Схема локальной сети. Как построить лвс - локальную сеть малого предприятия Схема построения локальных сетей связи

12.07.2021 Принтеры и сканеры

Векторный 2D-редактор CADE для Windows разработан компанией, специализирующейся на работе с САПР. Программа позволяет с легкостью составить подробную схему сети. Одна из самых полезных, на мой взгляд, функций - возможность подписать IP-адрес, серийный номер и название фирмы-производителя для каждого устройства в сети. CADE включает все необходимые для составления схемы шаблоны и распространяется абсолютно бесплатно.

Concept Draw Pro - один из наиболее мощных бизнес-инструментов для составления диаграмм, причем не только сетевых. На освоение программы требуется минимум времени - все операции осуществляются простым перетаскиванием. В состав Concept Draw Pro входит полный набор сетевых символов, а все аспекты диаграммы можно персонализировать. Стоимость приложения - 249 долларов.

Dia - открытое ПО для составления диаграмм, главным недостатком которого является устаревший интерфейс и примитивный набор символов. Зато программу очень легко использовать, не отвлекаясь ни на какие посторонние задачи. Dia распространяется бесплатно и работает практически во всех настольных дистрибутивах Linux.

Diagram Designer - еще одна бесплатная утилита с устаревшим интерфейсом, зато очень простая в обращении, благодаря чему наверняка придется по вкусу многим пользователям. В отличие от Dia, программа предлагает куда более широкий выбор символов и значков. Единственное, что мне не понравилось в Diagram Designer, - это необходимость рисовать соединения между компьютерами вручную, потому что для этого в программе используется произвольная форма. За исключением этого небольшого недостатка, DD - вполне достойное решение.

eDraw Max - один из лучших инструментов в этом списке, за исключением, разумеется, Visio. Программа проста в освоении, обладает удобным, и притом наиболее современным пользовательским интерфейсом из всех перечисленных вариантов. eDraw Max представляет собой полофункциональное средство для составления бизнес-диаграмм любого назначения, а не только сетевых схем. Стоимость решения составляет 99,95 долларов за одну лицензию, причем чем больше лицензий, тем дешевле стоит каждая из них.

Бывают на редкость неудачные программы, и GoVisual Diagram Editor - одна из них. Это сложный в обращении инструмент, обеспечивающий далеко не удовлетворительные результаты. Хотя с его помощью все-таки можно составить схему сети, она будет не особенно удобна для чтения, поскольку в GoVisual Diagram Editor отсутствуют некоторые полезные функции - в частности, значки сетевых устройств. Но если кому-то нужна бесплатная программа для составления диаграмм любого назначения, GoVisual - как раз подходящий вариант, потому что распространяется даром.

LanFlow я бы включил в число лучших. Программа обладает превосходным интерфейсом, предлагает богатый выбор сетевых объектов и позволяет с легкостью создавать схемы локальной, телекоммуникационной, внешней сети, а также диаграммы компьютеров. В LanFlow даже предусмотрено два разных шаблона сетевых диаграмм: 3D-схема и черно-белая. Чтобы создать схему, достаточно выбрать шаблон и перетащить на него подходящие объекты, которые можно группировать, удалять и так далее. Однопользовательская лицензия на программу стоит 89 долларов, так что LanFlow по праву может называться одной из лучших бюджетных альтернатив Visio.

Хотя NetProbe можно использовать и для составления схем, основное назначение программы - это мониторинг сетевых устройств в режиме реального времени. Но главное достоинство NetProbe как средства для построения диаграмм заключается в том, что сетевые устройства можно добавлять на схему по мере необходимости, причем даже заранее. Делать это вручную не обязательно - встроенный компонент NetProbe автоматически сканирует сеть и составляет список всех доступных в сети устройств. Версия Standard бесплатна, но может отслеживать всего восемь хостов. Версия Pro стоит всего 40 долларов и рассчитана на 20 хостов, а версия Enterprise, позволяющая вести мониторинг 400 хостов, предлагается по цене 295 долларов.

Network Notepad (буквально «сетевой блокнот») представляет собой именно то, что следует из названия - блокнот для составления сетевых диаграмм. Но несмотря на кажущуюся простоту, программа обладает богатыми возможностями, включая интерактивные функции (Telnet, просмотр сети, пингование и т. д.). Network Notepad имеет простой интерфейс с поддержкой перетаскивания и умеет автоматически обнаруживать устройства Cisco. Распространяется программа бесплатно.

Visio - это, конечно, фактический стандарт на рынке приложений для составления диаграмм в Windows. Программа позволяет с легкостью создавать красивые схемы сети и обеспечивать к ним общий доступ через веб-браузер. Visio включает богатый набор шаблонов, в том числе для центров обработки данных, служб помощи, сетевых стоек; для консолидации офиса, планирования сети в масштабах предприятия, ЦОД или домашнего офиса; для составления дерева неисправностей, плана отопления, вентиляции, кондиционирования и т. п. Visio - лучшее решение для составления сетевых схем, а потому и стоит оно недешево: 249,99 долларов за версию Standard, 559,99 за Professional и 999,99 за Premium 2010. Подробнее о возможностях версий можно прочитать на официальной странице Visio.

Материалы

Современные компьютерные технологии невозможно представить себе без объединения всевозможных устройств в виде стационарных терминалов, ноутбуков или даже мобильных девайсов в единую сеть. Такая организация позволяет не только быстро обмениваться данными между разными устройствами, но и использовать вычислительные возможности всех единиц техники, подключенной к одной сети, не говоря уже о возможности доступа к периферийным составляющим вроде принтеров, сканеров и т. д. Но по каким принципам производится такое объединение? Для их понимания необходимо рассмотреть локальной сети, часто называемую топологией, о чем дальше и пойдет речь. На сегодняшний день существует несколько основных классификаций и типов объединения любых устройств, поддерживающих сетевые технологии, в одну сеть. Конечно же, речь идет о тех девайсах, на которых установлены специальные проводные или беспроводные сетевые адаптеры и модули.

Схемы локальных компьютерных сетей: основная классификация

Прежде всего в рассмотрении любого типа организации компьютерных сетей необходимо отталкиваться исключительно от способа объединения компьютеров в единое целое. Тут можно выделить два основных направления, используемых при создании схемы локальной сети. Подключение по сети может быть либо проводным, либо беспроводным.

В первом случае используются специальные коаксиальные кабели или витые пары. Такая технология получила название Ethernet-соединения. Однако в случае использования в схеме локальной вычислительной сети коаксиальных кабелей их максимальная длина составляет порядка 185-500 м при скорости передачи данных не более 10 Мбит/с. Если применяются витые пары классов 7, 6 и 5е, их протяженность может составлять 30-100 м, а пропускная способность колеблется в пределах 10-1024 Мбит/с.

