Open Library - открытая библиотека учебной информации.

05.08.2019 Социальные сети

Структура файловой системы зависит от операционной системы. Одной из первых в компьютерах применялась файловая система FAT (File Allocation Table), которая использовалась в операционной системе MS DOS.

FAT была предназначена для работы с гибкими дисками размером менее 1 Мбайта͵ и вначале не предусматривала поддержки жестких дисков. В последующем FAT стала поддерживать файлы и разделы размеров до 2 Гбайт.

В FAT применяются следующие соглашения по именам файлов: имя должно начинаться с буквы или цифры и может содержать любой символ ASCII, за исключением пробела и символов "/\ : ; | = , ^ * ? Длина имени не превышает 8 символов, за ним следует точка и необязательное расширение длиной до 3 символов. регистр символов в именах файлов не различается и не сохраняется.

Файловая система FAT не может контролировать отдельно каждый сектор, в связи с этим она объединяет смежные секторы в кластеры. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, уменьшается общее количество единиц хранения, за которыми должна следить файловая система. Размер кластера в FAT является степенью двух и определяется размером тома при форматировании диска. Кластер представляет собой минимальное пространство, ĸᴏᴛᴏᴩᴏᴇ может занимать файл. Это приводит к тому, что часть пространства диска расходуется впустую.

В операционных системах в качестве объектов, предназначенных для хранения файлов и обеспечения доступа к ним, используются понятия каталог и папка.

Доступ - процедура установления связи с памятью и размещенным в ней файлом длязаписи и чтенияданных.

При обращении к файлу крайне важно точно указать место его расположения. При этом, если обращение к файлу выполняется из командной строки, то запись выглядит следующим образом:

c:\Papka1\papka2\uchebnik.doc

Такая запись принято называть маршрут, или путь.

Имя логического диска, стоящее перед именем файла в спецификации, указывает логический диск, на котором следует искать файл. На этом же диске организован каталог, в котором хранятся полные имена файлов, а также их характеристики: дата и время создания; объем (в байтах); специальные атрибуты. По аналогии с библиотечной системой организации каталогов полное имя файла, зарегистрированное в каталоге, будет служить шифром, по которому операционная система находит месторасположение файла на диске.

Каталог- справочник файлов с указанием месторасположения на диске.

В операционной системе WINDOWS понятию каталог соответствует понятие папка.

Различают два состояния каталога - текущее (активное) и пассивное.

Текущий (активный) каталог- каталог, в котором в данный момент времени работает пользователь.

Пассивный каталог- каталог, с которым в данный момент времени не имеется связи.

В операционной системе принята иерархическая структура организации каталогов.На каждом диске всœегда имеется единственный главный (корневой) каталоᴦ. Он находится на нулевом уровне иерархической структуры и обозначается символом "\" – обратный слэш. Корневой каталог создается при форматировании (инициализации, разметке) диска, имеет ограниченный размер. В главный каталог могут входить другие каталоги и файлы, которые создаются командами операционной системы и бывают удалены соответствующими командами.

Родительский каталог- каталог, имеющий подкаталоги.

Подкаталог - каталог, который входит в другой каталог.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, любой каталог, содержащий каталоги нижнего уровня, может быть, с одной стороны, по отношению к ним родительским, а с другой стороны, подчинœенным по отношению к каталогу верхнего уровня.

В структуре каталогов могут находиться каталоги, не содержащие ни одного файла или подкаталога. Такие подкаталоги называются пустыми.

Правила наименования подкаталогов такие же, как и правила наименования файлов. Для формального отличия от файлов обычно подкаталогам присваивают только имена, хотя можно добавить и тип по тем же правилам, что и для файлов.

