Интерфейс и протокол CAN. Описание шины CAN

03.08.2019 Флешки и HDD

ENG 192Kb Control Area Network Rus CAN 2.0 A Rus CAN 2.0 В CAN протоколы высокого уровня Шины для бортовых автомобильных систем

CAN (Control Area Network) - последовательная магистраль, обеспечивающая увязку в сеть "интеллектуальных" устройств ввода/вывода, датчиков и исполнительных устройств некоторого механизма или даже предприятия. Характеризуется протоколом, обеспечивающим возможность нахождения на магистрали нескольких ведущих устройств, обеспечивающим передачу данных в реальном масштабе времени и коррекцию ошибок, высокой помехоустойчивостью. Система CAN обеспечена большим количеством микросхем, обеспечивающих работу подключенных к магистрали устройств, разработку которых начинала фирма BOSH для использования в автомобилях, и в настоящее время широко используемых в автоматизации промышленности. Цеколёвка разема приведена на рисунке.

  • Предназначен для организации высоконадежных недорогих каналов связи в распределенных системах управления. Интерфейс широко применяется в промышленности, энергетике и на транспорте. Позволяет строить как дешевые мультиплексные каналы, так и высокоскоростные сети.
  • Скорость передачи задается программно и может быть до 1 Мбит/с. Пользователь выбирает скорость, исходя из расстояний, числа абонентов и емкости линий передачи.
Расстояние, м 25 50 100 250 500 1000 2500 5000
Скорость, Кбит/с 1000 800 500 250 125 50 20 10
  • Максимальное число абонентов, подключенных к данному интерфейсу фактически определяется нагрузочной способностью примененных приемопередатчиков. Например, при использовании трансивера фирмы PHILIPS PCA82C250 она равна 110.
  • Протокол CAN использует оригинальную систему адресации сообщений. Каждое сообщение снабжается идентификатором, который определяет назначение передаваемых данных, но не адрес приемника. Любой приемник может реагировать как на один идентификатор, так и на несколько. На один идентификатор могут реагировать несколько приемников.
  • Протокол CAN обладает развитой системой обнаружения и сигнализации ошибок. Для этих целей используется поразрядный контроль, прямое заполнение битового потока, проверка пакета сообщения CRC-полиномом, контроль формы пакета сообщений, подтверждение правильного приема пакета данных. Хемминговый интервал d=6. Общая вероятность необнаруженной ошибки 4.7x10 -11 .
  • Система арбитража протокола CAN исключает потерю информации и времени при "столкновениях" на шине.
  • Интерфейс с применением протокола CAN легко адаптируется к физической среде передачи информации. Это может быть дифференциальный сигнал, оптоволокно, просто открытый коллектор и т.п. Несложно делается гальваническая развязка.
  • Элементная база, поддерживающая CAN, широко выпускается в индустриальном исполнении.

Входящий в МК STM32 CAN-контроллер является полнофункциональным CAN-узлом, отвечающий требованиям к активным и пассивным устройствам CAB 2.0A и 2.0B и поддерживающий передачу данных на скорости не более 1 Мбит/сек. CAN-контроллер оснащен также дополнительными возможностями для организации детерминистической передачи данных по специальному CAN-протоколу передачи в реальном времени TTCAN. После активизации функции TTCAN будет поддерживаться автоматическая повторная передача сообщений и автоматическая вставка в CAN-пакет двух дополнительных байт с зафиксированным моментом времени передачи сообщения. Все эти возможности необходимы в системах управления через CAN-интерфейс в масштабе реального времени.

Полное наименование CAN-контроллера - модуль bxCAN, где bx указывает на поддержку модулем дополнительных возможностей. Обычный модуль CAN использует один буфер приема и передачи, а у расширенного модуля CAN используется несколько буферов приема и передачи. Модуль bxCAN является гибридом двух архитектур модулей CAN. У него имеется три почтовых ящика для передаваемых сообщений и два почтовых ящика для принимаемых сообщений. Каждый из принимающих почтовых ящиков имеет буфер FIFO для помещения в него трех сообщений. Данная архитектура является компромиссной с точки зрения производительности передачи данных и занимаемого места в кристалле ИС.


Модуль CAN оснащен тремя почтовыми ящиками для передачи сообщений и имеет возможность автоматической вставки в сообщение текущего времени по протоколу TTCAN

Следующая важная функция CAN-контроллера - фильтрация получаемых сообщений. Поскольку CAN является широковещательной шиной, каждое переданное сообщение принимается всеми узлами шины. В CAN-шине любой разумной степени сложности передается достаточно большое число сообщений. Задачей каждого подключенного к CAN-узлу ЦПУ является реагирование на CAN-сообщения. Таким образом, чтобы избавить CAN-контроллер от проблемы приема в буфер нежелательных сообщений, необходима их фильтрация. У CAN-контроллера микроконтроллеров STM32 имеется 14 банков фильтров, которые можно использовать для блокировки всех CAN-сообщений, кроме избранных сообщений или групп сообщений.


