянном корпусе. При подключении их в обратном направлении и разогреве переход начинает открываться и пропускать ток в обратном направлении. Но при этом вырабатывать электричество он не будет.

Как устроен элемент Пельте?

Термоэлектрический модуль Пельтье в упрощенном виде представляет собой пару пластин из разных металлов, которыми могут быть висмут, сурьма, теллур или селен. Между ними расположена пара полупроводников с разной проводимостью n и p -типа. Все образованные разными металлами термоэлектрические пары соединены последовательно в единую цепь. В результате образуется своего рода матрица из большого количества отдельных термопар, расположенных между двумя керамическими пластинами.

Образованный термопарами термоэлектрический модуль изготовлен в едином корпусе небольших размеров. При их последовательном или параллельном соединении можно добиться усиления эффекта охлаждения или выработки электрической энергии. В режиме охладителя положительный вывод матрицы подключается к первой паре с проводником n -типа, отрицательный контакт подведен к проводникам p -типа. В качестве внешних обкладок используется специальная керамика, изготовленная на основе оксида и нитрида алюминия. Это обеспечивает наилучшие показатели теплоотдачи на обеих сторон как при высоких, так и при низких температурах.

Число термопар в модуле ничем не ограничено и может быть до нескольких сотен. Чем их больше, тем лучше ощущается эффект охлаждения. Для повышения эффективности работы элемента Пельтье к его холодной стороне крепится радиатор с наибольшей площадью теплоотдачи. Разница в температуре между обкладками должна составлять не менее двух десятков градусов.

При подаче напряжения на обкладки одна из сторон становится горячей, а другая холодной. При смене полярности питающего напряжения температура пластин меняется местами.

Учитывая сложность и технологичность, сделать своими руками термоэлектрический элемент не представляется возможным. Но все же встречаются умельцы, которые предлагают свои разработки. Эффект наблюдается, но для повышения КПД без специальной исследовательской лаборатории получить невозможно. Даже можно найти видео по этой теме с пошаговым руководством.

Особенности элемента Пельтье

К особенностям элемента на основе биметаллических пар следует отнести:

Формульное отображение

Эффект Пельтье заключается в протекании тока через контакт двух металлов с разной проводимостью. В результате выделяется тепло или холод, что зависит от направления протекания тока.

В формульном выражении эффект Пельтье можно изобразить:

Q п=П12 j , где П12 – это коэффициент Пельтье . Показатель зависит от типа используемого металла, его термоэлектрических свойств.

Кроме преимуществ, в устройстве можно выделить и некоторые недостатки, к которым следует отнести:

Невысокий КПД. Для того чтобы получить значительный перепад температур, необходимо к обкладкам подводить достаточно большой ток.

Для эффективного отвода тепловой энергии необходимо предусматривать радиатор.

Генераторный режим элемента Пельтье

Открытие Жака-Шарля Пельтье буквально перевернуло мир, так как устройство может использоваться в качестве универсального генератора тепла и холода. Кроме этих функций, был отмечен еще один немаловажный эффект – генераторный режим. Если теплую сторону устройства нагревать, а холодную охлаждать, то на выводах возникает разница потенциалов, и при замыкании цепи начинает течь ток.

Генератор на основе элемента Пельтье можно сделать своими руками и для этого не потребуется особых навыков. Но стоит понимать, что используемый китайскими разработчиками материал не обладает идеальными характеристиками, позволяющими получать максимум энергии. Доступных термоэлектрических модулей в продаже хватит для:

  • зарядки мобильных устройств;
  • питания светодиодного освещения;
  • изготовления автономного радиоприемника и прочих целей.

По этой теме можно найти массу видео с подробным описанием всех этапов. Поэтому если вы хотите сделать термоэлектрический модуль для получения энергии, то это вполне реально.

Первым делом необходимо заказать необходимое количество элементов Пельтье с учетом их характеристик. Устройство с мощностью 10 Вт на том же e — Bay стоит 15$. И этого вполне достаточно будет для зарядки смартфонов. Далее, необходимо обеспечить эффективное теплоотведение. Для этих целей можно сконструировать систему жидкостного охлаждения с естественной циркуляцией. А горячую сторону нагревать любым источником тепла, в том числе открытым огнем. В результате любой радиолюбитель может сделать сам великолепный термоэлектрический генератор, который можно взять с собой в поход, на рыбалку или дачу.

