Как установить адобе иллюстратор. Настройка рабочей среды

30.10.2019 Социальные сети

Еще вчера казалось, что диск размером в один гигабайт - это так много, что даже неясно, чем его заполнить, и уж конечно, каждый про себя думал: был бы у меня гигабайт памяти, я бы перестал «жадничать» и сжимать свою информацию какими-то архиваторами. Но, видимо, мир так устроен, что «свято место пусто не бывает», и как только у нас появляется лишний гигабайт - тут же находится чем его заполнить. Да и сами программы, как известно, становятся все более объемными. Так что, видимо, с терабайтами и экзабайтами будет то же самое.

Поэтому, как бы ни росли объемы памяти диска, упаковывать информацию, похоже, не перестанут. Наоборот, по мере того как «места в компьютере» становится все больше, число новых архиваторов увеличивается, при этом их разработчики не просто соревнуются в удобстве интерфейсов, а в первую очередь стремятся упаковать информацию все плотнее и плотнее.

Однако очевидно, что процесс этот не бесконечен. Где лежит этот предел, какие архиваторы доступны сегодня, по каким параметрам они конкурируют между собой, где найти свежий архиватор - вот далеко не полный перечень вопросов, которые освещаются в данной статье. Помимо рассмотрения теоретических вопросов мы сделали подборку архиваторов, которые можно загрузить с нашего диска, чтобы самим убедиться в эффективности той или иной программы и выбрать из них оптимальную - в зависимости от специфики решаемых вами задач.

Совсем немного теории для непрофессионалов

Позволю себе начать эту весьма серьезную тему со старой шутки. Беседуют два пенсионера:

Вы не могли бы сказать мне номер вашего телефона? - говорит один.

Вы знаете, - признается второй, - я, к сожалению, точно его не помню.

Какая жалость, - сокрушается первый, - ну скажите хотя бы приблизительно…

Действительно, ответ поражает своей нелепостью. Совершенно очевидно, что в семизначном наборе цифр достаточно ошибиться в одном символе, чтобы остальная информация стала абсолютно бесполезной. Однако представим себе, что тот же самый телефон написан словами русского языка и, скажем, при передаче этого текста часть букв потеряна - что произойдет в подобном случае? Для наглядности рассмотрим себе конкретный пример: телефонный номер 233 34 44.

Соответственно запись «Двсти трцать три трицть четре сорк чтре», в которой имеется не один, а несколько пропущенных символов, по-прежнему легко читается. Это связано с тем, что наш язык имеет определенную избыточность, которая, с одной стороны, увеличивает длину записи, а с другой - повышает надежность ее передачи. Объясняется это тем, что вероятность появления каждого последующего символа в цифровой записи телефона одинакова, в то время как в тексте, записанном словами русского языка, это не так. Очевидно, например, что твердый знак в русском языке появляется значительно реже, чем, например, буква «а». Более того, некоторые сочетания букв более вероятны, чем другие, а такие, как два твердых знака подряд, невозможны в принципе, и так далее. Зная, какова вероятность появления какой-либо буквы в тексте, и сравнив ее с максимальной, можно установить, насколько экономичен данный способ кодирования (в нашем случае - русский язык).

Еще одно очевидное замечание можно сделать, вернувшись к примеру с телефоном. Для того чтобы запомнить номер, мы часто ищем закономерности в наборе цифр, что, в принципе, также является попыткой сжатия данных. Вполне логично запомнить вышеупомянутый телефон как «два, три тройки, три четверки».

Избыточность естественных языков

Теория информации гласит, что информации в сообщении тем больше, чем больше его энтропия. Для любой системы кодирования можно оценить ее максимальную информационную емкость (Hmax) и действительную энтропию (Н). Тогда случай Н

R = (Hmax - H)/ Hmax

Измерение избыточности естественных языков (тех, на которых мы говорим) дает потрясающие результаты: оказывается, избыточность этих языков составляет около 80%, а это свидетельствует о том, что практически 80% передаваемой с помощью языка информации является избыточной, то есть лишней. Любопытен и тот факт, что показатели избыточности разных языков очень близки. Данная цифра примерно определяет теоретические пределы сжатия текстовых файлов.

