Как работает биполярный транзистор.

14.09.2019 Принтеры и сканеры

Транзистор (transistor) – полупроводниковый элемент с тремя выводами (обычно), на один из которых (коллектор ) подаётся сильный ток, а на другой (база ) подаётся слабый (управляющий ток ). При определённой силе управляющего тока,как бы «открывается клапан» и ток с коллектора начинает течь на третий вывод (эмиттер ).


То есть транзистор – это своеобразный клапан , который при определённой силе тока, резко уменьшает сопротивление и пускает ток дальше (с коллектора на эмиттер).Происходит это потому, что при определенных условиях, дырки имеющие электрон, теряют его принимая новый и так по кругу. Если к базе не прилагать электрический ток, то транзистор будет находиться в уравновешенном состоянии и не пропускать ток на эмиттер.

В современных электронных чипах, количество транзисторов исчисляется миллиардами . Используются они преимущественно для вычислений и состоят из сложных связей.

Полупроводниковые материалы, преимущественно применяемые в транзисторах это: кремний , арсенид галлия и германий . Также существуют транзисторы на углеродных нанотрубках , прозрачные для дисплеев LCD и полимерные (наиболее перспективные).

Разновидности транзисторов:

Биполярные – транзисторы в которых носителями зарядов могут быть как электроны, так и «дырки». Ток может течь, как в сторону эмиттера , так и в сторону коллектора . Для управления потоком применяются определённые токи управления.

– распротранёные устройства в которых управление электрическим потоком происходит посредством электрического поля. То есть когда образуется большее поле – больше электронов захватываются им и не могут передать заряды дальше. То есть это своеобразный вентиль, который может менять количество передаваемого заряда (если полевой транзисторс управляемым p — n переходом). Отличительной особенностью данных транзисторов являются высокое входное напряжение и высокий коэффи­циент усиления по напряжению.

Комбинированные – транзисторы с совмещёнными резисторами, либо другими транзисторами в одном корпусе. Служат для различных целей, но в основном для повышения коэффициента усиления по току.

Подтипы:

Био-транзисторы – основаны на биологических полимерах, которые можно использовать в медицине, биотехнике без вреда для живых организмов. Проводились исследования на основе металлопротеинов, хлорофилла А (полученного из шпината), вируса табачной мозаики.

Одноэлектронные транзисторы – впервые были созданы российскими учёными в 1996 году . Могли работать при комнатной температуре в отличии от предшественников. Принцип работы схож с полевым транзистором, но более тонкий. Передатчиком сигнала является один или несколько электронов. Данный транзистор также называют нано- и квантовый транзистор. С помощью данной технологии, в будущем рассчитывают создавать транзисторы с размером меньше 10 нм , на основе графена .

Для чего используются транзисторы?

Используются транзисторы в усилительных схемах , лампах , электродвигателях и других приборах где необходимо быстрое изменение силы тока или положение вкл выкл . Транзистор умеет ограничивать силу тока либо плавно , либо методом импульс пауза . Второй чаще используется для -управления. Используя мощный источник питания, он проводит его через себя, регулируя слабым током.

Если силы тока недостаточно для включения цепи транзистора, то используются несколько транзисторов с большей чувствительностью, соединённые каскадным способом.

Мощные транзисторы соединённые в один или несколько корпусов, используются в полностью цифровых усилителях на основе . Часто им требуется дополнительное охлаждение . В большинстве схем, они работают в режиме ключа (в режиме переключателя).

Применяются транзисторы также в системах питания , как цифровых, так и аналоговых (материнские платы , видеокарты , блоки питания & etc ).

Центральные процессоры , тоже состоят из миллионов и миллиардов транзисторов, соединённых в определённом порядке для специализированных вычислений .

Каждая группа транзисторов, определённым образом кодирует сигнал и передаёт его дальше на обработку. Все виды и ПЗУ памяти, тоже состоят из транзисторов.

Все достижения микроэлектроники были бы практически невозможны без изобретения и использования транзисторов. Трудно представить хоть один электронный прибор без хотя бы одного транзистора.