Один стандартный элемент-ячейка вырабатывает 5 В и 1 Вт мощности, чего вполне достаточно для небольшого освещения. Например, для изготовления фонарика с подогревом от тепла рук. В продаже имеются и готовые элементы с выходным напряжением до 12 В.

Переносная термоэлектрическая печка с генераторным режимом

Сегодня можно найти массу способов, как сделать своими руками достаточно эффективный термоэлектрический генератор на основе элемента Пельтье. Как один из них – портативная печка с топкой из старого компьютерного блока питания. К одной из сторон корпуса прикрепляется сам термоэлектрический элемент Пельтье через термопасту с радиатором внушительных размеров. Такая установка позволит получить тепло в любом удобном месте, приготовить пищу и зарядить телефон.

Приветствую тебя читатель banggood астрологи объявили неделю Пельтье поэтому в обзоре речь пойдёт об одном интересном применении данной штуковины. Милости просим под CUT.

Начнём с ликбеза

Как говорит википедия «Элемент Пельтье - это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье - возникновении разности температур при протекании электрического тока.» Я уверен что после этой фразы понятнее не стало).

Ок попробуем иначе. Представьте себе специфический аквариум, состоящий из зон двух типов. В первой зоне аквариума рыбки плавают быстро во второй медленно. Ещё представим себе на границах зон лопасти, крутящиеся в воде. Правила следующие 1) рыбка переплывает в другую зону только тогда когда её скорость соответствует скорости установленной для зоны.2) при переходе границ зоны рыбка может взаимодействовать с лопастями для увеличения либо для уменьшения своей скорости. Теперь представим несколько зон расположенных последовательно. (зоны с более высокой скоростью назовём З+ с низкой З-) Рыбка находится в З+ она хочет перейти в З- она взаимодействует с лопастью на границе и начинает плыть медленнее, при этом лопасти (на границе З+/З-) начинают крутиться быстрее. Далее рыбка хочет перейти в следующую зону З+ ей надо ускориться она взаимодействует с лопастью на границе З-/З+ и ускоряется при этом лопасть начинает крутиться медленнее. Далее всё повторяется. Можно заметить что одни лопасти будут замедлятся а другие ускорятся. Элемент Пельтье работает по аналогичному принципу. Вместо рыбок там электроны вместо скорости рыбок энергия электронов в полупроводниках. При протекании тока через контакт 2х полупроводников, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников,
При этом чем больше ток тем выше эффект переноса энергии, энергия именно переноситься (а не волшебным образом пропадает) от «холодной» стороны к «горячей», поэтому элемент Пельтье способен охлаждать предметы до температуры ниже комнатной (проще говоря это полупроводниковый тепловой насос). Если у Вас задача просто отвести тепло от процессора транзистора и т.д. применение элемента Пельтье невыгодно т.к. Вам понадобиться Радиатор способный передать в окружающую среду тепло от охлаждаемого объекта + тепло возникающее при работе элемента Пельтье. Думаю с теорией покончено можно двигаться дальше.
Давайте посмотрим как по мнению спонсора обзора выглядит 13,90 зелени.

Модуль представляет из себя этакий 5 уровневый бутерброд, он состоит из пары радиаторов и вентиляторов и собственно самого элемента Пельтье.
Вентилятор большего размера предназначен для отвода тепла. При приложении усилия его можно снять без выкручивания шурупов.
Вентилятор самый обыкновенный (Питание 12В размер 90мм) прикрыт решёткой, изначально вентилятор установлен на отвод воздуха.