Беспроводная схема соединения компьютеров в локальной сети основана на передачи информации посредством радиосигнала, который распределяется между всеми подключаемыми устройствами, раздающими девайсами, в качестве которых могут выступать маршрутизаторы (роутеры и модемы), точки доступа (обычные компьютеры, ноутбуки, смартфоны, планшеты), коммутационные устройства (свитчи, хабы), повторители сигнала (репитеры) и т. д. При такой организации применяются оптоволоконные кабели, которые подключаются непосредственно к основному раздающему сигнал оборудованию. В свою очередь, расстояние, на которое можно передавать информацию, возрастает примерно до 2 км, а в радиочастотном диапазоне в основном применяются частоты 2,4 и 5,1 МГц (технология IEEE 802.11, больше известная как Wi-Fi).

Проводные сети принято считать более защищенными от внешнего воздействия, поскольку напрямую получить доступ ко всем терминалам получается не всегда. Беспроводные структуры в этом отношении проигрывают достаточно сильно, ведь при желании грамотный злоумышленник может запросто вычислить сетевой пароль, получить доступ к тому же маршрутизатору, а уже через него добраться до любого устройства, в данный момент использующего сигнал Wi-Fi. И очень часто в тех же государственных структурах или в оборонных предприятиях многих стран использовать беспроводное оборудование категорически запрещается.

Классификация сетей по типу соединения устройств между собой

Отдельно можно выделить полносвязную топологию схем соединения компьютеров в локальной сети. Такая организация подключения подразумевает только то, что абсолютно все терминалы, входящие в сеть, имеют связь друг с другом. И как уже понятно, такая структура является практически не защищенной в плане внешнего вторжения или при проникновении злоумышленников в сеть посредством специальных вирусных программ-червей или шпионских апплетов, которые изначально могли бы быть записаны на съемных носителях, которые те же неопытные сотрудники предприятий по незнанию могли подключить к своим компьютерам.

Именно поэтому чаще всего используются другие схемы соединения в локальной сети. Одной из таких можно назвать ячеистую структуру, из которой определенные начальные связи были удалены.

Общая схема соединения компьютеров в локальной сети: понятие основных типов топологии

Теперь кратко остановимся на проводных сетях. В них можно применять несколько наиболее распространенных типов построения схем локальных сетей. Самыми основными видами являются структуры типа «звезда», «шина» и «кольцо». Правда, наибольшее применение получил именно первый тип и его производные, но нередко можно встретить и смешанные типы сетей, где используются комбинации всех трех главных структур.

Топология «звезда»: плюсы и минусы

Схема локальной сети «звезда» считается наиболее распространенной и широко применяемой на практике, если речь идет об использовании основных типов подключения, так сказать, в чистом виде.

Суть такого объединения компьютеров в единое целое состоит в том, что все они подключаются непосредственно к центральному терминалу (серверу) и между собой не имеют никаких связей. Абсолютно вся передаваемая и принимаемая информация проходит непосредственно через центральный узел. И именно эта конфигурация считается наиболее безопасной. Почему? Да только потому, что внедрение тех же вирусов в сетевое окружение можно произвести либо с центрального терминала, либо добраться через него с другого компьютерного устройства. Однако весьма сомнительным выглядит тот момент, что в такой схеме локальной сети предприятия или государственного учреждения не будет обеспечен высокий уровень защиты центрального сервера. А внедрить шпионское ПО с отдельного терминала получится только при наличии физического доступа к нему. К тому же и со стороны центрального узла на каждый сетевой компьютер могут быть наложены достаточно серьезные ограничения, что особенно часто можно наблюдать при использовании сетевых операционных систем, когда на компьютерах отсутствуют даже жесткие диски, а все основные компоненты применяемой ОС загружаются непосредственно с главного терминала.

Но и тут есть свои недостатки. Прежде всего связано это с повышенными финансовыми затратами на прокладку кабелей, если основной сервер находится не в центре топологической структуры. Кроме того, скорость обработки информации напрямую зависит от вычислительных возможностей центрального узла, и если он выходит из строя, соответственно, на всех компьютерах, входящих в сетевую структуру, связи нарушаются.

Схема «шина»

Схема соединения в локальной сети по типу «шины» тоже является одной из распространенных, а ее организация основана на применении единого кабеля, через ответвления которого к сети подключаются все терминалы, в том числе и центральный сервер.

Главным недостатком такой структуры можно назвать высокую стоимость прокладки кабелей, особенно для тех случаев, когда терминалы находятся на достаточно большом удалении друг от друга. Зато при выходе из строя одного или нескольких компьютеров связи между всеми остальными компонентами в сетевом окружении не нарушаются. Кроме того, при использовании такой схемы локальной сети проходящая через основной канал очень часто дублируется на разных участках, что позволяет избежать ее повреждения или невозможности ее доставки в пункт назначения. А вот безопасность в такой структуре, увы, страдает довольно сильно, поскольку через центральный кабель вредоносные вирусные коды могут проникнуть на все остальные машины.

Структура «кольцо»

Кольцевую схему (топологию) в некотором смысле можно назвать морально устаревшей. На сегодняшний день она не используется практически ни в одной сетевой структуре (разве что только в смешанных типах). Связано это как раз с самими принципами объединения отдельных терминалов в одну организационную структуру.

Компьютеры друг с другом соединяются последовательно и только одним кабелем (грубо говоря, на входе и на выходе). Конечно, такая методика снижает материальные затраты, однако в случае выхода из строя хотя бы одной сетевой единицы нарушается целостность всей структуры. Если можно так сказать, на определенном участке, где присутствует поврежденный терминал, передача (прохождение) данных попросту стопорится. Соответственно, и при проникновении в сеть опасных компьютерных угроз они точно так же последовательно проходят от одного терминала к другому. Зато в случае присутствия на одном из участков надежной защиты вирус будет ликвидирован и дальше не пройдет.

Смешанные типы сетей

Как уже было сказано выше, основные типы схем локальных сетей в чистом виде практически не встречаются. Гораздо более надежными и в плане безопасности, и по затратам, и по удобству доступа выглядят смешанные типы, в которых могут присутствовать элементы основных видов сетевых схем.

Так, очень часто можно встретить сети с древовидной структурой, которую изначально можно назвать неким подобием «звезды», поскольку все ответвления идут из одной точки, называемой корнем. А вот организация ветвей в такой схеме подключения по локальной сети может содержать в себе и кольцевые, и шинные структуры, делясь на дополнительные ответвления, часто определяемые как подсети. Понятно, что такая организация является достаточно сложной, и при ее создании необходимо использовать дополнительные технические приспособления вроде сетевых коммутаторов или разветвителей. Но, как говорится, цель оправдывает средства, ведь благодаря такой сложной структуре важную и конфиденциальную информацию можно защитить очень надежно, изолировав ее в ветках подсетей и практически ограничив к ней доступ. То же самое касается и вывода из строя составляющих. При таком построении схем локальных сетей совершенно необязательно использовать только один центральный узел. Их может быть несколько, причем с совершенно разными уровнями защиты и доступа, что еще больше повышает степень общей безопасности.