В этой статье постараемся описать принцип работы самого распространенного типа транзистора — биполярного. Биполярный транзистор является одним из главных активных элементов радиоэлектронных устройств. Предназначение его – работа по усилению мощности электрического сигнал поступающего на его вход. Усиление мощности осуществляется посредством внешнего источника энергии. Транзистор — это радиоэлектронный компонент, обладающий тремя выводами

Конструкционная особенность биполярного транзистора

Для производства биполярного транзистора нужен полупроводник дырочного или электронного типа проводимости, который получают методом диффузии либо сплавления акцепторными примесями. В результате этого с обоих сторон базы образуются области с полярными видами проводимостей.

Биполярные транзисторы по проводимости бывают двух видов: n-p-n и p-n-p. Правила работы, которым подчинен биполярный транзистор, имеющий n-p-n проводимость (для p-n-p необходимо поменять полярность приложенного напряжения):

  1. Положительный потенциал на коллекторе имеет большее значение по сравнению с эмиттером.
  2. Любой транзистор имеет свои максимально допустимые параметры Iб, Iк и Uкэ, превышение которых в принципе недопустимо, так как это может привести к разрушению полупроводника.
  3. Выводы база — эмиттер и база — коллектор функционируют наподобие диодов. Как правило, диод по направлению база — эмиттер открыт, а по направлению база — коллектор смещен в противоположном направлении, то есть поступающее напряжение мешает протеканию электрического тока через него.
  4. Если пункты с 1 по 3 выполнены, то ток Iк прямо пропорционален току Iб и имеет вид: Iк = hэ21*Iб, где hэ21 является коэффициентом усиления по току. Данное правило характеризует главное качество транзистора, а именно то, что малый ток базы оказывает управление мощным током коллектора.

Для разных биполярных транзисторов одной серии показатель hэ21 может принципиально разниться от 50 до 250. Его величина так же зависит от протекающего тока коллектора, напряжения между эмиттером и коллектором, и от температуры окружающей среды.

Изучим правило №3. Из него вытекает, что напряжение, приложенное между эмиттером и базой не следует значительно увеличивать, поскольку, если напряжение базы будет больше эмиттера на 0,6…0,8 В (прямое напряжение диода), то появится крайне большой ток. Таким образом, в работающем транзисторе напряжения на эмиттере и базе взаимосвязаны по формуле: Uб =Uэ + 0,6В (Uб=Uэ+Uбэ)

Еще раз напомним, что все указанные моменты относятся к транзисторам, имеющим n-p-n проводимость. Для типа p-n-p все следует изменить на противоположное.

Еще следует обратить внимание на то, что ток коллектора не имеет связи с проводимостью диода, поскольку, как правило, к диоду коллектор — база поступает обратное напряжение. В добавок, ток протекающий через коллектор весьма мало зависит от потенциала на коллекторе (данный диод аналогичен малому источнику тока)

При включении транзистора в режиме усиления, эмиттерный переход получается открытым, а переход коллектора закрыт. Это получается путем подключения источников питания.

Поскольку эмиттерный переход открыт, то через него будет проходить эмиттерный ток, возникающий из-за перехода дырок из базы в эмиттер, а так же электронов из эмиттера в базу. Таки образом, ток эмиттера содержит две составляющие – дырочную и электронную. Коэффициент инжекции определяет эффективность эмиттера. Инжекцией зарядов именуют перенос носителей зарядов из зоны, где они были основными в зону, где они делаются неосновными.

В базе электроны рекомбинируют, а их концентрация в базе восполняется от плюса источника ЕЭ. В результате этого в электрической цепи базы будет течь довольно слабый ток. Оставшиеся электроны, не успевшие рекомбинировать в базе, под разгоняющим воздействием поля запертого коллекторного перехода, как неосновные носители, будут перемещаться в коллектор, создавая коллекторный ток. Перенос носителей зарядов из зоны, где они были неосновными, в зону, где они становятся основными, именуется экстракцией электрических зарядов.

Первое, что приходит в голову, когда слышишь подобный вопрос, это рассказать об устройстве транзистора: p-n переходах, их объединении в трехслойную конструкцию и т.д. Физика полупроводников, если подходить к вопросу серьезно, достаточно сложна и требует хотя бы начальных знаний о квантовой физике. И это касается только вопроса методичности изложения, тогда как и сама квантовая физика, как, впрочем, и классическая теория электричества, порою не в состоянии ответить на все возникающие вопросы. В итоге, чаще приходится просить принять что-то на веру после обширных математических выкладок и многочисленных поясняющих рисунков, а это никак не способствует пониманию существа вопроса.