Файловая система FAT всœегда заполняет свободное место на диске последовательно от начала к концу. При создании нового файла или изменении уже существующего она ищет самый первый свободный кластер в таблице размещения файлов. В случае если в процессе работы одни файлы были удалены, а другие изменились в размере, то появляющиеся в результате пустые кластеры будут рассеяны по диску. В случае если кластеры, содержащие данные файла, расположены не подряд, то файл оказывается фрагментированным. Сильно фрагментированные файлы значительно снижают эффективность работы. В состав операционных систем, поддерживающих FAT, обычно входят специальные утилиты дефрагментации диска, предназначенные повысить производительность файловых операций.

Файловая система FAT имеет существенное ограничение по поддержке больших объемов дискового пространства, предел равен 2 Гб.

Новые поколения жестких дисков, имеющие большие объемы дискового пространства потребовали более совершенной файловой системы.

Операционная система Windows содержит файловую систему FAT32, которая поддерживает жесткие диски объемом до двух терабайт. В FAT32 были расширены атрибуты файлов, позволяющие теперь хранить время и дату создания, модификации и последнего доступа к файлу или каталогу. Система допускает длинные имена файлов и пробелы в именах. Файловая система FAT32 поддерживается в операционных системах Windows XP и Windows Vista.

Стоит сказать, что для названных операционных систем была разработана еще одна файловая система: NTFS (New Technology File System)

В NTFS значительно расширены возможности по управлению доступом к отдельным файлам и каталогам, введено большое число атрибутов, реализована отказоустойчивость, средства динамического сжатия файлов. NTFS позволяет использовать имена файлов длиной до 255 символов

NTFS обладает возможностью самостоятельного восстановления в случае сбоя ОС или оборудования, так что дисковый том остается доступным, а структура каталогов не нарушается.

Каждый файл на томе NTFS представлен записью в специальном файле – главной файловой таблице MFT (Master File Table). NTFS резервирует первые 16 записей таблицы размером около 1 Мб для специальной информации. Записи обеспечивают резервирование главной файловой таблицы, восстановление файлов, контролируют состояние кластеров, определяют атрибуты файлов.

Для уменьшения фрагментации NTFS всœегда пытается сохранить файлы в непрерывных блоках. Она обеспечивает эффективный поиск файлов в каталоге.

NTFS была разработана как восстанавливаемая файловая система, использующая модель обработки транзакций. Каждая операция ввода-вывода, изменяющая файл на томе NTFS, рассматривается системой как транзакция и может выполняться как неделимый блок. При модификации файла пользователœем сервис файла регистрации фиксирует всю информацию необходимую для повторения или отката транзакции.

Интересной возможностью файловой системы является динамическое шифрование файлов и каталогов, повышающее надежность хранения информации.

Вопросы для самопроверки.

1.Что такое файловая система?

2. Что такое «файл»?

3. Основные составляющие файловой структуры.

4. Что такое кластер?

5.Назовите основные параметры, характеризующие файл.

6.Как образуется имя файла?

7.Правила присваивания имен файлам в системе FAT.

8.Почему возникает крайне важность дефрагментации диска?

9. Что такое каталог?

10. Объясните понятия «маршрут», «путь».

11.Для чего в именах файлов применяется расширение?

12.Основное назначение файловой системы.

13.Какие файловые системы поддерживаются операционными системами Windows XP, Windows Vista?

1. Логически связанная совокупность данных или программ, для размещения которой во внешней памяти выделяется именованная область, это

Кластер

2. Минимальная единица пространства диска, ĸᴏᴛᴏᴩᴏᴇ может быть отведено файлу

3. Полное имяфайла содержит

Собственно имя

Расширение

4. Файлы, имеющие расширения.ZIP,ARJ, относятся к

Системным

Графическим

Архивным

Временным

5. Файловая система FAT поддерживает дисковое пространство в объеме

6. Шаблон имени файла, который служит для замены одного символа

7. Шаблон имени файла, который служит для замены любой последовательности символов