14 фильтров сообщений поддерживают две конфигурации, которые можно использовать для фильтрации индивидуальных сообщений

Каждый банк фильтров состоит из двух 32-битных регистров и может работать в одном из четырех режимов. При использовании базового метода в каждый регистр банка фильтров записывается идентификатор сообщения. После поступления сообщения проверяется его идентификатор и, исходя из этого, принимается решение о приеме или отклонении сообщения. Данный режим поддерживает две конфигурации. В первой конфигурации регистры банков фильтров являются 3-битными и могут использоваться для фильтрации 11- и 29-битных полей идентификаторов сообщения, а также бит RTR и IDE в 16-битном режиме.

Во второй конфигурации, в первый 32-битный регистр записывается идентификатор сообщения, во второй - маска сообщения. Регистр маски маркирует биты регистра идентификатора, как "важный" или "неважный". Благодаря этому, появляется возможность принимать группу сообщений с помощью одного банка фильтров. Если принимающие фильтры пропускают сообщение, то вместе с ним принимающий буфер FIFO будет записан указатель на определивший совпадение фильтр. Это позволит прикладной программе ускорить идентификацию сообщения без необходимости считывания и дешифрации идентификатора пакета сообщения.

Все CAN-контроллеры поддерживают два режима работы: нормальный режим для приема и передачи пакетов сообщений и режим инициализации для задания параметров связи. Как уже говорилось, МК STM32 могут работать в экономичном режиме SLEEP. В этом режиме синхронизация модуля bxCAN отключена, однако доступ к регистрам почтовых ящиков остается возможным. Модуль bxCAN имеет возможность активизации работы при обнаружении активности на шине CAN. Его работу можно также реактивировать прикладной программой. Работая в нормальном режиме, поддерживаются два дополнительных подрежима. Первый подрежим - режим SILENT. В нём CAN-контроллер может принимать сообщения, но не может передавать и не генерирует бит ошибок в посылке и подтверждения сообщения. Данный режим рассчитан на CAN-шины с пассивным мониторингом. Второй подрежим - режим LOOPBACK. В этом режиме, передаваемые сообщения сразу же принимаются в приемный буфер. Он необходим для реализации диагностических функций и также полезен на фазе отладки кода программы. Оба рассмотренных режима можно комбинировать. Они идеальны для выполнения функций самотестирования при подключении к работающей шине.

Многие сетевые протоколы описываются с помощью семиуровневой модели взаимодействия открытых систем OSI (Open System Interconnection ), как показано на Рис. 1 . Протокол CAN (Controller Area Network - контроллерная локальная сеть ) определяет канальный уровень (Data Link Layer ) и часть физического уровня (Physical Layer ). Оставшаяся часть физического уровня и все остальные вышележащие уровни не входят в спецификацию CAN и могут либо определяться разработчиком системы, либо реализовываться с помощью существующих высокоуровневых протоколов (Higher Layer Protocols - HLPs ) и физических уровней.

Как сказано выше, канальный уровень определяется спецификацией CAN. Подуровень управления логической связью (Logical Link Control - LLC ) обеспечивает управление перегрузкой и уведомление о ней, фильтрацию сообщений и функции управления восстановлением. Подуровень управления доступом к среде (Medium Access Control - MAC ) выполняет инкапсуляцию/декапсуляцию (расформирование) данных, обнаружение ошибок и защиту от них, битстаффинг/дестаффинг (битовое наполнение/удаление наполняющего бита), функции преобразования в последовательную форму и обратно.

Подуровни соединения с физической средой (Physical Medium Attachment - PMA ) и среда-зависимого интерфейса (Medium Dependent Interface - MDI ) - две части физического уровня, не определённые в CAN. Подуровень физической сигнализации (Physical Signaling - PS ), наоборот, определён в спецификации CAN. Разработчик может выбрать любой драйвер/приёмник и среду передачи, если они соответствуют требованиям PS-подуровня.

Международная организация по стандартизации (International Standards Organization - ISO ) определила стандарт, который включает спецификацию CAN в качестве физического уровня. Стандарт ISO-11898 изначально был создан для высокоскоростной связи в транспортных средствах, использующей CAN. ISO-11898 определяет физический уровень для обеспечения совместимости между приёмопередатчиками CAN.

Контроллер CAN обычно реализует всю спецификацию CAN аппаратно, как показано на Рис. 1 . PMA-подуровень не определяется CAN, однако, он определён в ISO-11898. Данный пример применения рассматривает приёмопередатчик CAN MCP2551 и то, насколько он удовлетворяет требованиям спецификации ISO-11898.

Рис. 1. CAN и модель OSI

Краткий обзор ISO11898-2

ISO11898 - международный стандарт для высокоскоростной связи CAN, применяемой в транспортных средствах. ISO-11898-2 определяет PMA и MDI подуровни физического уровня. Общее представления узлов и шины CAN, описанное в ISO-11898 приведено на Рис. 3 .