На противоположной стороне малый вентилятор (Питание 12В размер 40мм)
Малыш прикручен на совесть
Посмотрим на радиаторы
Большой радиатор размером 100мм*120мм высота 20мм
Малый радиатор 40мм*40мм высота 20мм. Радиаторы скреплены двумя винтами, в малом радиаторе нарезана резьба. При снятии радиатора обнаружена термопаста это хорошо, но можно увидеть что есть недожим.
Контакт с большим радиатором идеальным тоже не назовёшь.
Главный вывод - если хотите выжать из этого модуля максимум то обязательно загляните под радиаторы. А если стереть термопасту то можно увидеть что тут установлен элемент TEC1-12705 (размер 40мм*40мм*4мм) хотя заявлен более мощный TEC1-12706. Мануал на TEC1-12705

Снимем малый радиатор и попробуем запустить модуль замерив температуры «тёплой» и «холодной» сторон.
Температура «холодной» стороны -16,1 «горячей» 37,5 дельта 53,6. ток потребления при 12В составил 4,2А.
На режим элемент Пельтье вышел через 90с.

А теперь весёлая часть.
Находим металлическую и блестящую пластину и делаем в ней отверстие для термопары.
Кладём термопасту и устанавливаем термопару
Далее изготавливаем узконаправленный фотоприёмник и фотодиод из чёрной бумаги и обычных компонентов

Собираем готовое устройство вспоминая правило «угол падения равен углу отражения»
Кто догадался что это такое? Это прибор (ну точнее модель для демонстрации принципа действия) для определения температуры точки росы/относительной влажности воздуха. Действует следующим образом: ИК-светодиод светит в отражающую пластинку, после отражения свет от ИК-светодиода попадает на ИК-фотодиод. С обратносмещённого ИК-фотодиода снимается сигнал напряжения. При охлаждении пластинки до температуры точки росы на ней начинает собираться конденсат, интенсивность отражаемого излучения падает, сигнал на фотодиоде изменяется. Регистрируя температуру пластины, и окружающего воздуха можно найти относительную влажность. Для работы я использовал Brymen BM869 (с самодельным кабелем и софтом) и Uni-t UT61E
Ниже представлен результат
Рыжий график температура пластины, синий график сигнал с фотодиода. Будем считать момент, когда напряжение с фотодиода изменилось на половину от общего изменения напряжения есть момент выпадения конденсата. Исходя из поставленных условий измеренная температура точки росы в комнате +9С.Температура окружающего воздуха 26,7 (на графиках не отображалась т.к. она была неизменна).Одновременно я запустил модуль HTU21 и наблюдал за показаниями в терминале.(скриншот терминала добавлен к графику).Далее я использовал онлайн калькулятор для пересчёта влажности в температуру точки росы
Результат пересчёта влажности с HTU21 в температуру точки росы совпал с измеренной напрямую температурой точки росы. Это значит, что если описанным выше методом определять точку росы, а затем делать пересчёт, то можно достаточно точно определять влажность (Ну естественно если делать всё по-взрослому). Данный метод называется методом охлаждаемого зеркала, а гигрометры, построенные на таком принципе, называются конденсационными. Надеюсь вам понравился обзор, и Вы узнали для себя что-то новое. Всем спасибо за внимание.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +13 Добавить в избранное Обзор понравился +59 +108

Термопреобразователь (модуль Пельтье) работает по принципу, обратному действию термопары, - появлению разности температур, когда протекает электрический ток.

Как работает элемент Пельтье?

Довольно просто применять модуль Пельтье, принцип работы которого заключается в выделении или поглощении тепла в момент контакта разных материалов при прохождении через него энергетического потока электронов перед контактом и после него отличается. Если на выходе она меньше, значит, там выделяется тепло. Когда электроны в контакте тормозятся электрическим полем, они передают кинетическую энергию кристаллической решетке, разогревая ее. Если они ускоряются, тепло поглощается. Это происходит за счет того, что часть энергии забирается у кристаллической решетки и происходит ее охлаждение.

В значительной степени это явление присуще полупроводникам, что объясняется большой разностью зарядов.

Модуль Пельтье, применение которого является темой нашего обзора, используется при создании термоэлектрических охлаждающих устройств (ТЭМ). Простейшее из них состоит из двух полупроводников p- и n-типов, последовательно соединенных через медные контакты.

Если электроны движутся от полупроводника "p" к "n", на первом переходе с металлической перемычкой они рекомбинируют с выделением энергии. Следующий переход из полупроводника "p" в медный проводник сопровождается "вытягиванием" электронов через контакт электрическим полем. Данный процесс приводит к поглощению энергии и охлаждению области вокруг контакта. Аналогичным образом происходят процессы на следующих переходах.