8. Справочник файлов с указанием их месторасположения на диске

Каталог

Таблица размещения файлов

Кластер

Драйвер

9.Процедура установления связи с размещенным в памяти файлом

Дефрагментация

Считывание

10. Файлы, имеющие расширения.COM,EXE, относятся к

Системным

Графическим

Исполняемым

Временным

РАЗДЕЛ 3. Программные средства реализации информационных процессов

Тема 3.1. Классификация программных средств


  • - Реализация файловой системы. Общая структура файловой системы

    Файловые системы хранятся на дисках. Большинство дисков делится на ряд разделов с независимой файловой системой на каждом разделе. Сектор «0» диска называется главной загрузочной записью (MBR, Master Boot Record) и используется для загрузки компьютера. В конце главной загрузочной... [читать подробенее]


  • -

    [читать подробенее]


  • - Структура файловой системы на диске

    Рассмотрение методов работы с дисковым пространством дает общее представление о совокупности служебных данных, необходимых для описания файловой системы. Структура служебных данных типовой файловой системы, например Unix, на одном из разделов диска, таким образом, может...

    [читать подробенее]


  • - Структура файловой системы

    Реализация файловых систем В данном разделе начнем рассматривать принципы и методы реализации файловых систем, изложение которых продолжено в "Виртуальные файловые системы (VFS). Реализации файловых систем. Сетевая файловая система NFS". В данной и следующей...

  • Файловая система FreeBSD является ключевым моментом в понимании устройства всей системы. Самым важным понятием является, несомненно, корневой каталог, обозначаемый символом "/". Корневой каталог монтируется самым первым на этапе загрузки и содержит все необходимое, чтобы подготовить систему к загрузке в многопользовательский режим. Корневой каталог также содержит точки монтирования всех других файловых систем.

    UNIX не использует букв дисков, или других имен дисков в пути. Это значит, что не нужно писать c:/foo/bar/readme.txt в UNIX.

    Вместо этого, одна файловая система назначается корневой файловой системой. Обращение к корневому каталогу корневой файловой системы происходит через /. Любая другая файловая система монтируется к корневой файловой системе. Неважно как много дисков есть в вашей системе FreeBSD, каждый каталог будет выглядеть как расположенный на том же диске.

    Точкой монтирования называется каталог, который будет соответствовать корню смонтированной файловой системы. Стандартные точки монтирования включают /usr, /var, /tmp, /mnt и /cdrom. Эти каталоги обычно перечислены в файле /etc/fstab, в котором указаны файловые системы и их точки монтирования. Большинство файловых систем, описанных в /etc/fstab монтируются автоматически, если только для них не указана опция noauto.

    Монтирование файловых систем во FreeBSD

    Для монтирования файловых используется команда mount, для размонтирования – umount. Подробную информацию об этих командах и используемых ими опциях можно найти справочной системе.

    Файловые системы содержатся в разделах. Каждый раздел обозначается буквой от a до h. Каждый раздел может содержать только одну файловую систему, это значит что файловая система может быть описана ее точкой монтирования в файловой иерархии, или буквой раздела, в котором она содержится.

    FreeBSD также использует дисковое пространство под раздел подкачки (swap space). Подкачка позволяет FreeBSD работать с виртуальной памятью. Ваш компьютер может работать так, как если бы у него было больше памяти, чем есть на самом деле. Когда у FreeBSD кончается память, она перемещает часть данных, не используемых в данный момент, в раздел подкачки и возвращает их обратно (перемещая в подкачку что-то другое), когда они нужны.

    По некоторым разделам есть определенные соглашения:

    Это позволяет утилитам, которым нужно работать над всем слайсом (например, сканер плохих блоков), работать с разделом c. В обычной ситуации не нужно создавать файловую систему на этом разделе.

    Каждый раздел, содержащий файловую систему, хранится на том, что во FreeBSD называется слайс (slice). Слайс - это термин FreeBSD, то, что обычно называют разделом в других операционных системах (например, Windows и Linux).