Уровни шины

CAN определяет два логических состояния: рецессивное (recessive ) и доминантное (dominant ). ISO-11898 определяет дифференциальное напряжение для представления рецессивного и доминантного состояний (или битов), как показано на Рис. 2 .

В рецессивном состоянии (то есть логическая "1" на входе TXD MCP2551) дифференциальное напряжение на CANH и CANL меньше минимального порог (Рис. 4).

В доминантном состоянии (то есть логический "0" на входе TXD MCP2551) дифференциальное напряжение на CANH и CANL больше минимального порога. Доминантный бит перекрывает рецессивный бит на шине для достижения неразрушающего поразрядного арбитража.

Рис. 2. Дифференциальная шина

Разъёмы и провода

В ISO-11898-2 не определены механические провода и разъёмы. Однако спецификация требует, чтобы провода и разъёмы соответствовали электротехническим требованиям.

Спецификация также требует наличие резисторов-терминаторов номиналом 120 Ом на каждом конце шины. На Рис. 3 показан пример шины CAN, основанной на ISO-11898.

Рис. 3. Шина CAN

Рис. 4. Номинальные уровни шины по ISO-11898

Помехоустойчивость

Спецификация ISO11898-2 требует, чтобы приёмопередатчик, соответствующий спецификации или совместимый с ней, соответствовал ряду электротехнических требований. Некоторые из этих требований предусмотрены, чтобы гарантировать, что приёмопередатчик сможет выдержать жёсткие электрические условия, таким образом защищая узел CAN. Входы приёмопередатчика должны выдерживать напряжение от -3 В до +32 В и кратковременное воздействие напряжения от -150 В до +100 В. Таблица 1 показывает главные электрические требования ISO11898-2 в сравнении со спецификацией MCP2551.

Таблица 1. Сравнение спецификаций MCP2551 и ISO11898-2.

Параметр ISO-11898-4 MCP2551 Единица измерения Комментарии
минимум максимум минимум максимум
Постоянное напряжение на CANH и CANL -3 +32 -40 +40 В Превышает ISO-11898
Кратковременное воздействие напряжений на CANH и CANL -150 +100 -250 +250 В Превышает ISO-11898
Напряжение синфазного сигнала шины -2.0 +7.0 -12 +12 В Превышает ISO-11898
Выходное напряжение шины в рецессивном состоянии +2.0 +3.0 +2.0 +3.0 В Соответствует ISO-11898
Дифференциальное выходное напряжение рецессивного состояния -500 +50 -500 +50 мВ Соответствует ISO-11898
Внутреннее сопротивление 10 100 20 100 кОм Соответствует ISO-11898
Входное сопротивление 5.0 50 5.0 50 кОм Соответствует ISO-11898
Дифференциальное выходное напряжение доминантного состояния +1.5 +3.0 +1.5 +3.0 В Соответствует ISO-11898
Выходное напряжение доминантного состояния на CANH +2.75 +4.50 +2.75 +4.50 В Соответствует ISO-11898
Выходное напряжение доминантного состояния на CANL +0.50 +2.25 +0.50 +2.25 В Соответствует ISO-11898
Обнаружение постоянного доминанта (драйвер) Не требуется 1.25 - мс
Сброс при включении питания (POR) и обнаружение кратковременного падения напряжения (BOD) Не требуется Да -

Длина шины

ISO11898 определяет, что приёмопередатчик должен быть способен управлять шиной длиной 40 м на скорости 1 Мбит/с. Большая длина шины достигается при уменьшении скорости передачи данных. Самое большое ограничение на длину шины накладывает задержка распространения приёмопередатчика.

Задержка распространения

Протокол CAN определяет рецессивное (логическая "1") и доминантное (логический "0") состояния для реализации схемы поразрядного неразрушающего арбитража. Именно на эту методологию арбитража больше всего воздействуют задержки распространения. Каждый узел, вовлечённый в арбитраж, должен быть способен осуществлять выборку уровня каждого бита в пределах одного и того же времени передачи бита. Например, если два узла на противоположных концах шины начали передавать сообщения в одно и то же время, они должны выполнить арбитраж для захвата управления шиной. Арбитраж будет эффективен, только если оба узла способны сделать выборку в течение одного и того же времени передачи бита. На Рис. 5 показана односторонняя задержка распространения между двумя узлами. Чрезмерные задержки распространения (вне точки выборки) приведут к ошибочному арбитражу. Это означает, что длина шины ограничена для заданной скорости передачи данных.

Задержка распространения в системе CAN вычисляется как удвоенная сумма времени прохождения сигнала по физической шине туда и обратно (t BUS ), выходной задержки драйвера (t DRV ) и входной задержки компаратора (t CMP ). Приняв, что все узлы в системе имеют одинаковые задержки компонентов, получим задержку распространения:

t PROP = 2·(t BUS + t CMP + t DRV ).