Сжатие с потерями

Говоря о кодах сжатия, различают понятия «сжатие без потерь» и «сжатие с потерями». Очевидно, что когда мы имеем дело с информацией типа «номер телефона», то сжатие такой записи за счет потери части символов не ведет ни к чему хорошему. Тем не менее можно представить целый ряд ситуаций, когда потеря части информации не приводит к потери полезности оставшейся. Сжатие с потерями применяется в основном для графики (JPEG), звука (MP3), видео (MPEG), то есть там, где в силу огромных размеров файлов степень сжатия очень важна, и можно пожертвовать деталями, не существенными для восприятия этой информации человеком. Особые возможности для сжатия информации имеются при компрессии видео. В ряде случаев большая часть изображения передается из кадра в кадр без изменений, что позволяет строить алгоритмы сжатия на основе выборочного отслеживания только части «картинки». В частном случае изображение говорящего человека, не меняющего своего положения, может обновляться только в области лица или даже только рта - то есть в той части, где происходят наиболее быстрые изменения от кадра к кадру.

В целом ряде случаев сжатие графики с потерями, обеспечивая очень высокие степени компрессии, практически незаметно для человека. Так, из трех фотографий, показанных ниже, первая представлена в TIFF-формате (формат без потерь), вторая сохранена в формате JPEG c минимальным параметром сжатия, а третья с максимальным. При этом можно видеть, что последнее изображение занимает почти на два порядка меньший объем, чем первая.Однако методы сжатия с потерями обладают и рядом недостатков.

Первый заключается в том, что компрессия с потерями применима не для всех случаев анализа графической информации. Например, если в результате сжатия изображения на лице изменится форма родинки (но лицо при этом останется полностью узнаваемо), то эта фотография окажется вполне приемлемой, чтобы послать ее по почте знакомым, однако если пересылается фотоснимок легких на медэкспертизу для анализа формы затемнения - это уже совсем другое дело. Кроме того, в случае машинных методов анализа графической информации результаты кодирования с потерей (незаметные для глаз) могут быть «заметны» для машинного анализатора.

Вторая причина заключается в том, что повторная компрессия и декомпрессия с потерями приводят к эффекту накопления погрешностей. Если говорить о степени применимости формата JPEG, то, очевидно, он полезен там, где важен большой коэффициент сжатия при сохранении исходной цветовой глубины. Именно это свойство обусловило широкое применение данного формата в представлении графической информации в Интернете, где скорость отображения файла (его размер) имеет первостепенное значение. Отрицательное свойство формата JPEG - ухудшение качества изображения, что делает практически невозможным его применение в полиграфии, где этот параметр является определяющим.

Теперь перейдем к разговору о сжатии информации без потерь и рассмотрим, какие алгоритмы и программы позволяют осуществлять эту операцию.

Сжатие без потерь

Сжатие, или кодирование, без потерь может применяться для сжатия любой информации, поскольку обеспечивает абсолютно точное восстановление данных после кодирования и декодирования. Сжатие без потерь основано на простом принципе преобразования данных из одной группы символов в другую, более компактную.

Наиболее известны два алгоритма сжатия без потерь: это кодирование Хаффмена (Huffman) и LZW-кодирование (по начальным буквам имен создателей Lempel, Ziv, Welch), которые представляют основные подходы при сжатии информации. Кодирование Хаффмена появилось в начале 50-х; принцип его заключается в уменьшении количества битов, используемых для представления часто встречающихся символов и соответственно в увеличении количества битов, используемых для редко встречающихся символов. Метод LZW кодирует строки символов, анализируя входной поток для построения расширенного алфавита, основанного на строках, которые он обрабатывает. Оба подхода обеспечивают уменьшение избыточной информации во входных данных.