При расположении нагреваемых и охлаждаемых контактов в разных параллельных плоскостях получится практическая реализация способа. Полупроводники изготавливаются из селена, висмута, сурьмы или теллура. Модуль Пельтье вмещает большое количество термопар, размещенных между керамическими пластинами из нитрида или оксида алюминия.

Факторы, влияющие на эффективность ТЭМ

  • Сила тока.
  • Количество термопар (до нескольких сотен).
  • Типы полупроводников.
  • Скорость охлаждения.

Больших величин достигнуть пока не удалось из-за низкого КПД (5-8 %) и высокой стоимости. Чтобы ТЭМ успешно работал, надо обеспечить эффективный отвод тепла с нагреваемой стороны. Это создает сложности в практическом воплощении способа. Если изменить полярность, холодная и горячая стороны меняются друг с другом.

Достоинства и недостатки модулей

Потребность в ТЭМ появилась с возникновением электронных устройств, нуждающихся в миниатюрных системах охлаждения. Преимущества модулей следующие:

  • компактность;
  • отсутствие подвижных соединений;
  • модуль Пельтье принцип работы имеет обратимый при смене полярности;
  • простота каскадных соединений для повышения мощности.

Главным недостатком модуля является низкий КПД. Это проявляется в больших затратах мощности при достижении требуемого эффекта охлаждения. Кроме того, он обладает высокой стоимостью.

Применение ТЭМ

Пельтье модуль применяется преимущественно для охлаждения микросхем и небольших деталей. Начало было положено для охлаждения элементов военной техники:

  • микросхемы;
  • инфракрасные детекторы;
  • элементы лазеров;
  • кварцевые генераторы.

Термоэлектрический модуль Пельтье постепенно стал применяться в бытовой технике: для создания холодильников, кондиционеров, генераторов, терморегуляторов. Главным его назначением является охлаждение небольших объектов.

Охлаждение процессора

Основные компоненты компьютеров постоянно совершенствуются, что приводит к росту тепловыделения. Вместе с ними развиваются системы охлаждения с применением новаторских технологий, с современными средствами контроля. Модуль Пельтье применение в данной сфере нашел прежде всего в охлаждении микросхем и других радиодеталей. С форсированными режимами разгона микропроцессоров традиционные кулеры уже не справляются. А увеличение частоты работы процессоров дает возможность повысить их быстродействие.

Увеличение скорости вращения вентилятора приводит к значительному шуму. Его устраняют за счет использования модуля Пельтье в комбинированной системе охлаждения. Таким путем передовые фирмы быстро освоили производство эффективных охлаждающих систем, которые стали пользоваться большим спросом.

С процессоров тепло обычно отводится кулерами. Воздушный поток может засасываться снаружи или поступать изнутри системного блока. Главная проблема состоит в том, что температура воздуха порой оказывается недостаточной для теплоотвода. Поэтому ТЭМ стали использовать для охлаждения потока воздуха, поступающего в системный блок, тем самым повышая эффективность теплообмена. Таким образом, встроенный воздушный кондиционер является помощником традиционной системы охлаждения компьютера.

С обеих сторон модуля крепятся алюминиевые радиаторы. Со стороны холодной пластины нагнетается воздух на охлаждение к процессору. После того как он заберет тепло, его выдувает другой вентилятор через радиатор горячей пластины модуля.

Современный ТЭМ управляется электронным устройством с датчиком температуры, где степень охлаждения пропорциональна разогреву процессора.

Активизация охлаждения процессоров создает также некоторые проблемы.

  1. Простые охлаждающие модули Пельтье предназначены для непрерывной работы. При пониженном энергопотреблении также уменьшается тепловыделение, что может вызвать переохлаждение кристалла и последующее зависание процессора.
  2. Если работа кулера и холодильника не будет должным образом согласована, последний может перейти в режим нагрева вместо охлаждения. Источник дополнительного тепла вызовет перегрев процессора.

Таким образом, для современных процессоров нужны передовые технологии охлаждения с контролем работы самих модулей. Подобные изменения режимов работы не происходят с видеокартами, которые также требуют интенсивного охлаждения. Поэтому для них ТЭМ подходит идеально.