Рис. 5. Односторонняя задержка распространения

MCP2551 - приёмопередатчик CAN

Микросхема MCP2551 - приёмопередатчик CAN, который реализует физический уровень, описанный в спецификации ISO-11898-2. Он поддерживает скорость передачи данных до 1 Мбит/с и подходит для систем с напряжениями питания 12 В и 24 В. MCP2551 обеспечивает защиту от короткого замыкания до ±40 В и защиту от кратковременных напряжений до ±250 В.

Дополнительно, будучи совместим с ISO-11898-2, MCP2551 обеспечивает сброс при включении питания (power-on reset - POR ) и защиту от кратковременного падения напряжения (brown-out protection ), а также обнаружение постоянного доминанта (permanent dominant detection ), чтобы гарантировать, что обесточенный или неисправный узел не будет мешать работе шины. Устройство реализует настраиваемую наклонную регулировку усиления (slope control ) на выводах шины для уменьшения излучения радиопомех (RFI ). На Рис. 6 представлена блок-схема MCP2551.

Рис. 6. Блок-схема MCP2551

Основная работа MCP2551

Передача

Контроллер протокола CAN выдаёт поток последовательных данных на логический вход TXD MCP2551. Соответствующее рецессивное или доминантное состояние выдаётся на выводы CANH и CANL.

Приём

MCP2551 принимает доминантное или рецессивное состояния на те же выводы CANH и CANL, с которых осуществляется передача. Эти состояния выдаются в виде соответствующих логических уровней на вывод RXD, чтобы контроллер протокола CAN принял кадр CAN.

Рецессивное состояние

Логическая "1" на входе TXD отключает драйверы от вводов CANH и CANL, и выводы "подтягиваются" к номиналу 2.5 В через резисторы смещения.

Доминантное состояние

Логический "0" на входе TXD включает драйверы выводов CANH и CANL. На CANH подаётся на ~1 В больше, чем номинал рецессивного состояния 2.5 В, таким образом увеличивая напряжение до ~3.5 В. На CANL подаётся на ~1 В меньше, чем номинал рецессивного состояния, таким образом уменьшая напряжение до ~1.5 В.

Режимы работы

Существует три режима работы, которые управляются извне через вывод RS:
1. Высокоскоростной режим.
2. Режим наклонной регулировки усиления.
3. Режим ожидания (Standby )

Высокоскоростной режим

Высокоскоростной режим выбирается подключением вывода RS к V SS . В этом режиме выходные драйверы имеют быстрое время нарастания и спада, что обеспечивает наивысшие скорости передачи до 1 Мбита/с и/или максимальную длину шины, а также обеспечивая минимальные циклические задержки приёмопередатчика.

Режим наклонной регулировки усиления

Если требуется уменьшить излучаемые драйвером электромагнитные помехи, MCP2551 можно установить в режим наклонной регулировки усиления подключением резистора (R EXT) от вывода RS на общий минус. В режиме наклонной регулировки усиления скорость нарастания выходного напряжения на одном проводе (на CANH или CANL) в основном пропорциональна выходному току на выводе RS. Ток должен быть в диапазоне от 10 мкА Уменьшение скорости нарастания выходного напряжения приводит к уменьшению скорости передачи данных CAN при заданной длине шины, либо к сокращению длины шины при заданной скорости передачи данных.

Режим ожидания

Режим ожидания (или спящий режим (sleep )) устанавливается подключением вывода RS к V DD . В спящем режиме передатчик отключен, а приёмник работает в режиме пониженного энергопотребления. Принимающий вывод (RXD) по-прежнему функционирует, но на более низкой скорости.

Режим ожидания можно использовать для установки устройства в режим низкого энергопотребления и выключения передатчика в случае, если контроллер CAN неисправен и выдаёт на шину непредсказуемые данные.

Обнаружение постоянного доминанта на передатчике

Если на передатчике обнаруживается состояние постоянного доминанта, MCP2551 отключает передатчик от CANH и CANL. Эта возможность предотвращает постоянное разрушение шины CAN неисправным узлом (контроллером CAN или самим MCP2551).

Драйверы отключаются, если низкий уровень присутствует на TXD в течение более чем ~1.25 мс (минимум) (см. Рис. 7).

Драйверы остаются отключенными всё время, пока на TXD остаётся низкий уровень. Появление нарастающего фронта на TXD сбросит логику таймера и включит драйвер.

Рис. 7. Обнаружение постоянного доминанта на TXD

Сброс при включении питания и защита от кратковременного снижения питания

MCP2551 имеет способность сброса при включении питания (Power-On Reset - POR ) и обнаружения кратковременного снижения напряжения питания (Brown-Out Detection - BOD ) (см. Рис. 8 ).