    Слайсы нумеруются с 1 по 4. Номера слайсов следуют за именем устройства, предваряемые строчной s, начиная с 1. Так "da0s1" это первый слайс первого SCSI устройства.

    Может быть только четыре физических слайса на диске, но могут быть логические слайсы нужного типа внутри физических слайсов. Эти дополнительные слайсы нумеруются начиная с 5, так что "ad0s5" это первый дополнительный слайс на первом IDE диске. Эти устройства используются файловыми системами, занимающими весь слайс.

    Слайсы, "эксклюзивно выделенные (dangerously dedicated)" физические устройства и другие устройства содержат разделы, представляемые буквами от a до h. Эти буквы добавляются к имени устройства. "da0a" это раздел a на первом устройстве da, который "эксклюзивно выделен". "ad1s3e" это пятый раздел в третьем слайсе второго IDE диска.

    Наконец, каждый диск имеет своё имя, которое начинается с кода, обозначающего тип диска, затем идет номер диска. В отличие от слайсов, нумерация дисков начинается с 0. Основные коды указаны в таблице ниже:

    Код Значение
    ad ATAPI (IDE) диск
    da SCSI direct access диск
    acd ATAPI (IDE) CDROM
    cd SCSI CDROM
    fd Floppy disk

    Иерархия файловой системы

    Полное описание иерархии файловой системы есть в справочном руководстве (man hier). В таблице ниже перечислены наиболее важные каталоги.

    Каталог Описание
    / Корневой каталог файловой системы.
    /bin/ Основные утилиты, необходимые для работы как в однопользовательском, так и в многопользовательском режимах.
    /boot/ Программы и конфигурационные файлы, необходимые для нормальной загрузки операционной системы.
    /boot/defaults/ Конфигурационные файлы с настройками по умолчанию, используемые в процессе загрузки операционной системы
    /dev/ Файлы устройств
    /etc/ Основные конфигурационные файлы системы и скрипты.
    /etc/defaults/ Основные конфигурационные файлы системы с настройками по умолчанию
    /etc/mail/ Конфигурационные файлы для систем обработки почты
    /etc/namedb/ Конфигурационные файлы для утилиты named
    /etc/periodic/ Файлы сценариев, выполняемые ежедневно, еженедельно и ежемесячно
    /etc/ppp/ Конфигурационные файлы для утилиты ppp
    /mnt/ Пустой каталог, часто используемый системными администраторами как временная точка монтирования.
    /proc/ Виртуальная файловая система, отображающая текущие процессы
    /rescue/ Статически собранные программы для восстановления после сбоев.
    /root/ Домашний каталог пользователя root.
    /sbin/ Системные утилиты и утилиты администрирования, необходимые для работы как в однопользовательском, так и в многопользовательском режимах.
    /tmp/ Временные файлы. Содержимое /tmp обычно теряется во время перезагрузки системы.
    /usr/ Большинство пользовательских утилит и приложений.
    /usr/bin/ Пользовательские утилиты и приложения общего назначения.
    /usr/include/ Файлы стандартных библиотек.
    /usr/libdata/ Файлы данных для различных утилит.
    /usr/libexec/ Системные демоны и утилиты (выполняемые другими программами).
    /usr/local/ Локальные пользовательские приложения, библиотеки, и т.д. Также используется по умолчанию коллекцией портов. Внутри /usr/local иерархия каталогов должна следовать стандарту иерархии для /usr. Исключение составляют каталог man, который расположен непосредственно в /usr/local, а не в /usr/local/share, и документация портов, которая расположена в share/doc/port.
    /usr/obj/ Архитектурно-зависимые файлы и каталоги, образующиеся в процессе сборки системы из исходных текстов в /usr/src.
    /usr/ports/ Коллекция портов FreeBSD (опционально).
    /usr/sbin/ Системные утилиты и утилиты администрирования (исполняемые пользователем).
    /usr/share/ Архитектурно-независимые файлы.
    /usr/src/ Исходные тексты BSD и/или программ.
    /usr/X11R6/ Утилиты, приложения и библиотеки X11R6 (X Window System; необязательно).
    /var/ Файлы журналов общего назначения, временные, перемещаемые файлы и файлы очередей.
    /var/log/ Различные файлы системных журналов.
    /var/mail/ Почтовые ящики пользователей.
    /var/spool/ Файлы очередей печати, почты, и пр.
    /var/tmp/ Временные файлы, которые обычно сохраняются во время перезагрузки системы, если только /var не является файловой системой в памяти.