Кодирование Хаффмена

Кодирование Хаффмена - один из наиболее известных методов сжатия данных, который основан на предпосылке, что в избыточной информации некоторые символы используются чаще, чем другие. Как уже упоминалось выше, в русском языке некоторые буквы встречаются с большей вероятностью, чем другие, однако в ASCII-кодах мы используем для представления символов одинаковое количество битов. Логично предположить, что если мы будем использовать меньшее количество битов для часто встречающихся символов и большее для редко встречающихся, то мы сможем сократить избыточность сообщения. Кодирование Хаффмена как раз и основано на связи длины кода символа с вероятностью его появления в тексте.

Динамическое кодирование

В том случае, когда вероятности символов входных данных неизвестны, используется динамическое кодирование, при котором данные о вероятности появления тех или иных символов уточняются «на лету» во время чтения входных данных.

LZW-сжатие

Алгоритм LZW , предложенный сравнительно недавно (в 1984 году), запатентован и принадлежит фирме Sperry.

LZW-алгоритм основан на идее расширения алфавита, что позволяет использовать дополнительные символы для представления строк обычных символов. Используя, например, вместо 8-битовых ASCII-кодов 9-битовые, вы получаете дополнительные 256 символов. Работа компрессора сводится к построению таблицы, состоящей из строк и соответствующих им кодов. Алгоритм сжатия сводится к следующему: программа прочитывает очередной символ и добавляет его к строке. Если строка уже находится в таблице, чтение продолжается, если нет, данная строка добавляется к таблице строк. Чем больше будет повторяющихся строк, тем сильнее будут сжаты данные. Возвращаясь к примеру с телефоном, можно, проведя весьма упрощенную аналогию, сказать, что, сжимая запись 233 34 44 по LZW-методу, мы придем к введению новых строк - 333 и 444 и, выражая их дополнительными символами, сможем уменьшить длину записи.

Какой же выбрать архиватор?

Наверное, читателю будет интересно узнать, какой же архиватор лучше. Ответ на этот вопрос далеко не однозначен.

Если посмотреть на таблицу, в которой «соревнуются» архиваторы (а сделать это можно как на соответствующем сайте в Интернете , так и на нашем CD-ROM), то можно увидеть, что количество программ, принимающих участие в «соревнованиях», превышает сотню. Как же выбрать из этого многообразия необходимый архиватор?

Вполне возможно, что для многих пользователей не последним является вопрос способа распространения программы. Большинство архиваторов распространяются как ShareWare, и некоторые программы ограничивают количество функций для незарегистрированных версий. Есть программы, которые распространяются как FreeWare.

Если вас не волнуют меркантильные соображения, то прежде всего необходимо уяснить, что имеется целый ряд архиваторов, которые оптимизированы на решение конкретных задач. В связи с этим существуют различные виды специализированных тестов, например на сжатие только текстовых файлов или только графических. Так, в частности, Wave Zip в первую очередь умеет сжимать WAV-файлы, а мультимедийный архиватор ERI лучше всех упаковывает TIFF-файлы. Поэтому если вас интересует сжатие какого-то определенного типа файлов, то можно подыскать программу, которая изначально предназначена специально для этого.

Существует тип архиваторов (так называемые Exepackers), которые служат для сжатия исполняемых модулей COM, EXE или DLL. Файл упаковывается таким образом, что при запуске он сам себя распаковывает в памяти «на лету» и далее работает в обычном режиме.

Одними из лучших в данной категории можно назвать программы ASPACK и Petite. Более подробную информацию о программах данного класса, а также соответствующие рейтинги можно найти по адресу .

Если же вам нужен архиватор, так сказать, «на все случаи жизни», то оценить, насколько хороша конкретная программа, можно обратившись к тесту, в котором «соревнуются» программы, обрабатывающие различные типы файлов. Просмотреть список архиваторов, участвующих в данном тесте, можно на нашем CD-ROM.

Многих пользователей сегодня волнует процесс сжатия информации для экономии свободного пространства на жестком диске. Этот один из наиболее эффективных способов использования полезного места на накопителе.