Сброс при включении питания (POR)

Когда на MCP2551 подаётся питание, выводы CANH и CANL остаются в высокоимпедансном состоянии до тех пор, пока VDD не достигнет высокого напряжения POR (POR high voltage - VPORH ). Кроме того, если при включении питания на выводе TXD низкий уровень, выводы CANH и CANL остаются в высокоимпедансном состоянии до тех пор, пока на TXD не установится высокий уровень. После чего драйвер будет функционировать нормально.

Обнаружение кратковременного снижения напряжения питания (BOD)

BOD происходит, когда VDD опускается ниже низкого напряжения сброса при включении питания (power-on reset low voltage - VPORL ). В этой точке выводы CANH и CANL входят в высокоимпедансное состояние и остаются в нем, пока не будет достигнуто напряжение VPORH.

Рис. 8. Сброс при включении питания и обнаружение кратковременного снижения напряжения питания

Смещения земли

Поскольку не требуется обеспечивать общую землю между узлами, то возможно возникновение смещений земли между ними. То есть каждый узел может наблюдать разные однопроводные напряжения шины (напряжения синфазного сигнала шины), в то же время поддерживая одинаковое дифференциальное напряжение. В то время как MCP2551 предусмотрен для управления смещениями земли от -12 В до +12 В, спецификация ISO-11898 требует только от -2 В до +7 В. На Рис. 9 и 10 показано, как между узлами возникают смещения земли.

Рис. 9 показывает передающий узел с положительным смещением земли относительно принимающего узла. Приёмник MCP2551 может работать с CANH = +12 В. Максимальное выходное напряжение доминанта CAN (V O(CANH)) от передающего узла составляет 4.5 В. Вычитание этого максимума даёт смещение земли (относительно принимающего узла) в 7.5 В для передающего узла. В рецессивном состоянии каждый узел пытается притянуть выводы CANH и CANL к их основным уровням (обычно 2.5 В). Однако результирующее напряжение синфазного сигнала в рецессивном состоянии принимает значение 6.25 В для принимающего узла и -1.25 В для передающего.

Рис. 10 показывает передающий узел с отрицательным смещением земли относительно принимающего узла. Приёмник MCP2551 может работать с CANL = -12 В. Минимальное выходное напряжение доминанта CAN (V O(CANL)) из передающего узла составляет 0.5 В. Вычитание этого минимума даёт фактическое смещение земли относительно принимающего узла в -12.5 В. Напряжение синфазного сигнала для рецессивного состояния составляет -6.25 В для принимающего узла и 6.25 В для передающего.

Поскольку все узлы работают как передатчики для части каждого сообщения (то есть каждый приёмник должен подтверждать (ACK) правильные сообщения в течение временного интервала ACK), наибольшее смещение земли, допускаемое между узлами составляет 7.5 В, как показано на Рис. 9 .

Работа системы CAN с большим смещением земли может привести к увеличению электромагнитных излучений. Если система чувствительна к излучениям, нужно предпринять меры для устранения смещений земли.

Рис. 9. Земля принимающего узла ниже земли передающего

Рис. 10. Земля принимающего узла выше земли передающего

Оконечная нагрузка шины

) используется для минимизации отражения сигнала в шине. ISO-11898 требует, чтобы шина CAN имела номинальную характеристику входного полного сопротивления линии передачи в 120 Ом. Поэтому обычное значение согласующего резистора для каждого конца шины составляет 120 Ом. Есть несколько различных способов реализации оконечной нагрузки, используемых для увеличения электромагнитной совместимости (EMC ) (см. Рис. 11 ):

1. Стандартная оконечная нагрузка.
2. Разделённая оконечная нагрузка.
3. Смещённая разделённая оконечная нагрузка.

Примечание : электромагнитная совместимость определяется не только передатчиком и методом оконечной нагрузки, но также и тщательным анализом всех компонентов и топологии системы.

Стандартная оконечная нагрузка

Как подразумевает название, эта оконечная нагрузка состоит из одинарных резисторов номиналом в 120 Ом на каждом конце шины. Этот метод приемлем во многих системах CAN.

Разделённая оконечная нагрузка

Разделённая оконечная нагрузка приобретает всё большую популярность, так как позволяет легко добиваться снижения излучения. Разделённая оконечная нагрузка - модификация стандартной оконечной нагрузки, в которой один резистор номиналом 120 Ом на каждом конце шины разделяется на два резистора по 60 Ом с развязывающим конденсатором, присоединенным между резисторами и подключенным к земле. Номиналы этих резисторов должны как можно меньше отличаться друг от друга.

Смещённая разделённая оконечная нагрузка

Этот метод оконечной нагрузки используется для поддержания синфазного напряжения рецессивного сигнала на постоянном значении, таким образом увеличивая EMC. Эта схема аналогична схеме разделённой оконечной нагрузки, но добавлена дополнительная схема делителя напряжения для достижения напряжения V DD /2 между двумя резисторами по 60 Ом (см. Рис. 11 ).