Логистическая топология

Особо важно при организации сетевых структур обратить внимание на применяемые способы передачи данных. В компьютерной терминологии такие процессы принято называть логистической или логической топологией. При этом физические методы передачи информации в различных структурах могут весьма существенно отличаться от логических. Именно логистика, по сути своей, определяет маршруты приема/передачи. Очень часто можно наблюдать, что при построении сети в виде «звезды» обмен информацией осуществляется с использованием шинной топологии, когда сигнал может приниматься одновременно всеми устройствами. В кольцевых логических структурах можно встретить ситуации, когда сигналы или данные принимаются только теми терминалами, для которых они предназначены, несмотря даже на последовательное прохождение через все сопутствующие звенья.

Наиболее известные сети

Выше пока что рассматривалось исключительно построение схем локальных сетей на основе технологии Ethernet, которая в самом простом выражении использует адреса, протоколы и стеки TCP/IP. Но ведь в мире можно найти огромное количество сетевых структур, которые имеют отличные от приведенных принципы сетевой организации. Наиболее известными из всех (кроме Ethernet с использованием логической шинной топологии) являются Token Ring и Arcnet.

Сетевая структура Token Ring в свое время был разработана небезызвестной компанией IBM и базируется на логической схеме локальной сети «маркерное кольцо», что определяет доступ каждого терминала к передаваемой информации. В физическом отношении также применяется кольцевая структура, однако она имеет свои особенности. Для объединения компьютеров в единое целое имеется возможность использования либо витой пары, либо оптоволоконного кабеля, но скорость передачи данных составляет всего лишь 4-16 Мбит/с. Зато маркерная система по типу "звезды" позволяет передавать и получать данные только тем терминалам, которые имеют на это право (помечены маркером). Но основным недостатком такой организации является то, что в определенный момент такими правами может обладать только одна станция.

Не менее интересной выглядит и схема локальной сети Arcnet, созданная в 1977 году компанией Datapoint, которую многие специалисты называют самой недорогой, простой и очень гибкой структурой.

Для передачи информации и подключения компьютеров могут применяться коаксиальные или оптоволоконные кабели, но также не исключается возможность использования витой пары. Правда, в плане скорости приема/передачи эту структуру особо производительной назвать нельзя, поскольку в максимуме обмен пакетами может производиться на скорости подключения не более 2,5 Мбит/с. В качестве физического подключения используется схема «звезда», а в логическом - «маркерная шина». С правами на прием/передачу дело обстоит точно так же, как и в случае с Token Ring, за исключением того, что передаваемая от одной машины информация доступна абсолютно всем терминалам, входящим в сетевое окружение, а не какой-то одной машине.

Краткие сведения по настройке проводного и беспроводного подключения

Теперь кратко остановимся на некоторых важных моментах создания и применения любой из описанных схем локальной сети. Программы сторонних разработчиков при использовании любой из известных операционных систем для выполнения таких действий не нужны, поскольку основные инструменты предусмотрены в их стандартных наборах изначально. Однако в любом случае необходимо учитывать некоторые важные нюансы, касающиеся настройки IP-адресов, которые применяются для идентификации компьютеров в сетевых структурах. Разновидностей всего две - статические и динамические адреса. Первые, как уже понятно из названия, являются постоянными, а вторые могут изменяться при каждом новом соединении, но их значения находятся исключительно в одном диапазоне, устанавливаемом поставщиком услуг связи (провайдером).

В проводных корпоративных сетях для обеспечения высокой скорости обмена данными между сетевыми терминалами чаще всего используются статические адреса, назначаемые каждой машине, находящейся в сети, а при организации сети с беспроводным подключением обычно задействуются динамические адреса.

Для установки заданных параметров статического адреса в Windows-системах используются параметры протокола IPv4 (на постсоветском пространстве шестая версия еще особо широкого распространения не получила).

В свойствах протокола достаточно прописать IP-адрес для каждой машины, а параметры маски подсети и основного шлюза являются общими (если только не используется древовидная структура с множеством подсетей), что выглядит очень удобным с точки зрения быстрой настройки подключения. Несмотря на это, динамические адреса использовать тоже можно.

Они назначаются автоматически, для чего в настройках протокола TCP/IP имеется специальный пункт, в каждый определенный момент времени присваиваются сетевым машинам прямо с центрального сервера. Диапазон выделяемых адресов предоставляется провайдером. Но это абсолютно не значит, что адреса повторяются. Как известно, в мире не может быть двух одинаковых внешних IP, и данном случае речь идет либо о том, что они изменяются только внутри сети либо перебрасываются с одной машины на другую, когда какой-то внешний адрес оказывается свободным.

В случае с беспроводными сетями, когда для первичного подключения используются маршрутизаторы или точки доступа, раздающие (транслирующие или усиливающие) сигнал, настройка выглядит еще проще. Главное условие для такого типа подключения - установка автоматического получения внутреннего IP-адреса. Без этого соединение работать не будет. Единственный изменяемый параметр - адреса серверов DNS. Несмотря на начальную установку их автоматического получения, зачастую (особенно при снижении скорости подключения) рекомендуется выставлять такие параметры вручную, используя для этого, например, бесплатные комбинации, распространяемые компаниями Google, Yandex и т. д.

Наконец, даже при наличии только какого-то определенного набора внешних адресов, по которым в интернете идентифицируется любое компьютерное или мобильное устройство, изменять их тоже можно. Для этого предусмотрено множество специальных программ. Схема локальной сети может иметь любую из выше перечисленных вариаций. А суть применения таких инструментов, которые чаще всего представляют собой либо VPN-клиенты, либо удаленные прокси-серверы, состоит в том, чтобы изменить внешний IP, который, если кто не знает, имеет четкую географическую привязку, на незанятый адрес, по расположению находящийся в совершенно в другой локации (хоть на краю света). Применять такие утилиты можно непосредственно в браузерах (VPN-клиенты и расширения) либо производить изменение на уровне всей операционной системы (например, при помощи приложения SafeIP), когда некоторым приложениям, работающим в фоновом режиме, требуется получить доступ к заблокированным или недоступным для определенного региона интернет-ресурсам.

Эпилог

Если подводить итоги всему вышесказанному, можно сделать несколько основных выводов. Первое и самое главное касается того, что основные схемы подключения постоянно видоизменяются, и их в начальном варианте практически никогда не используют. Наиболее продвинутыми и самыми защищенными являются сложные древовидные структуры, в которых дополнительно может использоваться несколько подчиненных (зависимых) или независимых подсетей. Наконец, кто бы что ни говорил, на современном этапе развития компьютерных технологий проводные сети, даже несмотря на высокие финансовые затраты на их создание, все равно по уровню безопасности на голову выше, чем простейшие беспроводные. Но беспроводные сети имеют одно неоспоримое преимущество - позволяют объединять компьютеры и мобильные устройства, которые географически могут быть удалены друг от друга на очень большие расстояния.