Автохолодильник своими руками

В середине прошлого века отечественная промышленность пыталась освоить выпуск малогабаритных холодильников, основанных на эффекте Пельтье. Существующие технологии того времени не позволили этого сделать. Сейчас сдерживающим фактором преимущественно является высокая цена, но попытки продолжаются, и успехи здесь уже достигнуты.

Широкое производство термоэлектрических устройств позволяет создать своими руками небольшой холодильник, удобный для использования в автомобилях. Его основой является "сэндвич", который делается следующим образом.

  1. На верхний радиатор наносится слой теплопроводной пасты типа КПТ-8 и приклеивается Пельтье модуль с одной стороны керамической поверхности.
  2. Аналогично к нему крепится с нижней стороны другой радиатор, предназначенный для помещения в камеру холодильника.
  3. Все устройство плотно сжимается и просушивается в течение 4-5 часов.
  4. На обоих радиаторах устанавливаются кулеры: верхний будет отводить тепло, а нижний - выравнивать температуру в камере холодильника.

Корпус холодильника делается с теплоизолирующей прокладкой внутри. Важно, чтобы он плотно закрывался. Для этого можно использовать обычный пластиковый ящик для инструментов.

Питание 12 В подается из системы автомобиля. Его можно сделать и от сети 220 В переменного тока, с блоком питания. Схема преобразования переменного тока в постоянной применяется самая простая. Она содержит выпрямительный мост и сглаживающий пульсации конденсатор. При этом важно, чтобы на выходе они не превышали величину 5 % от номинального значения, иначе эффективность устройства снижается. У модуля имеются два вывода из цветных проводов. К красному всегда подключается "плюс", к черному - "минус".

Мощность ТЭМ должна соответствовать объему бокса. Первые 3 цифры маркировки означают количество пар полупроводниковых микроэлементов внутри модуля (49-127 и более). выражается двумя последними цифрами маркировки (от 3 до 15 А). Если мощности недостаточно, надо приклеить на радиаторы еще один модуль.

Обратите внимание! Если сила тока будет превосходить мощность элемента, он будет нагреваться с обеих сторон и быстро выйдет из строя.

Модуль Пельтье: генератор электрической энергии

ТЭМ можно использовать для выработки электроэнергии. Для этого надо создать перепад температуры между пластинами, и расположенные между ними термопары будут вырабатывать электрический ток.

Для практического использования нужен ТЭМ не менее чем на 5 В. Тогда с его помощью можно будет заряжать мобильный телефон. Из-за низкого КПД модуля Пельтье потребуется повышающий преобразователь постоянного напряжения. Для сборки генератора понадобятся:

  • 2 модуля Пельтье ТЕС1-12705 с размером пластин 40х40 мм;
  • преобразователь ЕК-1674;
  • алюминиевые пластины толщиной 3 мм;
  • кастрюля для воды;
  • термостойкий клей.

Между пластинами помещаются два модуля на клей, а затем вся конструкция фиксируется на дне кастрюли. Если ее заполнить водой и поставить на огонь, получится необходимая разность температуры, вырабатывающая ЭДС порядка 1,5 В. Подключив модули к повышающему преобразователю, можно повысить напряжение до 5 В, необходимых для зарядки аккумулятора телефона.

Чем больше разница температуры между водой и нижней подогреваемой пластиной, тем генератор работает эффективней. Поэтому надо стараться снижать нагрев воды разными способами: сделать ее проточной, почаще заменять свежей и т. п. Действенным средством увеличения разности температур является каскадное включение модулей, когда они накладываются слоями один на другой. Увеличение габаритных размеров устройства позволяет поместить между пластинами больше элементов и тем самым увеличить общую мощность.

Производительности генератора будет достаточно для зарядки небольших аккумуляторов, работы светодиодных ламп или радиоприемника. Обратите внимание! Для создания термогенераторов потребуются модули, способные работать при 300-400 0 С! Остальные подойдут только для пробных испытаний.

В отличие от других средств альтернативного получения электроэнергии они могут работать во время движения, если создать что-то типа каталитического нагревателя.