Но действительно ли спрашивающего интересует физика полупроводников? Кого-то, может быть, и интересует, но большая часть вопрошающих, как мне кажется, больше склонна получить ответ на другой вопрос: как осмысленно использовать транзистор в схемах?

Транзистор - один из наиболее употребительных активных элементов электронных схем. В последнее время схемы часто строятся с использованием микросхем, а подход к их созданию требует только знания свойств и функциональных возможностей микросхемы, но следует забывать, что и свойства и функциональные возможности микросхемы обусловлены свойствами скрытых в ней компонент, где транзисторы продолжают играть значительную роль. Так что вопрос о работе транзистора не утратил актуальности. Но с учетом «микросхемного» подхода к созданию устройств рассмотрение свойств и функциональных возможностей транзисторов мне кажется более актуальным, чем физических принципов, лежащих в основе их работы, особенно для любителей.

Чаще всего транзистор используется для усиления сигнала. И хотя сигналы бывают разные, наиболее простые эксперименты можно осуществить с усилением синусоидального сигнала. А Proteus предоставляет все необходимое для этого.

В одном из весьма аргументированных сообщений, встреченных мною на форуме, где обсуждалась работа с Proteus, говорилось, что эта среда разработки предназначена для работы с цифровой техникой и микроконтроллерами, поэтому аналоговые схемы в ней исследовать нет резона. Меня заинтересовало, можно ли рассказать о применении транзисторов с помощью программы Proteus? Попробую это сделать.

Итак. Усиление сигнала можно рассматривать как усиление сигнала по току, усиление по напряжению и усиление по мощности. Усиление сигнала по току у транзистора обусловлено его свойством - ток коллектора и ток базы связаны соотношением Iк = К*Iб . При этом, если ток базы изменяется по какому-то закону, то ток коллектора изменяется по тому же закону, то есть, соотношение выше можно рассматривать для каждого момента времени. Вот, собственно, что я посчитал бы необходимым ответить на вопрос о том, как работает транзистор.

При работе с симметричными сигналами транзистор, как правило, включают так, чтобы напряжение на коллекторе было равно половине напряжения питания. В простейшем случае это достигается подбором резистора в цепи базы.

Рис. 3.1. Задание рабочего режима транзистора

Если в такой схеме менять величину сопротивления R1, что в Proteus достигается щелчком правой клавиши мышки по этому компоненту с последующим выбором из выпадающего меню пункта Edit Properties , открывающего, в свою очередь, диалоговое окно свойств резистора, где и задается величина сопротивления, так вот, если менять R1 то можно получить разное напряжение на коллекторе транзистора.

Однако гораздо полезнее подключить к схеме предыдущего рисунка генератор синусоидального напряжения, используя клавишу Generator Mode (иконка на левой инструментальной панели в виде кружка с синусоидой). Если теперь с помощью клавишиGraph Mode нарисовать график, можно выбратьANALOGUE из представленных возможностей, добавить пробник напряжения, обозначив его метку какoutput , то после настройки графика, в его свойствах я задаю время 10 мС (10m), так как я задал для генератора синусоиды 10 мВ (10m RMS) и частоту 1 кГц (1k), добавить кривую для графика, используя пункт выпадающего менюAdd Traces... , то теперь можно наблюдать выходной сигнал после запуска симуляции в пункте выпадающего менюSimulate Graph при разных значениях сопротивления, чтобы оценить, как влияет выбор рабочей точки на получающийся результат.

Рис. 3.2. Наблюдение синусоидального сигнала на коллекторе транзистора

Зачем на входе транзистора конденсатор? Чтобы сопротивление генератора, а генератор имеет некоторое внутреннее сопротивление, не меняло заданный режим. Конденсатор не пропускает постоянный ток, значит не изменит наших настроек. Можно включать разные источники сигнала, можно менять сопротивление в цепи коллектора, можно наблюдать многое в программе Proteus, и можно проверить, действительно ли между током базы и током коллектора есть соотношение, о котором было сказано в самом начале, и можно проверить, действительно ли ток (ток, а не напряжение, как у меня) коллектора повторяет закон изменения тока базы. Кстати, можно проверить и фазовые соотношения между напряжениями на базе транзистора и напряжением на его коллекторе. Это удобно сделать добавив второй график для сигнала input на рис.3.2.