Структурированная кабельная система – это набор коммутационных элементов (кабелей, разъемов, кроссовых панелей и шкафов), а также методика их совместного использования, которая позволяет создавать регулярные, легко расширяемые структуры связей в вычислительных сетях.

Структурированная кабельная система представляет своего рода «конструктор», с помощью которого проектировщик сети строит нужную ему конфигурацию из стандартных кабелей, соединенных стандартными разъемами и коммутируемых на стандартных кроссовых панелях. При необходимости конфигурацию связей можно легко изменить – добавить компьютер, сегмент, коммутатор, изъять ненужное оборудование, а также поменять соединения между компьютерами и коммутаторами.

При построении структурированной кабельной системы подразумевается, что каждое рабочее место на предприятии должно быть оснащено розетками для подключения телефона и компьютера, даже если в этот момент этого не нужно. То есть хорошая структурированная кабельная система строится избыточной. В будущем это может сэкономить средства, так как изменения в подключении новых устройств можно производить за счет перекоммутации уже проложенных кабелей.

Согласно заданию структурная схема расположения зданий, в каждом из которых находится своя подсеть, представлена на рис. 2.1.

Рисунок 2.1 – Структурная схема расположения зданий

Структурная схема подсетей каждого из зданий представлена на рис. 2.2 – 2.3. Так как 5-ти этажных зданий два, и они имеют одинаковое количество коммутационного оборудования и ПК, то их структурные схемы идентичны.

Рисунок 2.2 – Структурная схема подсети 5-ти этажного здания

Рисунок 2.3 – Структурная схема подсети 4-х этажного здания

Структурная схема соединения подсетей в одну сеть представлена на рис. 2.4.

Рисунок 2.4 – Общая структурная схема сети

В зданиях технология – FastEthernet, между зданиями –FDDI, выход в интернет с каждого здания по радиоканалу.

3 Выбор оборудования и кабеля

3.1 Выбор коммутаторов

Коммутатор (англ. switch) – устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного или нескольких сегментов сети. Коммутатор работает на канальном уровне модели OSI. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передаёт данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости обрабатывать данные, которые им не предназначались.

В данном курсовом проекте в каждой комнате зданий располагаются комнатные коммутаторы – коммутаторы рабочих групп, на каждом этаже – этажный коммутатор, объединяющий коммутаторы рабочих групп своего этажа, и корневой коммутатор, находящийся в серверной комнате на первом этаже, к которому подключаются коммутаторы всех этажей.

Коммутационное оборудование (коммутаторы, маршрутизаторы) было выбрано от фирмы производителя Cisco. По данным Dell"Oro Group компания Cisco занимает 60% мирового рынка сетевого оборудования, то есть, больше, чем все остальные конкуренты. У этого производителя имеется наиболее широкая линейка по всем сетевым решениям, широкий спектр технологий, протоколов, идеологий, как стандартных, так и своих собственных, позволяющих расширить возможности сети, широчайшие возможности по поиску неисправностей, встроенные практически во все устройства Cisco.

По оптимальному соотношению цены, производительности и функциональности были выбраны представленные ниже модели коммутаторов, относящиеся к серии Cisco 300, разработанной специально для малых предприятий. Линейка включает в себя целый ряд недорогих управляемых коммутаторов, предоставляющих мощную основу для поддержания корпоративной сети.

Особенности коммутаторов Cisco серии 300

      обеспечивают высокую доступность и производительность, необходимую для важнейших бизнес-приложений, одновременно сокращая возможное время простоя.

      позволяют контролировать сетевой трафик с применением таких современных функций, как анализ качества обслуживания, статическая маршрутизация третьего уровня, поддержка протокола IPv6.

      имеют понятные инструменты с веб-интерфейсом; возможность массового развертывания; сходные функции во всех моделях.

      позволяют оптимизировать расход энергии, при этом не оказывая влияния на производительность.

3.1.1 Коммутаторы рабочих групп

Согласно заданию на курсовую работу в 4-х этажном здании в трех комнатах на каждом этаже находится по 35 компьютеров, а в двух 5-ти этажных зданиях в одной комнате на каждом этаже – 31 компьютер, для соединения которых выбирается коммутатор SG300-52, имеющий 48 портов (рис. 3.1).

Рисунок 3.1 – Коммутатор рабочей группы SG300-52

Коммутатор SG300-52 (цена: 7522 грн.), фирмы производителя Cisco, оснащен 48 портами 10/100/1000 Мбит/с для сетей Ethernet с автоматическим согласованием скоростей для портов RJ45, что облегчает установку устройства.

Данный коммутатор обеспечивает хорошую производительность и позволяет повысить характеристики рабочей группы и пропускную способность сети и главного узла, гарантируя простоту и гибкость установки и настройки. Благодаря компактному размеру корпуса устройство идеально для размещения на ограниченном пространстве рабочего стола; также устройство может монтироваться в стойку. Динамические светоиндикаторы отображают состояние коммутатора в режиме реального времени и позволяют провести базовую диагностику работы устройства.

Основные технические характеристики коммутатора SG300-52представлены в таблице 3.1.

Таблица 3.1 – Технические характеристики коммутатора SG300-52

Управляемый коммутатор

Интерфейс

4 x SFP (mini-GBIC), 48 x Gigabit Ethernet (10/100/1000 Мбит/с)

SNMP 1, RMON 1, RMON 2, RMON 3, RMON 9, Telnet, SNMP 3, SNMP 2c, HTTP, HTTPS, TFTP, SSH,

Протокол маршрутизации

Static IPv4 routing, 32 routes

Таблица MAC адресов

16000 записей

128 MB (RAM), Flash память – 16 МВ

Алгоритм шифрования

Дополнительные возможности

До 32 статических маршрутов и до 32 IP-интерфейсов Трансляция DHCP на уровне 3 Трансляция User Datagram Protocol (UDP) Функция Smartports упрощает конфигурацию и управление безопасностью Встроенная утилита конфигурации, доступ через веб-интерфейс (HTTP/HTTPS) Двойной стек протоколов IPv6 и IPv4 Обновление программного обеспечения

Поддерживаемые стандарты

IEEE 802.3 10BASE-T Ethernet, IEEE 802.3u 100BASE-TX Fast Ethernet, IEEE 802.3ab 1000BASE-T Gigabit Ethernet, IEEE 802.3ad LACP, IEEE 802.3z Gigabit Ethernet, IEEE 802.3x Flow Control, IEEE 802.1D (STP, GARP, and GVRP),IEEE 802.1Q/p VLAN, IEEE 802.1w RSTP, IEEE 802.1s Multiple STP, IEEE 802.1X Port Access Authentication, IEEE 802.3af, IEEE

Внутренний источник питания. 120-130 В переменного тока, 50/60 Гц, 53 Вт.