    Типы и виды файлов

    В отличие от ОС Windows, в UNIX расширение файла не определяет его тип и может вообще отсутствовать. Расширение обычно используется для удобства пользователя и операционной системе не требуется. Вместо этого, UNIX определяет тип файла с помощью магии (подсистемы magic), которая на основании магических чисел (magic numbers), полученных в результате анализа содержимого файла делает вывод о типе файла. Таблица магических чисел постоянно обновляется и уточняется и содержит сигнатуры различных типов файлов. Кроме того, в UNIX существуют различные виды файлов, информация о которых содержится атрибутах файловой системы для этих файлов. Всего в UNIX существует 6 различных видов файлов:

    • Обычный файл (regular file)
    • Каталог (directory)
    • Специальный файл устройства (special device file)
    • FIFO, или именованный канал (named pipe)
    • Символьная ссылка (symbol link)
    • Сокет (socket)

    Файлы устройств и каталог /dev

    Термин "устройство" используется в основном по отношению к аппаратному обеспечению системы, такому как диски, принтеры, графические адаптеры, устройства ввода текста. В UNIX доступ к большинству этих устройств можно получить через специальные файлы устройств, расположенные в каталоге /dev. При добавлении в систему нового устройства или добавлении поддержки дополнительных устройств потребуется создать один или несколько файлов устройств для нового оборудования. Для устранения необходимости в этих действиях в FreeBSD используется Device filesystem, или DEVFS. Она предоставляет доступ к пространству устройств ядра через общую файловую систему. Вместо создания и модификации файлов устройств, DEVFS создает специальную файловую систему.

    Операционная система, которая является основой работы любой компьютерной техники, организует работу с электронными данными, следуя определенному алгоритму, в цепочке которого файловая система не является невостребованной. Что собой представляет вообще файловая система, и какие ее виды применимы в современное время и попытаемся изложить в этой статье.


    Описание общих характеристик файловой системы

    ФС — это, как уже указано выше, часть операционной системы, которая связана непосредственно с размещением, удалением, перемещением электронной информации на определенном носителе, а также безопасностью ее дальнейшего использования в будущем. Именно это ресурс также применим в случаях, когда требуется восстановление утерянной информации по причине программного сбоя, как такового. То есть это основной инструмент работы с электронными файлами.

    Виды файловой системы

    На каждом компьютерном устройстве применим особый тип ФС. Особо распространенные следующие ее типы:

    — предназначенная для жестких дисков;
    — предназначенная для магнитных лент;
    — предназначенная для оптических носителей;
    — виртуальная;
    — сетевая.

    Естественно, что основной логической единицей работы с электронными данными является файл, под которым подразумевается документ с систематизированной в нем информацией определенного характера, который имеет свое наименование, что облегчает работу пользователя с большим потоком электронных документов.
    Итак, абсолютно вся, используемая операционкой инфа, трансформируется в файлы, независимо от того текст это или изображения, или звук, или видео, или фото. Помимо всего прочего драйвера и программные библиотеки, тоже имеют транскрипцию оных.

    У каждой информационной единицы есть имя, определенное расширение, размер, свойственные характеристики, тип. А вот ФС – это их совокупность, а также принципы работы со всеми ними.