Я же хочу проделать другие испытания. Если верить рассказам о Proteus, которые я нашел

в Интернете, то работа усилителя не зависит от того, какой транзистор вы используете. Выбирая разные транзисторы из библиотеки компонентов, я хочу посмотреть на амплитудночастотные характеристики получающихся усилителей. Для этой цели я использую ту же схему, добавлю в свой набор некоторое количество транзисторов, затем, меняя транзисторы, посмотрю, действительно ли их АЧХ одинаковы?

Рис. 3.3. Испытания разных транзисторов в Proteus

Для транзистора AC127, как это видно из графика, частота среза примерно 5 МГц. Похоже ли это на правду? Не хочу заниматься расчетами, но если современные транзисторы малой мощности имеют граничную частоту при включении с общей базой порядка 300 МГц, а усиление около 100, то граничная частота должна получиться около 3 МГц.

Когда рассказывают о строении биполярного транзистора, то обязательно упоминают о том, что он имеет две пограничные области на стыке полупроводников разных типов проводимости, очень напоминающие по свойствам заряженные конденсаторы. Этому свойству транзистор обязан своим поведением при усилении сигналов разных частот. Его поведение можно моделировать используя RC цепь. Амплитудно-частотная характеристика интегрирующей RC цепи и однокаскадного усилителя на транзисторе будут обладать одинаковыми свойствами. Можно сравнить графики рис. 1.14 и предыдущего, чтобы увидеть наличие верхней граничной частоты в обоих случаях и спада амплитудно-частотной характеристики со скоростью 20 дБ на декаду. Величина эквивалентного конденсатора зависит от конкретной модели транзистора. Если заменить одну модель транзистора другой, то можно ожидать, что амплитудно-частотная характеристика каскада изменится, если, конечно, у них различается такой параметр, как граничная частота усиления.

Поэтому я хочу заменить транзистор на TIP31.

Рис. 3.4. Амплитудно-частотная характеристика после замены транзистора

Не знаю, как у вас, а у меня верхняя граничная частота «улетела» за 10 МГц. Не уверен я теперь, что Proteus не годится для аналогового симулирования схем. Чтобы развеять свои сомнения я верну транзистор AC127, а в цепь эмиттера включу резистор. Этот резистор, удобнее рассмотреть его работу в схеме рис.3.1, приведет к тому, что напряжение базаэмиттер транзистора изменится. На нем будет падать напряжение, которое нужно вычесть из напряжения между базой и общим проводом, чтобы получить напряжение база-эмиттер. Входным напряжением для транзистора служит именно напряжение база-эмиттер. Таким образом, резистор в цепи эмиттера уменьшает входной сигнал для транзистора. Он, резистор, является резистором обратной связи - мы часть выходного сигнала (а на резисторе в цепи эмиттера в значительной мере сказывается именно выходной сигнал) сложили с учетом фазы со входным сигналом, дополнение «с учетом фазы» в данном случае указывает на то, что обратная связь будет отрицательной. А, насколько я знаю, отрицательная обратная связь должна расширить диапазон рабочих частот каскада усиления, то есть, верхняя граничная частота должна увеличится. Проверим, так ли это?

Рис. 3.5. Амплитудно-частотная характеристика с отрицательной обратной связью

Нисколько я не развеял сомнения, верхняя частота среза каскада вновь оказывается за 10 МГц, как и предписывает ей теория и практика. Видимо профессионалов не устраивает точность моделирования сравнительно с расчетами или практическим выполнением схем, но в любительской практике, если проверять результаты моделирования на макетной плате, программа окажется достойным помощником.

Проведем еще один эксперимент, который отчасти отвечает на вопрос о применимости Proteus к аналоговым схемам, отчасти на вопрос о том, как работает транзистор?