Условия окр. среды

Рабочая температура: 0°C ~40°C

Размеры (ШхДхВ)

440*260*44 мм

Для двух 5-ти этажных зданий, у которых в оставшихся комнатах на каждом этаже находится соответственно по 18 и 25 компьютеров, выбираются для соединения 18 компьютеров – коммутатор на 24 порта – SF300-24P (цена: 4042 грн.), а для соединения 25 компьютеров – два коммутатора, каждый на 16 портов – SG300-20 (цена: 3023 грн.), которые представлены нарис. 3.2. Оставшиеся порты – на резерв.

Рисунок 3.2 – Коммутатор рабочей группы SF300-24P (а) и SG300-20 (б)

Модель SF300-24P представляет собой 24-портовый управляемый коммутатор для сетей. Эти коммутаторы предоставляют все необходимые возможности для работы критически важных бизнес-приложений, защиты конфиденциальной информации и оптимизации полосы пропускания для более эффективной передачи данных в сети. Поддержка plug-and-play и автоматического согласования скоростей позволяют коммутатору автоматически определять тип подключаемого устройства (например, сетевой адаптер Ethernet) и выбирать наиболее подходящую скорость. Для контроля подключения кабеля и стандартной диагностики используются светодиодные индикаторы LED. Коммутатор можно устанавливать на столе или монтировать в стойку.

Коммутатор SG300-20 предназначен для малых рабочих групп и оснащен 18 портами Ethernet 10/100/1000BASE-TX и 2 mini-GBIC. Функционал данных коммутаторов схож с функционалом коммутатора SF300-24P, так как они оба относятся к одной серии Cisco 300.

Основные технические характеристики коммутатора SF300-24P представлены в таблице 3.2, а коммутатора SG300-20 – табл. 3.3.

Таблица 3.2 – Технические характеристики коммутатора SF300-24P

Управляемый коммутатор

Интерфейсы

24 порта Ethernet 10Base-T/100Base-TX - разъем RJ-45, поддержка PoE ; консольный порт управления - 9 пин D-Sub (DB-9); 4 Ethernet порта 10Base-T/100Base-TX/1000Base-T - разъем RJ-45, 2 порт для SFP (mini-GBIC) модулей.

Протокол удаленного администрирования

Протокол маршрутизации

Static IPv4 routing

Таблица MAC адресов

16000 записей

128 MB (RAM), Flash память – 16 МВ

Алгоритм шифрования

Управление

SNMP версий 1, 2c и 3 Встроенный программный агент RMON для управления, наблюдения и анализа трафика Двойной стек протоколов IPv6 и IPv4 Обновление программного обеспечения Зеркалирование портов DHCP (опции 66, 67, 82, 129 и 150) Функция Smartports упрощает конфигурацию и управление безопасностью Облачные службы Другие функции управления: Traceroute; управление через единый IP-адрес; HTTP/HTTPS; SSH; RADIUS; DHCP-клиент; BOOTP; SNTP; обновление Xmodem; диагностика кабеля; ping; системный журнал; клиент Telnet (поддержка SSH)

Поддерживаемые стандарты

IEEE 802.3 10BASE-T Ethernet IEEE 802.3u 100BASE-TX Fast Ethernet IEEE 802.3ab 1000BASE-T Gigabit Ethernet IEEE 802.3ad LACP IEEE 802.3z Gigabit Ethernet IEEE 802.3x Flow Control IEEE 802.1D (STP, GARP, and GVRP) IEEE 802.1Q/p VLAN IEEE 802.1w RSTP IEEE 802.1s Multiple STP IEEE 802.1X Port Access Authentication IEEE 802.3af IEEE 802.3at

Производительность

Неблокируемая коммутация на скорости до 9.52 миллионов пакетов/с (размер пакетов 64 байта)Матрица коммутации: до 12.8 Гбит/сРазмер пакетного буфера: 4 Мб

Доступность

Автоматическое отключение питания на портах RJ-45 Gigabit Ethernet при отсутствии соединения, повторное включение при возобновлении активности

Таблица 3.3 – Технические характеристики коммутатора SF300-20

Управляемый коммутатор

Интерфейсы

18 портов Ethernet 10Base-T/100Base-TX - разъем RJ-45, 2 порта для SFP (mini-GBIC) модулей.

Протокол удаленного администрирования

SNMP 1, RMON 1, RMON 2, RMON 3, RMON 9, Telnet, SNMP 3, SNMP 2c, HTTP, HTTPS, TFTP, SSH,

Протокол маршрутизации

Static IPv4 routing

Таблица MAC адресов

16000 записей

128 MB (RAM), Flash память – 16 МВ, объем буфера - 1 МВ

Алгоритм шифрования

802.1x RADIUS, HTTPS, MD5, SSH, SSH-2, SSL/TLS

Протоколы управления

IGMPv1/2/3, SNMPv1/2c/3

Поддерживаемые стандарты

IEEE 802.1ab, IEEE 802.1D, IEEE 802.1p, IEEE 802.1Q, IEEE 802.1s, IEEE 802.1w, IEEE 802.1x, IEEE 802.3, IEEE 802.3ab, IEEE 802.3ad, IEEE 802.3at, IEEE 802.3u, IEEE 802.3x, IEEE 802.3z

Поддерживаемые сетевые протоколы

IPv4/IPv6, HTTP, SNTP, TFTP, DNS, BOOTP, Bonjour

Функционал

Поддержка управления потоками

Зеркальное отражение порта

Объединение каналов

Поддержка Jumbo Frames

Контроль "широковещательного шторма"

Ограничение скорости

DHCP клиент

Протокол Spanning tree и др.

Внутренний источник питания. 120-130 В переменного тока, 50/60 Гц, 53 Вт.

Условия окр. среды

Рабочая температура: 0°C ~40°C

3.1.2 Коммутаторы этажей

Для соединения коммутаторов рабочих групп используются этажные коммутаторы, в качестве которых выбран коммутатор SRW208G-K9 (цена: 1483 грн.), имеющий 8 портов (рис. 3.3).

Рисунок 3.3 – Этажный коммутатор SRW208G-K9

Коммутатор SRW208G-K9 оборудован 8 RJ45 портами для Fast Ethernet, 1 портом Gigabit Ethernet и двумя портами SFP (mini-GBIC), которые работают в режиме с автоматической настройкой и определением скорости.

Cisco Catalyst 2960 – серия новых интеллектуальных коммутаторов Ethernet с фиксированной конфигурацией. Они обеспечивают потребность в передаче данных со скоростью 100 Мбит/сек и 1 Гбит/сек, позволяют использовать LAN сервисы, например, для сетей передачи данных, построенных в филиалах корпораций. Семейство Catalyst 2960 позволяет обеспечить высокую безопасность данных за счет встроенного NAC, поддержки QoS и высокого уровня устойчивости системы.