Примечание : Номиналы резисторов смещения на Рис. 11 , также как и резисторов разделённой оконечной нагрузки, должны как можно меньше отличаться друг от друга.

Рис. 11. Схемы оконечной нагрузки

Промышленная сеть реального времени CAN представляет собой сеть с общей средой передачи данных. Это означает, что все узлы сети одновременно принимают сигналы передаваемые по шине. Невозможно послать сообщение какому-либо конкретному узлу. Все узлы сети принимают весь трафик передаваемый по шине. Однако, CAN-контроллеры предоставляют аппаратную возможность фильтрации CAN-сообщений.

Каждый узел состоит из двух составляющих. Это собственно CAN контроллер, который обеспечивает взаимодействие с сетью и реализует протокол, и микропроцессор (CPU).

Рис. 1. Топология сети CAN.

CAN контроллеры соединяются с помощью дифференциальной шины, которая имеет две линии - CAN_H (can-high) и CAN_L (can-low), по которым передаются сигналы. Логический ноль регистрируется, когда на линии CAN_H сигнал выше, чем на линии CAN_L. Логическая единица - в случае когда сигналы CAN_H и CAN_L одинаковы (отличаются менее чем на 0.5 В). Использование такой дифференциальной схемы передачи делает возможным работу CAN сети в очень сложных внешних условиях. Логический ноль - называется доминантным битом, а логическая единица - рецессивным. Эти названия отражают приоритет логической единицы и нуля на шине CAN. При одновременной передаче в шину лог. нуля и единицы, на шине будет зарегестрирован только логический ноль (доминантный сигнал), а логическая единица будет подавлена (рецессивный сигнал).

Типы сообщений сети CAN.

Данные в CAN передаются короткими сообщениями-кадрами стандартного формата. В CAN существуют четыре типа сообщений:

  • Data Frame
  • Remote Frame
  • Error Frame
  • Overload Frame

Data Frame - это наиболее часто используемый тип сообщения. Он состоит из следующих основных частей:

  • поле арбитража (arbitration field) определяет приоритет сообщения в случае, когда два или более узлов одновременно пытаются передать данные в сеть. Поле арбитража состоит в свою очередь из:
    • для стандарта CAN-2.0A, 11-битного идентификатора + 1 бит RTR (retransmit)
    • для стандарта CAN-2.0B, 29-битного идентификатора + 1 бит RTR (retransmit)

    Следует отметить, что поле идентификатора, несмотря на свое название никак не идентифицирует само по себе ни узел в сети, ни содержимое поля данных. Для Data кадра бит RTR всегда выставлен в логический ноль (доминантный сигнал).

  • поле данных (data field) содержит от 0 до 8 байт данных
  • поле CRC (CRC field) содержит 15-битную контрольную сумму сообщения, которая используется для обнаружения ошибок
  • слот подтверждения (Acknowledgement Slot) (1 бит), каждый CAN-контроллер, который правильно принял сообщение посылает бит подтверждения в сеть. Узел, который послал сообщение слушает этот бит, и в случае если подтверждение не пришло, повторяет передачу. В случае приема слота подтверждения передающий узел может быть уверен лишь в том, что хотя бы один из узлов в сети правльно принял его сообщение.

Рис. 2. Data frame стандарта CAN 2.0A.

Remote Frame - это Data Frame без поля данных и с выставленным битом RTR (1 - рецессивные бит). Основное предназначение Remote кадра - это инициация одним из узлов сети передачи в сеть данных другим узлом. Такая схема позволяет уменьшить суммарный трафик сети. Однако, на практике Remote Frame сейчас используется редко (например, в DeviceNet Remote Frame вовсе не используется).

Error Frame - это сообщение которое явно нарушает формат солобщения CAN. Передача такого сообщения приводит к тому, что все узлы сети регистрируют ошибку формата CAN-кадра, и в свою очередь автоматически передают в сеть Error Frame. Результатом этого процесса является автоматическая повторная передача данных в сеть передающим узлом. Error Frame состоит из поля Error Flag, которое состоит из 6 бит одинакового значения (и таким образом Error frame нарушает проверку Bit Stuffing, см. ниже), и поля Error Delimiter, состоящее из 8 рецессивных битов. Error Delimiter дает возможность другим узлам сети обнаружив Error Frame послать в сеть свой Error Flag.

Overload Frame - повторяет структуру и логику работы Error кадра, с той разницей, что он используется перегруженным узлом, который в данный момент не может обработать поступающее сообщение, и поэтому просит при помощи Overload-кадра о повторной передаче данных. В настоящее время Overload-кадр практически не используется.

Контроль доступа к среде передачи (побитовый арбитраж).