Современные пользователи довольно часто сталкиваются с проблемой нехватки свободного пространства на жестком диске. Многие, в попытке освободить хоть немного свободного пространства, пытаются удалить с жесткого диска всю ненужную информацию. Более продвинутые пользователи используют для уменьшения объема данных особые алгоритмы сжатия. Несмотря на эффективность этого процесса, многие пользователи никогда о нем даже не слышали. Давайте же попробуем разобраться, что подразумевается под сжатием данных, какие алгоритмы для этого могут использоваться и какие преимущества дает каждый из них.

Зачем сжимать информацию?

На сегодняшний день сжатие информации является достаточно важной процедурой, которая необходима каждому пользователю ПК. Сегодня любой пользователь может позволить себе приобрести современный накопитель данных, в котором предусмотрена возможность использования большого объема памяти. Подобные устройства, как правило, оснащаются высокоскоростными каналами для транслирования информации. Однако, стоит отметить, что с каждым годом объем необходимой пользователям информации становится все больше и больше. Всего десять лет назад объем стандартного видеофильма не превышал 700 Мегабайт. Сегодня объем фильмов в HD-качестве может достигать нескольких десятков гигабайт.

Когда необходимо сжатие данных?

Не стоит многого ждать от процесса сжатия информации. Но все-таки встречаются ситуации, в которых сжатие информации бывает просто необходимым и крайне полезным. Рассмотрим некоторые из таких случаев.

1. Передача по электронной почте.

Очень часто бывают ситуации, когда нужно переслать большой объем данных по электронной почте. Благодаря сжатию можно существенно уменьшить размер передаваемых файлов. Особенно оценят преимущества данной процедуры те пользователи, которые используют для пересылки информации мобильные устройства.

2. Публикация данных на интернет-сайтах и порталах.

Процедура сжатия часто используется для уменьшения объема документов, используемых для публикации на различных интернет -ресурсах. Это позволяет значительно сэкономить на трафике.

3. Экономия свободного места на диске.

Когда нет возможности добавить в систему новые средства для хранения информации, можно использовать процедуру сжатия для экономии свободного пространства на диске. Бывает так, что бюджет пользователя крайне ограничен, а свободного пространства на жестком диске не хватает. Вот тут-то на помощь и приходит процедура сжатия.

Кроме перечисленных выше ситуаций, возможно еще огромное количество случаев, в которых процесс сжатия данных может оказаться очень полезным. Мы перечислили только самые распространенные.

Способы сжатия информации

Все существующие способы сжатия информации можно разделить на две основные категории. Это сжатие без потерь и сжатие с определенными потерями. Первая категория актуальна только тогда, когда есть необходимость восстановить данные с высокой точностью, не потеряв ни одного бита исходной информации. Единственный случай, в котором необходимо использовать именно этот подход, это сжатие текстовых документов.

В том случае, если нет особой необходимости в максимально точном восстановлении сжатой информации, необходимо предусмотреть возможность использования алгоритмов с определенными потерями при сжатии. Главным достоинством алгоритмов сжатия с потерями является простота реализации. Также такие алгоритмы обеспечивают достаточно высокую степень сжатия.

Сжатие с потерями информации

Алгоритмы сжатия с потерей информации обеспечивают лучшую степень сжатия файлов, при этом сохраняя достаточное для восстановления количество информации. Использование подобных алгоритмов в большинстве случаев подходит для сжатия аналоговых данных, например, звуков или изображений. В таких случаях конечный результат может сильно отличаться от оригинала. Однако человек без специального оборудования эту разницу даже не заметит.

Сжатие без потери информации

Алгоритмы сжатия без потери информации позволяют обеспечить максимально точное восстановление исходных данных. Любые потери исключены. Однако у данного метода есть один существенный недостаток: при использовании таких алгоритмов сжатие не очень эффективно.