Отечественные модули Пельтье

ТЭМ своего производства появились у нас на рынке не так давно. Они отличаются высокой надежностью и имеют хорошие характеристики. Модуль Пельтье, который пользуется широким спросом, имеет размеры 40х40 мм. Он рассчитан на максимальный ток 6 А и напряжение до 15 В.

Отечественный модуль Пельтье купить можно за небольшую цену. При 85 Вт он создает температурный перепад 60 0 С. Вместе с кулером он способен защитить от перегрева процессор с рассеиваемой мощностью 40 Вт.

Характеристики модулей ведущих фирм

Зарубежные устройства представлены на рынке в большем разнообразии. Для защиты процессоров ведущих фирм применяется в качестве холодильника РАХ56В модуль Пельтье, цена которого в комплекте с вентилятором составляет $35.

При размерах 30х30 мм он поддерживает температуру процессора не выше 63 0 С при выделяемой мощности 25 Вт. Для питания достаточно напряжения 5 В, а ток не превышает 1,5 А.

Хорошо подходит под охлаждение процессора модуль Пельтье РА6ЕХВ, обеспечивающий нормальный температурный режим при мощности рассеивания 40 Вт. Площадь его модуля составляет 40х40 мм, а потребляемый ток - до 8 А. Кроме внушительных размеров - 60х60х52,5 мм (вместе с вентилятором) - устройство требует наличия вокруг него свободного пространства. Цена его составляет $65.

Когда применяется модуль Пельтье, технические характеристики у него должны соответствовать потребностям охлаждаемых устройств. Недопустимо, чтобы у них была слишком низкая температура. Это может привести к конденсации влаги, которая губительно действует на электронику.

Модули для изготовления генераторов, такие как отличаются большей мощностью - 72 Вт и 108 Вт соответственно. Их различают по маркировке, всегда наносимой на горячую сторону. Максимальная допускаемая температура горячей стороны у них составляет 150-160 0 С. Чем больше температурный перепад между пластинами, тем выше получается напряжение на выходе. Устройство работает при максимальном температурном перепаде 600 0 С.

Модуль Пельтье купить можно недорого - порядка $10 и менее за штуку, если хорошо поискать. Довольно часто продавцы значительно завышают цены, но можно найти в несколько раз дешевле, если приобретать на распродаже.

Заключение

Эффект Пельтье нашел применение в настоящее время в создании небольших холодильников, необходимых современной технике. Обратимость процесса дает возможность изготовить микроэлектростанции, востребованные для зарядки аккумуляторов электронных устройств.

В отличие от других средств альтернативного получения электроэнергии, они могут работать во время движения, если установить каталитический нагреватель.

Холодильное оборудование настолько прочно вошло в нашу жизнь, что даже трудно представить, как можно было без него обходиться. Но классические конструкции на хладагентах не подходят для мобильного использования, например, в качестве походной сумки-холодильника.

Для этой цели используются установки, в которых принцип работы построен на эффекте Пельтье. Кратко расскажем об этом явлении.

Что это такое?

Под данным термином подразумевают термоэлектрическое явление, открытое в 1834 году французским естествоиспытателем Жаном-Шарлем Пельтье. Суть эффекта заключается в выделении или поглощении тепла в зоне, где контактируют разнородные проводники, по которым проходит электрический ток.

В соответствии с классической теорией существует следующее объяснение явления: электрический ток переносит между металлами электроны, которые могут ускорять или замедлять свое движение, в зависимости от контактной разности потенциалов в проводниках, сделанных из различных материалов. Соответственно, при увеличении кинетической энергии, происходит ее превращение в тепловую.

На втором проводнике наблюдается обратный процесс, требующий пополнения энергии, в соответствии с фундаментальным законом физики. Это происходит за счет теплового колебания, что вызывает охлаждение металла, из которого изготовлен второй проводник.

Современные технологии позволяют изготовить полупроводниковые элементы-модули с максимальным термоэлектрическим эффектом. Имеет смысл кратко рассказать об их конструкции.

Устройство и принцип работы

Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.


Обозначения:

  • А – контакты для подключения к источнику питания;
  • B – горячая поверхность элемента;
  • С – холодная сторона;
  • D – медные проводники;
  • E – полупроводник на основе р-перехода;
  • F – полупроводник n-типа.

Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.