Основные особенности:

    Высокий уровень безопасности, усовершенствованные списки контроля доступа (ACL);

    Организация контроля сети и оптимизация ширины канала с использованием QoS, дифференцированного ограничения скорости и ACL.

    Для обеспечения безопасности сети коммутаторы используют широкий спектр методов аутентификации пользователя, технологии шифрации данных и организации разграничения доступа к ресурсам на основании идентификатора пользователя, порта и MAC адресов.

    Коммутаторы просты в управлении и конфигурировании

    Доступна функция aвтоконфигурации посредством Smart портов для некоторых специализированных приложений.

Основные технические характеристики данного коммутатора, фирмы производителя Cisco, совпадают с характеристиками, представленными в табл. 3.2. для коммутатора той же фирмы.

3.1.3 Корневые коммутаторы

Для соединения этажных коммутаторов используются корневые коммутаторы, в качестве которых в каждом здании был выбран коммутатор – SG300-20, имеющий 16 портов. Данный коммутатор также был выбран и как коммутатор рабочей группы, его описание представлено в п. 3.1.1.

3.2 Выбор маршрутизаторов

Маршрутизатор (роутер) – устройство, имеющиее минимум два сетевых интерфейса и пересылающее пакеты данных между различными сегментами сети, принимающий решения о пересылке на основании информации о топологии сети и определённых правил, заданных администратором.

Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий или широковещательные домены, а также благодаря фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана.

Для соединения зданий в одну сеть используется маршрутизатор, в качестве которого был выбран Cisco 7507 серии 7500 (цена: 121360 грн.), имеющий возможность подсоединения модуля FDDI (рис. 3.4).

Рисунок 3.4 – Маршрутизатор Cisco 7507

Данный маршрутизатор был выбран исходя из возможности подсоединения модуля FDDI, оптимальной цены из всей линейки данной серии и того, что модульные маршрутизаторы Cisco серии 7500 являются самыми мощными маршрутизаторами фирмы Cisco. Они удовлетворяют самым высоким требованиям, предъявляемым к современным сетям передачи данных. Гибкая модульная архитектура маршрутизаторов этой серии позволяют использовать их в крупных узлах сети, подбирая оптимальные решения.

Серия Cisco 7500 состоит из трех моделей. Cisco 7505 имеет один процессор маршрутизации и коммутации (RSP1= Route/Switch Processor), один блок питания и четыре слота для интерфейсных процессоров (всего 5 слотов). Cisco 7507 и Cisco 7513 с семью и тринадцатью слотами соответственно, обеспечивают большую пропускную способность и могут быть укомплектованы двумя RSP2 или PSP4 и резервным источником питания. В сочетании с новой, дублированной шиной CyBus, маршрутизаторы Cisco 7507/7513 обладают непревзойденными возможностями в части производительности и надежности. Это достигается благодаря новой, распределенной мультипроцессорной архитектуре, включающей в себя три элемента:

    Интегрированный процессор маршрутизации и коммутации (RSP);

    Новый многоцелевой (Versatile) интерфейсный процессор (VIP);

    Новая высокоскоростная шина Cisco CyBus.

В конфигурации с двумя RSP (интегрированный процессор маршрутизации и коммутации), Cisco 7500 распределяет функции между основным и вспомогательным RSP, увеличивая производительность системы, а в случае отказа одного из процессоров, другой берет на себя все функции.

Маршрутизатор Cisco 7507 является модульным маршрутизатором, предназначен для построения магистралей крупных сетей и работает практически со всеми технологиями локальных и глобальных сетей и со всеми основными сетевыми протоколами.

Серия Cisco 7507 поддерживает очень широкий диапазон соединений, среди которых: Ethernet, Token Ring, FDDI, Serial, HSSI, ATM, Channelized T1, Fractionalized E1 (G.703/G.704), ISDN PRI, Channel Interface for IBM mainframes.

Сетевые интерфейсы располагаются на модульных процессорах, которые обеспечивают прямое соединение между высокоскоростной магистралью Cisco Extended Bus (CxBus) и внешней сетью. Семь разъемов доступны под интерфейсные процессоры в модели Cisco 7507. Возможность "горячей" замены позволяет добавлять, заменять или удалять процессорные модули CxBus без прерывания работы сети. Для хранения информации используется стандартная Flash-память. Все модели поставляются с комплектом для монтажа в стандартную 19" стойку.

Существует такие интерфейсные модули связи:

    Ethernet Intelligent Link Interface - 2/4 порта Ethernet с возможностью высокоскоростной фильтрации (29000 п/с), поддержкой алгоритмов Transparent Bridging и Spanning Tree, конфигурирование с помощью системы Optivity;

    Token Ring Intelligent Link Interface - 2/4 порта Token Ring 4/16 Мб/с;

    FDDI Intelligent Link Interface - 2 порта, поддерживающие два соединения SAS или одно соединение DAS, фильтрация со скоростью до 500000 п/с;

    ATM Intelligent Link Interface.

3.3 Выбор кабеля

Кабель – конструкция из одного или нескольких изолированных друг от друга проводников (жил), или оптических волокон, заключённых в оболочку. Кроме собственно жил и изоляции может содержать экран, силовые элементы и другие конструктивные элементы. Основное назначение – передача высокочастотного сигнала в различных областях техники: для систем кабельного телевидения, для систем связи, авиационной, космической техники, компьютерных сетей, бытовой техники и т. д. При использовании коммутаторов протокол Fast Ethernet может работать в дуплексном режиме, в котором нет ограничений на общую длину сети, а остаются ограничения на длину физических сегментов, соединяющих соседние устройства (коммутатор-адартер и коммутатор-коммутатор).

По заданию внутри зданий использована технология Fast Ethernet со спецификацией 100Base-TX, в качестве линии связи – неэкранированная витая пара (UTP) 5 категории.

Между зданиями – технология FDDI, в качестве линии связи используется

кабель оптический для наружной прокладки.

Кабель UTP для внутренней прокладки, 2 пары, категория 5, используется в абонентской разводке при предоставлении доступа к услугам сети передачи данных. Для прокладки был выбран кабель фирмы производителя Neomax – NM10000 (рис. 3.4) из-за высокой прочности и долгого срока службы, его характеристики представлены в таблице 3.4.