В самом начале я говорил, что ток базы и ток коллектора связаны соотношением, но никак не назвал это соотношение. Коэффициент «К» - это статический коэффициент усиления по току. Можно встретить его в виде Вст и в виде h21 . Это связь между постоянным током базы и коллектора. Но при работе транзистора в схеме нас больше может заинтересовать динамическая связь этих токов. Посмотрим, может ли Proteus помочь нам в этом.

Но предварительно, поскольку мы этого не сделали, найдем этот самый статический коэффициент усиления по току, как отношение постоянного тока коллектора к току базы в выбранном режиме. В схеме рис.3.1 я добавлю два измерителя тока, амперметра, один в цепь базы, другой в цепь коллектора. В свойствах этих амперметров (правый щелчок, в выпадающем меню свойства, затем окошко Display Range ) я заменю тот, что в цепи базы на микроамперметр, а в цепи коллектора на миллиамперметр.

Рис. 3.6. Измерение статического коэффициента усиления по току

Теперь можно разделить 5.67 мА на 22.6 мкА, что даст значение коэффициента, примерно, 250.

Мне хотелось бы проделать нечто подобное со входным и выходным током схемы на рис. 3.4. Токовый пробник к входной цепи добавляется и графика работает, а вот графика, если добавить токовый пробник в коллекторную цепь, работать не хочет. Но это не слишком огорчает меня, поскольку токовый пробник в общей цепи вполне меня устроит, ток в общей цепи - сумма токов базы и коллектора, но ток базы много меньше тока коллектора, так что для ориентировочных расчетов можно взять их сумму.

Можно, конечно, попытаться разобраться, отчего не хочет симулироваться график, если токовый пробник устанавливать в цепь коллектора. К этой проблеме можно вернуться позже, либо не рассматривать это в качестве проблемы до того момента, когда в таком измерении возникнет жестокая необходимость. Пока можно обойтись тем, что есть.

В общем рабочем поле графики немного маловаты, и если это, как мне в данном случае, мешает определить величины, можно выбрать из выпадающего меню после щелчка правой клавиши мышки по графику пункт Maximize (Show Window) , что приведет к появлению окна просмотра с большим графиком.

Рис. 3.7. Токи во входной и выходной цепях усилителя

Самый верхний график показывает напряжение сигнала на коллекторе транзистора. В окне просмотра легко выясняется, что двойная амплитуда сигнала около 8.5 - 3.5 = 5 В. Соответственно амплитуда должна быть 2.5 В. Прав я или нет, но при сопротивлении нагрузки равном 1 кОм ток через это сопротивление должен быть 2.5 мА.

Следующий график показывает токовый сигнал базы транзистора, двойная амплитуда которого 24 мкА, а амплитуда 12 мкА.

Последний график - это общий токовый сигнал, как алгебраическая сумма базового и коллекторного токов, который я, ничтоже сумняшеся, принимаю за выходной ток с амплитудой 2.5 мА. В этом случае усиление по току, как простое отношение выходного тока ко входному, будет около 208. Это близко к статическому коэффициенту усиления по току. Кроме того, зная, что входной сигнал равен 10 мВ (RSM) эффективного значения или 14 мВ амплитудного, а выходной сигнал 2.5 В, можно получить усиление по напряжению около 178. Это значение, выраженное в децибелах, дает величину 45 дБ. Это же значение присутствует на амплитудно-частотной характеристике этой схемы. Расчетное значение усиления по напряжению получается около 200. Пока похоже.

В одном из справочников приводится расчетное значение усиления по напряжению как отношение величины сопротивления в коллекторной и эмиттерной цепи для рис. 3.5. В данном случае это будет 1000/300 = 3.3 или в децибелах 20log(3.3) = 10.4. Это значение присутствует на амплитудно-частотной характеристике.

Что ж, был бы рад сказать, что убедился, с аналоговыми схемами работать нельзя, но не убедился пока. Увы!

Что означает название "транзистор"

Транзистор не сразу получил такое привычное название. Первоначально, по аналогии с ламповой техникой его называли полупроводниковым триодом . Современное название состоит из двух слов. Первое слово - «трансфер», (тут сразу вспоминается «трансформатор») означает передатчик, преобразователь, переносчик. А вторая половина слова напоминает слово «резистор», - деталь электрических схем, основное свойство которой электрическое сопротивление.