Рис. 3. А – горячая сторона термоэлемента, В – холодная

Технические характеристики

Характеристики термоэлектрических модулей описываются следующими параметрами:

  • холодопроизводительностью (Q max), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
  • максимальным температурным перепадом между сторонами элемента (DT max), параметр приводится для идеальных условий, единица измерения – градусы;
  • допустимая сила тока, необходимая для обеспечения максимального температурного перепада – I max ;
  • максимальным напряжением U max , необходимым для тока I max , чтобы достигнуть пиковой разницы DT max ;
  • внутренним сопротивлением модуля – Resistance, указывается в Омах;
  • коэффициентом эффективности – СОР (аббревиатура от английского – coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.

Маркировка

Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.


Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706

Маркировка разбивается на три значащих группы:

  1. Обозначение элемента. Две первые литеры всегда неизменны (ТЕ), говорят о том, что это термоэлемент. Следующая указывает размер, могут быть литеры «С» (стандартный) и «S» (малый). Последняя цифра указывает, сколько слоев (каскадов) в элементе.
  2. Количество термопар в модуле, изображенном на фото их 127.
  3. Величина номинального тока в Амперах, у нас – 6 А.

Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.

Применение

Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:

  • мобильных холодильных установок;
  • небольших генераторов для выработки электричества;
  • систем охлаждения в персональных компьютерах;
  • кулеры для охлаждения и нагрева воды;
  • осушители воздуха и т.д.

Приведем детальные примеры использования термоэлектрических модулей.

Холодильник на элементах Пельтье

Термоэлектрические холодильные установки значительно уступают по производительности компрессорным и абсорбционным аналогам. Но они имеют весомые достоинства, что делает целесообразным их использование при определенных условиях. К таким преимуществам можно отнести:

  • простота конструкции;
  • устойчивость к вибрации;
  • отсутствие движущихся элементов (за исключением вентилятора, обдувающего радиатор);
  • низкий уровень шума;
  • небольшие габариты;
  • возможность работы в любом положении;
  • длительный срок службы;
  • небольшое потребление энергии.

Такие характеристики идеально подходят для мобильных установок.

Элемент Пельтье как генератор электроэнергии

Термоэлектрические модули могут работать в качестве генераторов электроэнергии, если одну из их сторон подвергнуть принудительному нагреву. Чем больше разница температур между сторонами, тем выше сила тока, вырабатываемая источником. К сожалению, максимальная температура для термогенератора ограничена, она не может быть выше точки плавления припоя, используемого в модуле. Нарушение этого условия приведет к выходу элемента из строя.

Для серийного производства термогенераторов используют специальные модули с тугоплавким припоем, их можно нагревать до температуры 300°С. В обычных элементах, например, ТЕС1 12715, ограничение – 150 градусов.

Поскольку КПД таких устройств невысокий, их применяют только в тех случаях, когда нет возможности использовать более эффективный источник электрической энергии. Тем не менее, термогенераторы на 5-10 Вт пользуются спросом у туристов, геологов и жителей отдаленных районов. Большие и мощные стационарные установки, работающие от высокотемпературного топлива, используют для питания приборов газораспределительных узлов, аппаратуры метеорологических станций и т.д.


Для охлаждения процессора

Относительно недавно данные модули стали использовать в системах охлаждения CPU персональных компьютеров. Учитывая низкую эффективность термоэлементов, польза от таких конструкций довольно сомнительна. Например, чтобы охладить источник тепла мощностью 100-170 Вт (соответствует большинству современных моделей CPU), потребуется потратить 400-680 Вт, что требует установки мощного блока питания.

Второй подводный камень – незагруженный процессор будет меньше выделять тепловой энергии, и модуль может охладить его меньше точки росы. В результате начнет образовываться конденсат, что, гарантировано, выведет электронику из строя.

Тем, кто решиться создать такую систему самостоятельно, потребуется провести серию расчетов по подбору мощности модуля под определенную модель процессора.

Исходя из выше сказанного, использовать данные модули в качестве системы охлаждения CPU не рентабельно, помимо этого они могут стать причиной выхода компьютерной техники из строя.

Совсем иначе обстоит дело с гибридными устройствами, где термомодули используются совместно с водяным или воздушным охлаждением.