Универсальные методы

Существуют также особые методы, при помощи которых можно сжимать информацию, хранящуюся на жестких дисках, для уменьшения ее объема. Это так называемые универсальные методы. Всего можно выделить три технологии.

1. Преобразование потока.

Описание поступающей несжатой информации происходит через файлы, которые уже прошли преобразование. В данном процессе не осуществляется подсчет каких-то вероятностей. Кодирование символов происходит только на основе тех файлов, которые уже были подвергнуты процессу обработки.

2. Статистическое сжатие.

Этот тип процесса сжатия информации можно условно разбить еще на два типа: блочные методы и адаптивные методы. При использовании блочных алгоритмов происходит отдельное высчитывание каждого отдельного блока информации с добавлением его к блоку, который уже прошел сжатие. Адаптивные алгоритмы предусматривают вычисление вероятностей по той информации, которая уже была обработана в процессе сжатия. К этому типу методов можно отнести адаптивный алгоритм Шеннона-Фано.

3. Преобразование блока.

В процессе сжатия вся преобразовываемая информация распределяется на несколько отдельных блоков. Происходит целостное трансформирование информации.

Следует отметить, что некоторые методы, в особенности это касается тех, которые основаны на перестановки нескольких блоков, могут привести к снижению объема информации, хранимой на диске. Главное – это понять, что после проведения обработки происходит улучшение и оптимизация структуры хранящейся на диске информации. В результате проведение последующего сжатия с использованием других методов и алгоритмов будет происходить проще и быстрее.

Сжатие информации при копировании

Одним из важнейших компонентов при осуществлении резервного копирования информации является то устройство, на котором будет перемещаться информация. Чем больший объем имеет нужная вам информация, тем более объемное устройство придется использовать. Решить проблему нехватки свободного пространства можно путем использования процесса сжатия информации.

При проведении резервного копирования сжатие данных может существенно снизить время, которое пользователь затрачивает на копирование нужной информации. Также это позволяет более эффективно использовать свободное пространство на съемном носителе. При проведении процедуры сжатия копируемая информация будет размещена на съемном носителе быстрее и компактнее.

Это позволит вам сэкономить деньги, необходимые для покупки более объемного накопителя. Кроме того, подвергая нужную вам информацию дополнительному сжатию вы сокращаете время, затрачиваемое на транспортировку используемых данных на сервер. Это же относится и к копированию информации по сети. Для резервного копирования сжатие информации можно проводить в один или несколько файлов.

Все будет зависеть только от программы, которую вы используете для сжатия информации. При выборе утилиты для сжатия, обязательно обратите внимание на то, как выбранная вами программа способна сжимать данные. Эффективность сжатия также будет зависеть от типа преобразуемой вами информации. Так, например, эффективность сжатия текстовых файлов и документов может достигать 90%. А вот при сжатии изображений удается достичь эффективности всего в несколько процентов.

Заключение

Сегодня, в век информации, несмотря на то, что практически каждому пользователю доступны высокоскоростные каналы для передачи данных и носители больших объемов, вопрос сжатия данных остается актуальным. Существуют ситуации, в которых сжатие данных является просто необходимой операцией. В частности, это касается пересылки данных по электронной почте и размещения информации в интернете.

Одним из наиболее распространенных видов системных программ являются программы, предназначенные для архивации, упаковки файлов путем сжатия хранимой в них информации.

Сжатие информации — это процесс преобразования информации, хранящейся в файле, в результате которого уменьшается ее избыточность, соответственно, требуется меньший объем Памяти для хранения.

Сжатие информации в файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов, исключения из них постоянных битов или представления повторяющихся символов или повторяющейся последовательности символов в виде коэффициента повторения и соответствующих символов. Применяются различные алгоритмы подобного сжатия информации.

Сжиматься могут как одни, так и несколько файлов, которые в сжатом виде помещаются в так называемый архивный файл , или архив.

Архивный файл — это специальным образом организованный файл, содержащий в себе один или несколько файлов в сжатом или несжатом виде и служебную информацию об именах файлов, дате и времени их создания или модификации, размерах и т. д.