Поле арбитража CAN-кадра используется в CAN для разрешения коллизий доступа к шине методом не деструктивного арбитража. Суть метода не деструктивного арбитража заключается в следующем. В случае, когда несколько контроллеров начинают одновременную передачу CAN кадра в сеть, каждый из них сравнивает, бит, который собирается передать на шину с битом, который пытается передать на шину конкурирующий контроллер. Если значения этих битов равны, оба контроллера передают следующий бит. И так происходит до тех пор, пока значения передаваемых битов не окажутся различными. Теперь контроллер, который передавал логический ноль (более приоритетный сигнал) будет продолжать передачу, а другой (другие) контроллер прервёт свою передачу до того времени, пока шина вновь не освободится. Конечно, если шина в данный момент занята, то контроллер не начнет передачу до момента её освобождения.

Рис. 3. Побитовый арбитраж на шине CAN.

Методы обнаружения ошибок.

CAN протокол определяет пять способов обнаружения ошибок в сети:

  • Bit monitoring
  • Bit stuffing
  • Frame check
  • ACKnowledgement Check
  • CRC Check

Bit monitoring - каждый узел во время передачи битов в сеть сравнивает значение передаваемого им бита со значением бита которое появляется на шине. Если эти значения не совпадают, то узел генерирует ошибку Bit Error. Естественно, что во время арбитража на шине (передача поля арбитража в шину) этот механизм проверки ошибок отключается.

Bit stuffing - когда узел передает последовательно в шину 5 бит с одинаковым значением, то он добавляет шестой бит с противоположным значением. Принимающие узлы этот дополнительный бит удаляют. Если узел обнаруживает на шине больше 5 последовательных бит с одинаковым значением, то он генерирует ошибку Stuff Error.

Frame Check - некоторые части CAN-сообщения имеют одинаковое значение во всех типах сообщений. Т.е. протокол CAN точно определяет какие уровни напряжения и когда должны появляться на шине. Если формат сообщений нарушается, то узлы генерируют ошибку Form Error.

ACKnowledgement Check - каждый узел получив правильное сообщение по сети посылает в сеть доминантный (0) бит. Если же этого не происходит, то передающий узел регистрирует ошибку Acknowledgement Error.

CRC Check - каждое сообщение CAN содержит CRC сумму, и каждый принимающий узел подсчитывает значение CRC для каждого полученного сообщения. Если подсчитанное значение CRC суммы, не совпадает со значением CRC в теле сообщения, принимающий узел генерирует ошибку CRC Error.

Механизм ограничения ошибок (Error confinement).

Каждый узел сети CAN, во время работы пытается обнаружить одну из пяти возможных ошибок. Если ошибка обнаружена, узел передает в сеть Error Frame, разрушая тем самым весь текущий трафик сети (передачу и прием текущего сообщения). Все остальные узлы обнаруживают Error Frame и принимают соответствующие действия (сбрасывают принятое сообщение). Кроме того, каждый узел ведет два счетчика ошибок: Transmit Error Counter (счетчик ошибок передачи) и Receive Error Counter (счетчик ошибок приема). Эти счетчики увеличиваются или уменьшаются в соответствие с несколькими правилами. Сами правила управления счетчиками ошибок достаточно сложны, но сводятся к простому принципу, ошибка передачи приводит к увеличению Transmit Error счетчика на 8, ошибка приема увеличивает счетчик Receive Error на 1, любая корректная передача/прием сообщения уменшают соответствующий счетчик на 1. Эти правила приводят к тому, что счетчик ошибок передачи передающего узла увеличивается быстрее, чем счетчик ошибок приема принимающих узлов. Это правило соответствует предположению о большой вероятности того, что источником ошибок является передающий узел.

Каждый узел CAN сети может находится в одном из трех состояний. Когда узел стартует он находится в состоянии Error Active. Когда, значение хотя бы одного из двух счетчиков ошибок превышает предел 127, узел переходит в состояние Error Passive. Когда значение хотя бы одного из двух счетчиков превышает предел 255, узел переходит в состояние Bus Off.

Узел находящийся в состоянии Error Active в случае обнаружения ошибки на шине передает в сеть Active Error Flags. Active Error Flags сотстоит из 6 доминантных бит, поэтому все узлы его регистрируют. Узел в состоянии Passive Error передает в сеть Passive Error Flags при обнаружении ошибки в сети. Passive Error Flags состоит из 6 рецессивных бит, поэтому остальные узлы сети его не замечают, и Passive Error Flags лишь приводит к увеличению Error счетчика узла. Узел в состоянии Bus Off ничего не передает в сеть (не только Error кадры, но вообще никакие другие).

Адресация и протоколы высокого уровня

В CAN не существует явной адресации сообщений и узлов. Протокол CAN нигде не указывает что поле арбитража (Identification field + RTR) должно использоваться как идентификатор сообщения или узла. Таким образом, идентификаторы сообщений и адреса узлов могут находится в любом поле сообщения (в поле арбитража или в поле данных, или присутствовать и там, и там). Точно также протокол не запрещает использовать поле арбитража для передачи данных.