Именно это сопротивление встречается в законе Ома и многих других формулах электротехники. Поэтому слово «транзистор» можно растолковать, как преобразователь сопротивления. Примерно так же, как в гидравлике изменение потока жидкости регулируется задвижкой. У транзистора такая «задвижка» изменяет количество электрических зарядов, создающих электрический ток. Это изменение есть не что иное, как изменение внутреннего сопротивления полупроводникового прибора.

Усиление электрических сигналов

Наиболее распространенной операцией, которую выполняют транзисторы , является усиление электрических сигналов . Но это не совсем верное выражение, ведь слабый сигнал с микрофона таковым и остается.

Усиление также требуется в радиоприеме и телевидении: слабый сигнал с антенны мощностью в миллиардные доли ватта необходимо усилить до такой степени, чтобы получить звук или изображение на экране. А это уже мощности в несколько десятков, а в некоторых случаях и сотен ватт. Поэтому процесс усиления сводится к тому, чтобы с помощью дополнительных источников энергии, полученной от блока питания, получить мощную копию слабого входного сигнала. Другими словами маломощное входное воздействие управляет мощными потоками энергии.

Усиление в других областях техники и природе

Такие примеры можно найти не только в электрических схемах. Например, при нажатии педали газа увеличивается скорость автомобиля. При этом на педаль газа нажимать приходится не очень сильно - по сравнению с мощностью двигателя мощность нажатия на педаль ничтожна. Для уменьшения скорости педаль придется несколько отпустить, ослабить входное воздействие. В этой ситуации мощным источником энергии является бензин.

Такое же воздействие можно наблюдать и в гидравлике: на открытие электромагнитного клапана, например в станке, энергии, идет совсем немного. А давление масла на поршень механизма способно создать усилие в несколько тонн. Это усилие можно регулировать, если в маслопроводе предусмотреть регулируемую задвижку, как в обычном кухонном кране. Чуть прикрыл - давление упало, усилие снизилось. Если открыл побольше, то и нажим усилился.

На поворот задвижки тоже не требуется прилагать особых усилий. В данном случае внешним источником энергии является насосная станция станка. И подобных воздействий в природе и технике можно заметить великое множество. Но все-таки нас больше интересует транзистор, поэтому далее придется рассмотреть…

Усилители электрических сигналов

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.


Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.


Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q» , после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

  • полевые;
  • биполярные;
  • комбинированные.

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.


Рис. 5. Полевые транзисторы
Рис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Если, например, кремний легировать фосфором (донор), то получим полупроводник с избытком электронов (структура n-Si). При добавлении бора (акцептор) легированный кремний станет полупроводником с дырочной проводимостью (p-Si), то есть в его структуре будут преобладать положительно заряженные ионы.

Односторонняя проводимость.

Проведём мысленный эксперимент: соединим два разнотипных полупроводника с источником питания и подведём ток к нашей конструкции. Произойдёт нечто неожиданное. Если соединить отрицательный провод с кристаллом n-типа, то цепь замкнётся. Однако, когда мы поменяем полярность, то электричества в цепи не будет. Почему так происходит?

В результате соединения кристаллов с разными типами проводимости, между ними образуется область с p-n переходом. Часть электронов (носителей зарядов) из кристалла n-типа перетечёт в кристалл с дырочной проводимостью и рекомбинирует дырки в зоне контакта.

В результате возникают некомпенсированные заряды: в области n-типа – из отрицательных ионов, а в области p-типа из положительных. Разница потенциалов достигает величины от 0,3 до 0,6 В.

Связь между напряжением и концентрацией примесей можно выразить формулой:

φ= V T * ln (N n * N p )/n 2 i , где

V T величина термодинамического напряжения, N n и N p концентрация соответственно электронов и дырок, а n i обозначает собственную концентрацию.

При подсоединении плюса к p-проводнику, а минуса к полупроводнику n-типа, электрические заряды преодолеют барьер, так как их движение будет направлено против электрического поля внутри p-n перехода. В данном случае переход открыт. Но если полюса поменять местами, то переход будет закрыт. Отсюда вывод: p-n переход образует одностороннюю проводимость. Это свойство используется в конструкции диодов.