Целью упаковки файлов обычно являются обеспечение более компактного размещения информации на диске, сокращение времени и, соответственно, стоимости передачи информации по каналам связи в компьютерных сетях. Кроме того, упаковка в один архивный файл группы файлов существенно упрощает их перенос с одного компьютера на другой, сокращает время копирования файлов на диски, позволяет защитить информацию от несанкционированного доступа, способствует защите от заражения компьютерными вирусами.

Под степенью сжатия понимают отношение размеров сжатого файла и исходного, выраженное в процентах.

Степень сжатия зависит от используемой программы сжатия, метода сжатия и типа исходного файла. Лучше всего сжимаются файлы графических образов, текстовые файлы, файлы данных, степень сжатия которых может достигать 5 — 40%, меньше сжимаются файлы исполняемых программ и загрузочных модулей — 60 — 90%. Почти не сжимаются архивные файлы. Программы для архивации отличаются используемыми методами сжатия, что соответственно влияет на степень сжатия.

Архивация (упаковка) — помещение (загрузка) исходных файлов в архивный файл в сжатом или несжатом виде.

Разархивацияия (распаковка) — процесс восстановления файлов из архива точно в таком виде, какой они имели до загрузки в архив. При распаковке файлы извлекаются из архива и помещаются на диск или в оперативную память.

Программы, осуществляющие упаковку и распаковку файлов, называются программами-архиваторами.

Большие по объему архивные файлы могут быть размещены на нескольких дисках (томах). Такие архивы называются многотомными . Том - это составная часть многотомного архива. Создавая архив из нескольких частей, можно записать его части на несколько носителей.

Основные виды программ-архиваторов

В настоящее время применяется несколько десятков программ-архиваторов, которые отличаются перечнем функций и параметрами работы, однако лучшие из них имеют примерно одинаковые характеристики. Из числа наиболее популярных программ можно выделить: Zip (и его модификация WinZip), WinRAR, Arj (и его разновидности), G-Zip, 7-Zip.

Программы-архиваторы позволяют создавать и такие архивы, для извлечения файлов из которых не требуются какие-либо программы, гак как сами архивные файлы могут содержать программу распаковки. Такие архивные файлы называются самораспаковывающимися. Самораспаковывающийся архивный файл — это загрузочный, исполняемый модуль, который способен к самостоятельной разархивации находящихся в нем файлов без использования программы-архиватора.

Самораспаковывающийся архив получил название SFX-архив (SelF-eXtracting). Архивы такого типа обычно создаются в формате ЕХЕ-файла.

Многие программы-архиваторы производят распаковку файлов, выгружая их на диск, но имеются и такие, которые предназначены для создания упакованного исполняемого модуля (программы). В результате такой упаковки создается программный файл с теми же именем и расширением, который при загрузке в оперативную память самораспаковывается и сразу запускается. Вместе с тем возможно и обратное преобразование программного файла в распакованный формат. К числу таких архиваторов относятся программы Upx, PKLITE, LZEXE.

Ппрограмма EXPAND, входящая в состав утилит операционной системы Windows, применяется для распаковки файлов программных продуктов, поставляемых фирмой Microsoft.

Способы управления программой-архиватором

Управление программой-архиватором осуществляется одним из следующих способов:

  • - с помощью командной строки, в которой формируется команда запуска, содержащая имя программы-архиватора, команду управления и ключи ее настройки, а также имена архивного и исходного файлов;
  • - с помощью встроенной оболочки и диалоговых панелей, появляющихся после запуска программы и позволяющих вести управление с использованием меню и функциональных клавиш, что создает для пользователя более комфортные условия работы;
  • - с помощью контекстного меню Проводника в операционной системе Windows.