Рисунок 3.4 – UTP, 2 пары, кат. 5е: 1 - Внешняя оболочка; 2 - Витая пара

Таблица 3.4 – Основные характеристики кабеля UTP, кат.5

Проводник

проволока из электролитической меди

Изоляция жил

полиэтилен высокой плотности

Диаметр проводника (жилы)

0,51 мм (24 AWG)

Диаметр проводника с оболочкой

0,9 ± 0,02 мм

Внешний диаметр (размер) кабеля

Толщина внешней оболочки

Цвет витых пар:

синий-белый/синий, оранжевый-белый/оранжевый

Радиус изгиба кабеля:

4 внешних диаметра кабеля

Рабочая температура:

20°C – +75°C

3.4 Выбор беспроводного оборудования

Для доступа в интернет каждого из зданий используется радиоканал. В качестве антенны на БПС выбрана направленная антенна Maximus Sector 515812-В (рис. 3.5, а), а на зданиях в качестве точки доступа внешнего исполнения выбрана – WiFi-точка доступа TP-Link TL-WA7510N(рис. 3.5, б). Данное оборудование было выбрано по оптимальному соотношению цена и функциональность.

В качестве диапазона работы был выбран частотный диапазон 5ГГц, так как диапазон 2,4 ГГц является более насыщенным (загруженным) по причине повсеместного распространения беспроводных сетей. На этой частоте работают: старый стандарт 802.11b, недавно ушедший 802.11g и 802.11n. Вне зависимости от того, используете ли вы 802.11b, 802.11g или 802.11n – вы передаете данные по одному и тому же каналу. Еще одним недостатком 2,4 ГГц является наличие «побочных шумов» в беспроводном канале, которые ухудшают проходимость канала, поскольку он разделяет спектр со множеством других нелицензированных устройств – микроволновых печей, мини-мониторов, беспроводных телефонов и др. Также количество используемых радиоканалов в диапазоне 2,4 ГГц ограничено. Диапазон 5 ГГц является менее насыщенным и имеет больше используемых каналов за счет немного более короткой зоны действия.

Рисунок 3.5 – Беспроводное оборудование: а) антенна; б) точка доступа

Модель TL-WA7510N (цена: 529 грн.) представляет собой наружное беспроводное устройство дальнего действия, работает в частотном диапазоне 5 ГГц и осуществляет передачу данных по беспроводному соединению со скоростью до 150 Мбит/с. Устройство имеет антенну с двойной поляризацией и коэффициентом усиления 15 дБи, которая является ключевым элементом для построения соединений Wi-Fi на большие дистанции. Она предназначена для передачи сигнала с углами излучения 60 градусов по горизонтали и 14 градусов по вертикали, увеличивая силу сигнала за счет концентрации излучения в заданном направлении.

Благодаря всепогодному корпусу и температурной устойчивости внутреннего аппаратного обеспечения, точка доступа может функционировать в различных природных условиях, в солнечную или дождливую погоду, при сильном ветре или в снегопад. Встроенная защита от разрядов статического электричества до 15 КВ и защита от молний до 4000 В может предотвратить скачки напряжения в грозу, что гарантирует стабильность работы устройства. Кроме этого устройство имеет терминал заземления для более профессионального уровня защиты для некоторых опытных пользователей.

Устройство может работать не только в режиме точка доступа. Модель TL-WA7510N также поддерживает рабочие режимы маршрутизатор-клиент точки доступа, маршрутизатор-точка доступа, мост, ретранслятор и клиент, что позволяет значительным образом расширить сферу применения устройства, предоставить пользователям как можно более многофункциональный продукт.

Благодаря питанию от инжектора PoE, наружная точка доступа может использовать кабель Ethernet для одновременной передачи данных и электричества где бы не находилась точка доступа на расстояние до 60 метров. Наличие этой функции увеличивает возможные варианты размещения точки доступа, позволяя расположить точку доступа в наиболее подходящем месте для получения лучшего качества сигнала.

Основные характеристики TL-WA7510N представлены в табл. 3.5.

Таблица 3.5 – Характеристики TL-WA7510N

Интерфейс

1 порт 10/100 Мбит/с с автоопределением RJ45(Авто-MDI/MDIX, PoE) 1 внешний разъем Reverse SMA 1 терминал заземления

Стандарты беспроводной передачи данных

IEEE 802.11a , IEEE 802.11n

Направленная антенна с двойной поляризацией, коэффициент усиления 15 дБи

Размеры (ШхДхВ)

250 x 85 x 60,5 мм (9,8 x 3,3 x 2,4 дюйма)

Ширина луча антенны

По горизонтали: 60° По вертикали: 14°

Защита от статического электричества 15 кВ Защита от ударов молнии до 4000 В Встроенный терминал заземления

Продолжение табл. 3.5

Частотный диапазон

5,180-5,240 ГГц 5,745-5,825 ГГц Примечание: частота зависит от региона или страны.

Скороcть передачи сигналов

11a: до 54 Мбит/с (динамическая) 11n: до 150 Мбит/с (динамическая)

Чувствительность (прием)

802.11a 54 Мбит/с: -77 дБм 48 Мбит/с: -79 дБм 36 Мбит/с: -83 дБм 24 Мбит/с: -86 дБм 18 Мбит/с:-91 дБм 12 Мбит/с:-92 дБм 9 Мбит/с:-93 дБм 6 Мбит/с:-94 дБм

802.11n 150 Мбит/с: -73 дБм 121,5 Мбит/с: -76 дБм 108 Мбит/с: -77 дБм 81 Мбит/с: -81 дБм 54 Мбит/с:-84 дБм 40,5 Мбит/с:-88 дБм 27 Мбит/с:-91 дБм 13,5 Мбит/с:-93 дБм

Режимы работы

Маршрутизатор-точка доступа Маршрутизатор-клиент точки доступа (клиент WISP) Точка доступа / клиент / мост / ретранслятор

Защита беспроводной сети

Включение/выключение SSID; Фильтр по MAC-адресу 64/128/152-битное шифрование WEP WPA/WPA2, WPA-PSK/WPA2-PSK(AES/TKIP)

Дополнительные возможности

Поддержка PoE на расстояние до 60 метров 4-уровневый светодиодный индикатор

Секторная антенна Maximus Sector 515812-В (цена: 991 грн.) вертикальной поляризации изготовлена в антенном кожухе из УФ-стойкого пластика с литым алюминиевым кронштейном. Высококачественные материалы позволяют применять антенну в тяжёлых погодных условиях. Её можно использовать для базовых станций малых, средних и больших размеров. Антенна выдаёт сильный и стабильный сигнал на средних и больших расстояниях. Основные характеристики представлены в табл. 3.6.

Таблица 3.6 – Технические характеристики Maximus Sector 515812-В

При Президенте Российской Федерации»

Брянский филиал

Кафедра математики и информационных технологий

Направление подготовки 230700.62 - Прикладная информатика

КУРСОВАЯ РАБОТА

Проектирование локальной вычислительной сети образовательного учреждения

Вариант 5

по курсу «Вычислительные системы, сети и телекоммуникации»

Кирюшин Р.О.