От диода к транзистору.

Усложним эксперимент. Добавим ещё одну прослойку между двумя полупроводниками с одноименными структурами. Например, между кремниевыми пластинами p-типа вставим прослойку проводимости (n-Si). Не трудно догадаться, что произойдёт в зонах соприкосновения. По аналогии с вышеописанным процессом образуются области с p-n переходами, которые заблокируют движение электрических зарядов между эмиттером и коллектором, причём независимо от полярности тока.

Самое интересное произойдёт тогда, когда мы приложим незначительное напряжение к прослойке (базе). В нашем случае, подадим ток с отрицательным знаком. Как и в случае с диодом, образуется цепь эмиттер-база, по которой потечёт ток. Одновременно прослойка начнёт насыщаться дырками, что приведёт к дырочной проводимости между эмиттером и коллектором.

Посмотрите на рисунок 7. На нём видно, что положительные ионы заполнили всё пространство нашей условной конструкции и теперь ничто не мешает проводимости тока. Мы получили наглядную модель биполярного транзистора структуры p-n-p.


Рис. 7. Принцип работы триода

При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается.

Устройство может работать и в усилительном режиме.

Ток коллектора связан прямой пропорциональностью с током базы: I к = ß* I Б , где ß коэффициент усиления по току, I Б ток базы.

Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Этот принцип используют для усиления сигналов.

Подавая на базу слабые импульсы, на выходе мы получаем такую же частоту усиления, но со значительно большей амплитудой (задаётся величиной напряжения, приложенного к цепочке коллектор эмиттер).

Аналогичным образом работают npn транзисторы. Меняется только полярность напряжений. Устройства со структурой n-p-n обладают прямой проводимостью. Обратную проводимость имеют транзисторы p-n-p типа.

Остаётся добавить, что полупроводниковый кристалл подобным образом реагирует на ультрафиолетовый спектр света. Включая и отключая поток фотонов, или регулируя его интенсивность, можно управлять работой триода или менять сопротивление полупроводникового резистора.

Схемы включения биполярного транзистора

Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором (Рис. 8).


Рис. 8. Схемы подключения биполярных транзисторов

Для усилителей с общей базой характерно:

  • низкое входное сопротивление, которое не превышает 100 Ом;
  • хорошие температурные свойства и частотные показатели триода;
  • высокое допустимое напряжение;
  • требуется два разных источника для питания.

Схемы с общим эмиттером обладают:

  • высокими коэффициентами усиления по току и напряжению;
  • низкие показатели усиления по мощности;
  • инверсией выходного напряжения относительно входного.

При таком подключении достаточно одного источника питания.

Схема подключения по принципу «общий коллектор» обеспечивает:

  • большое входное и незначительное выходное сопротивление;
  • низкий коэффициент напряжения по усилению (< 1).

Как работает полевой транзистор? Пояснение для чайников

Строение полевого транзистора отличается от биполярного тем, что ток в нём не пересекает зоны p-n перехода. Заряды движутся по регулируемому участку, называемому затвором. Пропускная способность затвора регулируется напряжением.

Пространство p-n зоны уменьшается или увеличивается под действием электрического поля (см. Рис. 9). Соответственно меняется количество свободных носителей зарядов – от полного разрушения до предельного насыщения. В результате такого воздействия на затвор, регулируется ток на электродах стока (контактах, выводящих обработанный ток). Входящий ток поступает через контакты истока.


Рисунок 9. Полевой транзистор с p-n переходом

По аналогичному принципу работают полевые триоды со встроенным и индуцированным каналом. Их схемы вы видели на рисунке 5.

Схемы включения полевого транзистора

На практике применяют схемы подключений по аналогии с биполярным триодом:

  • с общим истоком – выдаёт большое усиление тока и мощности;
  • схемы с общим затвором обеспечивающие низкое входное сопротивление, и незначительное усиление (имеет ограниченное применение);
  • с общим стоком, работающие так же, как и схемы с общим эмиттером.

На рисунке 10 показаны различные схемы включения.


Рис. 10. Изображение схем подключения полевых триодов

Практически каждая схема способна работать при очень низких входных напряжениях.

Видео, поясняющие принцип работы транзистора простым языком