Принципы сжатия информации

В основе любого способа сжатия информации лежит модель источника информации, или, более конкретно, модель избыточности. Иными словами для сжатия информации используются некоторые сведения о том, какого рода информация сжимается - не обладая никакми сведениями об информации нельзя сделать ровным счётом никаких предположений, какое преобразование позволит уменьшить объём сообщения. Эта информация используется в процессе сжатия и разжатия. Модель избыточности может также строиться или параметризоваться на этапе сжатия. Методы, позволяющие на основе входных данных изменять модель избыточности информации, называются адаптивными. Неадаптивными являются обычно узкоспецифичные алгоритмы, применяемые для работы с хорошо определёнными и неизменными характеристиками. Подавляющая часть же достаточно универсальных алгоритмов являются в той или иной мере адаптивными.

Любой метод сжатия информации включает в себя два преобразования обратных друг другу:

  • преобразование сжатия;
  • преобразование расжатия.

Преобразование сжатия обеспечивает получение сжатого сообщения из исходного. Разжатие же обеспечивает получение исходного сообщения (или его приближения) из сжатого.

Все методы сжатия делятся на два основных класса

  • без потерь,
  • с потерями.

Кардинальное различие между ними в том, что сжатие без потерь обеспечивает возможность точного восстановления исходного сообщения. Сжатие с потерями же позволяет получить только некоторое приближение исходного сообщения, то есть отличающееся от исходного, но в пределах некоторых заранее определённых погрешностей. Эти погрешности должны определяться другой моделью - моделью приёмника, определяющей, какие данные и с какой точностью представленные важны для получателя, а какие допустимо выбросить.

Характеристики алгоритмов сжатия и применимость

Коэффициент сжатия

Коэффициент сжатия - основная характеристика алгоритма сжатия, выражающая основное прикладное качество. Она определяется как отношение размера несжатых данных к сжатым, то есть:

k = S o /S c ,

где k - коэффициент сжатия, S o - размер несжатых данных, а S c - размер сжатых. Таким образом, чем выше коэффициент сжатия, тем алгоритм лучше. Следует отметить:

  • если k = 1, то алгоритм не производит сжатия, то есть получает выходное сообщение размером, равным входному;
  • если k < 1, то алгоритм порождает при сжатии сообщение большего размера, нежели несжатое, то есть, совершает «вредную» работу.

Ситуация с k < 1 вполне возможна при сжатии. Невозможно получить алгоритм сжатия без потерь, который при любых данных образовывал бы на выходе данные меньшей или равной длины. Обоснование этого факта заключается в том, что количество различных сообщений длиной n Шаблон:Е:бит составляет ровно 2 n . Тогда количество различных сообщений с длиной меньшей или равной n (при наличии хотя бы одного сообщения меньшей длины) будет меньше 2 n . Это значит, что невозможно однозначно сопоставить все исходные сообщения сжатым: либо некоторые исходные сообщения не будут иметь сжатого представления, либо нескольким исходным сообщениям будет соответствовать одно и то же сжатое, а значит их нельзя отличить.

Коэффициент сжатия может быть как постоянным коэффициентом (некоторые алгоритмы сжатия звука, изображения и т. п., например А-закон , μ-закон, ADPCM), так и переменным. Во втором случае он может быть определён либо для какого либо конкретного сообщения, либо оценён по некоторым критериям:

  • среднее (обычно по некоторому тестовому набора данных);
  • максимальное (случай наилучшего сжатия);
  • минимальное (случай наихудшего сжатия);

или каким либо другим. Коэффициент сжатия с потерями при этом сильно зависит от допустимой погрешности сжатия или его качества , которое обычно выступает как параметр алгоритма.

Допустимость потерь

Основным критерием различия между алгоритмами сжатия является описанное выше наличие или отсутствие потерь. В общем случае алгоритмы сжатия без потерь универсальны в том смысле, что их можно применять на данных любого типа, в то время как применение сжатия потерь должно быть обосновано. Некоторые виды данных не приемлят каких бы то ни было потерь:

  • символические данные, изменение которых неминуемо приводит к изменению их семантики: программы и их исходные тексты, двоичные массивы и т. п.;
  • жизненно важные данные, изменения в которых могут привести к критическим ошибкам: например, получаемые с медицинской измерительной техники или контрольных приборов летательных, космических аппаратов и т. п.
  • данные, многократно подвергаемые сжатию и расжатию: рабочие графические, звуковые, видеофайлы.