Гибридные системы охлаждения доказали свою эффективность, но высокая стоимость ограничивает круг их почитателей.

Кондиционер на элементах Пельтье

Теоретически такое устройство конструктивно будет значительно проще классических систем климат-контроля, но все упирается в низкую производительность. Одно дело – охладить небольшой объем холодильной камеры, другое – помещение или салон автомобиля. Кондиционеры на термоэлектрических модулях будут больше (в 3-4 раза) потреблять электроэнергии, чем оборудование, работающее на хладагенте.

Что касается использования в качестве автомобильной системы климат-контроля, то для работы такого устройства мощности штатного генератора будет недостаточно. Замена его на более производительное оборудование приведет к существенному расходу топлива, что не рентабельно.

В тематических форумах периодически возникают дискуссии на эту тему и рассматриваются различные самодельные конструкции, но полноценного рабочего прототипа пока не создано (не считая кондиционера для хомячка). Вполне возможно, ситуация измениться, когда появятся в широком доступе модули с более приемлемым КПД.

Для охлаждения воды

Термоэлектрический элемент часто используют как охладитель для кулеров воды. Конструкция включает в себя: охлаждающий модуль, контролер, управляемый термостатом и обогреватель. Такая реализация значительно проще и дешевле компрессорной схемы, помимо этого, она надежней и проще в эксплуатации. Но есть и определенные недостатки:

  • вода не охлаждается ниже 10-12°С;
  • на охлаждение требуется дольше времени, чем компрессорному аналогу, следовательно, такой кулер не подойдет для офиса с большим количеством работников;
  • устройство чувствительно к внешней температуре, в теплом помещении вода не будет охлаждаться до минимальной температуры;
  • не рекомендуется установка в запыленных комнатах, поскольку может забиться вентилятор и охлаждающий модуль выйдет из строя.
Настольный кулер для воды с использованием элемента Пельтье

Осушитель воздуха на элементах Пельтье

В отличие от кондиционера, реализация осушителя воздуха на термоэлектрических элементах вполне возможна. Конструкция получается довольно простой и недорогой. Охлаждающий модуль понижает температуру радиатора ниже точки росы, в результате на нем оседает влага, содержащаяся в воздухе, проходящем через устройство. Осевшая вода отводится в специальный накопитель.


Несмотря на низкий КПД, в данном случае эффективность устройства вполне удовлетворительная.

Как подключить?

С подключением модуля проблем не возникнет, на провода выходов необходимо подать постоянное напряжение, его величина указанна в даташит элемента. Красный провод необходимо подключить к плюсу, черный – к минусу. Внимание! Смена полярности меняет местами охлаждаемую и нагреваемую поверхности.

Как проверить элемент Пельтье на работоспособность?

Самый простой и надежный способ – тактильный. Необходимо подключить модуль к соответствующему источнику напряжения и дотронуться до его разных сторон. У работоспособного элемента одна из них будет теплее, другая – холоднее.

Если подходящего источника под рукой нет, потребуется мультиметр и зажигалка. Процесс проверки довольно прост:

  1. подключаем щупы к выводам модуля;
  2. подносим зажженную зажигалку к одной из сторон;
  3. наблюдаем за показаниями прибора.

В рабочем модуле при нагреве одной из сторон генерируется электрический ток, что отобразится на табло прибора.

Как сделать элемент Пельтье своими руками?

Сделать самодельный модуль в домашних условиях практически невозможно, тем более в этом нет смысла, учитывая их относительно невысокую стоимость (порядка $4-$10). Но можно собрать устройство, которое будет полезным в походе, например, термоэлектрический генератор.


Для стабилизации напряжения необходимо собрать простой преобразователь на микросхеме ИМС L6920.


На вход такого преобразователя подается напряжение в диапазоне 0,8-5,5 В, на выходе он будет выдавать стабильные 5 В, что вполне достаточно для подзарядки большинства мобильных устройств. Если используется обычный элемент Пельтье, необходимо ограничить рабочий диапазон температуры нагреваемой стороны 150 °С. Чтобы не утруждать себя отслеживанием, в качестве источника тепла лучше использовать котелок с кипящей водой. В этом случае элемент гарантировано не нагреется выше температуры 100 °С.