Утилизация поля арбитража и поля данных, и распределение адресов узлов, идентификаторов сообщений и приоритетов в сети является предметом рассмотрений так называемых протоколов высокого уровня (HLP - Higher Layer Protocols). Название HLP отражает тот факт, что протокол CAN описывает только два нижних уровня эталонной сетевой модели ISO/OSI, а остальные уровни описываются протоколами HLP.

Рис. 4. Логическая структура протокола CAN.

Существует множество таких высокоуровневых протоколов. Наиболее распространенные из них это:

  • DeviceNet
  • CAL/CANopen
  • CanKingdom

Физичекий уровень протокола CAN

Физический уровень (Physical Layer) протокола CAN определяет сопротивление кабеля, уровень электрических сигналов в сети и т.п. Существует несколько физических уровней протокола CAN (ISO 11898, ISO 11519, SAE J2411).

В подавляющем большинстве случаев используется физический уровень CAN определенный в стандарте ISO 11898. ISO 11898 в качестве среды передачи определяет двухпроводную дифференциальную линию с импедансом (терминаторы) 120 Ом (допускается колебание импеданса в пределах от 108 Ом до 132 Ом. Физический уровень CAN реализован в специальных чипах - CAN приемо-передатчиках (transceivers), которые преобразуют обычные TTL уровни сигналов используемых CAN-контроллерами в уровни сигналов на шине CAN. Наиболее распространенный CAN приемо-передатчик - Phillips 82C250, который полностью соответствует стандарту ISO 11898.

Махимальная скорость сети CAN в соответствие с протоколом равна 1 Mbit/sec. При скорости в 1 Mbit/sec максимальная длина кабеля равна примерно 40 метрам. Ограничение на длину кабеля связано с конечной скоростью света и механизмом побитового арбитража (во время арбитража все узлы сети должны получать текущий бит передачи одновременно, те сигнал должен успеть распространится по всему кабелю за единичный отсчет времени в сети. Соотношение между скоростью передачи и максимальной длиной кабеля приведено в таблице:

Разъемы для сети CAN до сих пор НЕ СТАНДАРТИЗОВАНЫ. Каждый протокол высокого уровня обычно определяет свой тип разъемов для CAN-сети.

последовательная магистраль, обеспечивающая увязку в сеть "интеллектуальных" устройств ввода/вывода, датчиков и исполнительных устройств некоторого механизма или даже предприятия. Характеризуется протоколом, обеспечивающим возможность нахождения на магистрали нескольких ведущих устройств, обеспечивающим передачу данных в реальном масштабе времени и коррекцию ошибок, высокой помехоустойчивостью. Система CAN обеспечена большим количеством микросхем, обеспечивающих работу подключенных к магистрали устройств, разработку которых начинала фирма BOSH для использования в автомобилях, и в настоящее время широко используемых в промышленности и жилом секторе в составе автоматизированных систем контроля и учета электроэнергии (АИС КУЭ)

Предназначен для организации высоконадежных недорогих каналов связи в распределенных системах . Интерфейс широко применяется в промышленности, энергетике и на транспорте. Позволяет строить как дешевые мультиплексные каналы, так и высокоскоростные сети. Скорость передачи задается программно и может быть до 1 Мбит/с. Пользователь выбирает скорость, исходя из расстояний, числа абонентов и емкости линий передачи.
Расстояние, м 25 50 100 250 500 1000 2500 5000
Скорость, Кбит/с 1000 800 500 250 125 50 20 10
  • Максимальное число абонентов, подключенных к данному интерфейсу фактически определяется нагрузочной способностью примененных приемопередатчиков. 
  • Протокол CAN использует оригинальную систему адресации сообщений. Каждое сообщение снабжается идентификатором, который определяет назначение передаваемых данных, но не адрес приемника. Любой приемник может реагировать как на один идентификатор, так и на несколько. На один идентификатор могут реагировать несколько приемников. 
  • Протокол CAN обладает развитой системой обнаружения и сигнализации ошибок. Для этих целей используется поразрядный контроль, прямое заполнение битового потока, проверка пакета сообщения CRC-полиномом, контроль формы пакета сообщений, подтверждение правильного приема пакета данных. Хемминговый интервал d=6. Общая вероятность необнаруженной ошибки 4.7x10-11
  • Система арбитража протокола CAN исключает потерю информации и времени при "столкновениях" на шине. 
  • Интерфейс с применением протокола CAN легко адаптируется к физической среде передачи информации. Это может быть дифференциальный сигнал, оптоволокно, просто открытый коллектор и т.п. Несложно делается гальваническая развязка. 
  • , поддерживающие CAN, широко выпускается в индустриальном исполнении. И встречаются повсеместно, как на промышленных предприятиях, так и в структурах ЖКХ, жилом секторе, в частных домах, садоводческих товариществах (СНТ) и тд.

Примерный перечень счетчиков электроэнергии поддерживающих интерфейс CAN