группа ПОО-12

Научный руководитель

Квитко Б.И.,

канд. техн. наук, проф. кафедры

Брянск 2014


ВВЕДЕНИЕ 3

1. ОПИСАНИЕ ПРЕДЛАГАЕМОГО ПРОЕКТНОГО РЕШЕНИЯ 9

1.1 ОПИСАНИЕ СХЕМЫ ОРГАНИЗАЦТ СВЯЗИ ЛВС 9

1.2 РАЗМЕЩЕНИЕ АКТИВНОГО ОБОРУДОВАНИЕ ЛВС 11

2. РАСЧЕТ КОМПОНЕНТОВ СКС 23

2.1 КАБЕЛИ И КАБЕЛЬНАЯ СИСТЕМА 30

2.2 КАБЕЛЬНЫЕ КАНАЛЫ И МОНТАЖНОЕ ОБОРУДОВАНИЕ 36

3.ИТОГОВАЯ КАЛЬКУЛЯЦИЯ 39

ЗАКЛЮЧЕНИЕ 49

СПИСОК ИСТОЧНИКОВ И ЛИТЕРАТУРЫ 40

Введение

Локальные вычислительные сети - это сети, предназначенные для обработки, хранения и передачи данных, и представляет из себя кабельную систему объекта (здания) или группы объектов (зданий). На сегодняшний день трудно представить работу современного офиса без локальной вычислительной сети, без информационно-вычислительной сети сейчас не обходиться не одно предприятие.



Причиной создания локальной сети является:

· Контроль за доступом к важным документам;

· Совместная обработка информации;

· Совместное использование файлов.

Актуальность выполнения данной работы заключается в том, что обеспечение фирмы компьютерами с наличием локальной вычислительной сети и доступом в интернет дает сотрудникам:

· Производить быструю обработку бумажной информации, её хранение;

· Вести электронную базу своих клиентов;

· Иметь доступ к последним новейшим статьям, законам и т.д. находящимся в сети Интернет;

· Пользоваться локальной и защищенной электронной почтой.

Объект исследования – компьютерные сети.

Предмет исследования – локальная вычислительная сеть.

Цель выполнения курсовой работы является приобретение практических навыков анализа технического задания и проектирование ЛВС стандарта IEEE 802.3 (Ethernet).

Чаще всего локальные сети построены на технологиях Ethernet или Wi-Fi. Для построения простой локальной сети используются маршрутизаторы, коммутаторы, точки беспроводного доступа, беспроводные маршрутизаторы, модемы и сетевые адаптеры. Реже используются преобразователи (конвертеры) среды, усилители сигнала (повторители разного рода) и специальные антенны.

Для проведения работы нам нужно будет хорошо ознакомиться с ЛВС, узнать все ее нюансы. Для этой задачи нам потребуется анализ литературы по этой теме.

План расположения корпусов зданий изображен на рисунке 1.

Помещения, в которых будут расположены рабочие места, объединенные создаваемой ЛВС, представлены в таблице 1.


Здание Этаж Номер комнаты Число компьютеров
Итого: 40 компьютеров + сервер
Итого: 51 компьютер + сервер в 216 кабинете
Итого: 91 компьютер + 2 сервера

Планы рассматриваемых этажей помещений приведены на рис. 2, 3, 4.




Рисунок 4. План третьего этажа здания 2

Помещения, представленные на строительных планах, имеют следующий размеры: один «оконный шаг» (ширина однооконной комнаты) – В 0 =4м; глубина всех комнат (от входа к окну) – L 0 =6м; ширина многооконной комнаты – В j =В 0 ·m, где m – число окон, j – номер комнаты; ширина коридора – В к =2м; высота всех помещений – Н=3м.

Рабочие станции и серверное оборудование должны подключаться к ЛВС по технологии IEEE 802.3 1000BASE-T. Соседние здания должны быть соединены по технологии IEEE 802.3ab (гигабитные сети на основе оптоволоконного кабеля), способ прокладки ВОК - подземный. Рекомендуется использовать активное оборудование HP. Максимальное время электропитания от накопителей ИБП – 20 мин. Проектом должно быть предусмотрено выделение специальных помещений для организации рабочего места администратора сети и размещения активного оборудования ЛВС. Назначением проектируемой ЛВС является обеспечение связи между указанными этажами двух зданий, в которых располагается образовательное учреждение, а также информационный обмен между классами в пределах этажа. Курсовая работа выполняется по унифицированному техническому заданию (ТЗ) на проектирование локальной вычислительной сети образовательного учреждения.

1. Описание предлагаемого проектного решения

Описание схемы организации связи ЛВС

Топология сети - звезда. Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая (по сравнению с достигаемой в других топологиях). Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает. Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. В сети, построенной по топологии типа “звезда”, каждая рабочая станция подсоединяется кабелем (витой парой) к концентратору. Концентратор обеспечивает параллельное соединение ПК и, таким образом, все компьютеры, подключенные к сети, могут общаться друг с другом.

Данные от передающей станции сети передаются через концентратор по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается.

Однако данная топология имеет и свои недостатки, например, производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

В соответствии с техническим заданием при проектировании будут использоваться следующие технологии:

· Gigabit Ethernet (IEEE 802.3ab 1000Base T). Данную технологию будем использовать для соединения абонентов ЛВС и для соединения сервера с ЛВС вместо технологии Gigabit Ethernet IEEE 802.3 1000Base X. Спецификация IEEE 802.3ab была предложена в 1999 году для того, чтобы обеспечить передачу данных со скоростью 1000 Мбит/сек по кабелю UTP 5e категории и при этом увеличить максимальную длину сегмента сети до 100 м.

· IEEE 802.3ab 1000Base-SX. Данную технологию будем использовать для соединения зданий и коммутаторов внутри одного здания (расположенных далеко друг от друга), так как она позволяет соединять сегменты сети, находящиеся на расстоянии до 550 м, скорость передачи 1000 Мбит/сек, для соединения используется оптоволоконный кабель (многомодовое волокно) 50 или 62,5 мкм.

Для организации горизонтальной подсистемы (подсистемы этого типа соответствуют этажам здания) лучше всего использовать экранированную витую пару 5e категории. Хотя она не так удобна для прокладки в помещениях как неэкранированная витая пара (и значительно дороже), сеть, построенная на экранированных компонентах, работает значительно надежнее и удовлетворяет требованиям по излучению и помехозащищенности, установленным европейскими нормами EN 55022 (класс В) и EN 50082-1. Она позволяет передавать данные со скоростью 1000 Мбит/сек.

Для организации вертикальной кабельной системы, которая соединяет этажи здания, будет использоваться оптоволоконный кабель, предназначенный для прокладки внутри помещений. Преимущество ВОК: передает данные на большие расстояния, не чувствителен к электромагнитным и радиочастотным помехам. Основным недостатком ВОК является его стоимость и стоимость прокладки.

Функцией подсистемы кампуса будет являться объединение в сеть подсистем двух зданий. Для вертикальной подсистемы и подсистемы кампуса будет использоваться технология 1000 Base-SX.