Однако сжатие с потерями позволяет добиться гораздо больших коэффициентов сжатия за счёт отбрасывания незначащей информации, которая плохо сжимается. Так, например алгоритм сжатия звука без потерь FLAC , позволяет в большинстве случаев сжать звук в 1,5-2,5 раза, в то время как алгоритм с потерями Vorbis , в зависимости от установленного параметра качетсва может сжать до 15 раз с сохранением приемлемого качества звучания.

Системные требования алгоритмов

Различные алгоритмы могут требовать различного количества ресурсов вычислительной системы, на которых исполняются:

  • оперативной памяти (под промежуточные данные);
  • постоянной памяти (под код программы и константы);
  • процессорного времени.

В целом, эти требования зависят от сложности и «интеллектуальности» алгоритма. По общей тенденции, чем лучше и универсальнее алгоритм, тем большие требования с машине он предъявляет. Однако в специфических случаях простые и компактные алгоритмы могут работать лучше. Системные требования определяют их потребительские качества: чем менее требователен алгоритм, тем на более простой, а следовательно, компактной, надёжной и дешёвой системе он может работать.

Так как алгоритмы сжатия и разжатия работают в паре, то имеет значение также соотношение системных требований к ним. Нередко можно усложнив один алгоритм можно значительно упростить другой. Таким образом мы можем иметь три варианта:

Алгоритм сжатия гораздо требовательнее к ресурсам, нежели алгоритм расжатия. Это наиболее распространённое соотношение, и оно применимо в основном в случаях, когда однократно сжатые данные будут использоваться многократно. В качетсве примера можно привести цифровые аудио и видеопроигрыватели. Алгоритмы сжатия и расжатия имеют примерно равные требования. Наиболее приемлемый вариант для линии связи, когда сжатие и расжатие происходит однократно на двух её концах. Например, это могут быть телефония. Алгоритм сжатия существенно менее требователен, чем алгоритм разжатия. Довольно экзотический случай. Может применяться в случаях, когда передатчиком является ультрапортативное устройство, где объём доступных ресурсов весьма критичен, например, космический аппарат или большая распределённая сеть датчиков, или это могут быть данные распаковка которых требуется в очень малом проценте случаев, например запись камер видеонаблюдения.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Сжатие информации" в других словарях:

    сжатие информации - уплотнение информации — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы уплотнение информации EN information reduction …

    СЖАТИЕ ИНФОРМАЦИИ - (сжатие данных) представление информации (данных) меньшим числом битов по сравнению с первоначальным. Основано на устранении избыточности. Различают С. и. без потери информации и с потерей части информации, несущественной для решаемых задач. К… … Энциклопедический словарь по психологии и педагогике

    адаптивное сжатие информации без потерь - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN adaptive lossless data compressionALDC … Справочник технического переводчика

    уплотнение/сжатие информации - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN compaction … Справочник технического переводчика

    цифровое сжатие информации - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN compression … Справочник технического переводчика

    Звук является простой волной, а цифровой сигнал является представлением этой волны. Это достигается запоминанием амплитуды аналогового сигнала множество раз в течение одной секунды. Например, в обыкновенном CD сигнал запоминается 44100 раз за… … Википедия

    Процесс, обеспечивающий уменьшение объема данных путем сокращения их избыточности. Сжатие данных связано с компактным расположением порций данных стандартного размера. Различают сжатия с потерей и без потери информации. По английски: Data… … Финансовый словарь

    сжатие цифровой картографической информации - Обработка цифровой картографической информации в целях уменьшения ее объема, в том числе исключения избыточности в пределах требуемой точности ее представления. [ГОСТ 28441 99] Тематики картография цифровая Обобщающие термины методы и технологии… … Справочник технического переводчика