    В зависимости от того какие свойственные особенности присущи системе, с такими данными она и будет эффективно работать. А это и есть предпосылкой классификации ее на типы и виды.

    Взгляд на файловую систему с точки зрения программирования

    Изучая понятие ФС, следует понимать, что это многоуровневая составляющая, на первом из которых преобладает трансформатор файловых систем, обеспечивающий эффективное взаимодействие между самой системой и определенным программным приложением. Именно он отвечает за преобразование запроса к электронным данным в определенный формат, который и распознается драйверами, что влечет за собой эффективную работу с файлами, то есть к ним открывается доступ.

    У современных приложений, которые имеют стандарт работы клиент-сервер, требования к ФС очень высоки. Ведь современные системы просто обязаны обеспечивать самый эффективнейший доступ ко всем имеющимся типам электронных единиц, а также оказывать колоссальную поддержку носителей больших объемов, а также устанавливать защиту всех данных от нежелательного доступа иными пользователями, а также обеспечивать целостность информации, хранимой в электронном формате.

    Ниже мы рассмотрим все существующие на сегодня ФС и их достоинства и недостатки.

    ФС — FAT

    Это самый древний тип файловой системы, который был разработан еще в далеком 1977 году. Она работала с операционкой ОС 86-DOS и не способна работать с жесткими носителями информации, и рассчитана на гибкие их типы и хранение информации до одного мегабайта. Если ограничение размера инфы сегодня не актуально, то иные показатели остались востребованными в неизменном виде.

    Эта файловая система использовалась ведущей компанией разработчиком программных приложений – Майкрософт для такой операционки, как ОС MS-DOS 1.0.
    Файлы этой системы имеют ряд характерных свойств:

    — имя информационной единицы должно содержать в своем начале букву или цифру, а дальнейшее содержание наименование может включать различные символы клавиатуры компа;
    — имя файла не должно превышать восьми символов, в конце имени ставится точка, после которой следует расширение из трех букв;
    — для создания имени файла может использоваться любой регистр раскладки клавиатуры.

    С самого начала разработки файловая система FAT была направлена на работу с операционкой ОС DOS, она не была заинтересована в сохранении данных о пользователе или владельце информации.

    Благодаря всевозможным модификациям этой ФС, она стала самой востребованной в современное время и на ее основе работают самые инновационные операционные системы.

    Именно данная файловая система способна сохранять файлы в неизменном виде, если компьютерная техника выключилась неверно в силу, например, отсутствия зарядки батареи или выключения света.

    Во многих операционных системах, с которыми работает FAT, лежат определенные программные утилиты, корректирующие и проверяющие само дерево содержания ФС и файлы.

    ФС — NTFS

    С операционкой ОС Windows NT работает современная файловая система NTFS, в принципе на нее она и была нацелена. В ее составе действует утилита convert, которая отвечает за конвертацию томов с формата HPFS или FAT, в формат томов NTFS.

    Она более модернизирована по сравнению с первым описанным выше вариантом. В этой версии расширены возможности касаемо непосредственного управления доступом ко всем информационным единицам. Здесь можно пользоваться множеством полезных атрибутов, динамическим сжатием файлов, отказоустойчивостью. Одним из преимуществ оной является и поддержка требований POSIX стандарта.

    Эта файловая система позволяет создавать информационные файлы с именами длинной в 255 символов.

    Если операционка, которая работает с данной файловой системой, дает сбой, то не нужно переживать за сохранность всех файлов. Они остаются в целостности и невредимости, поскольку этот тип файловой системы имеет свойство самовосстанавливаться.

    Особенностью ФС NTFS является ее структура, которая представлена в виде определенной таблицы. Первые шестнадцать записей в реестре — это содержание самой файловой системы. Каждая отдельная электронная единица тоже имеет вид таблицы, которая содержит информацию о таблице, зеркальный файл в формате MFT, файл регистрации, используемый при необходимости восстановления информации и последующие данные – это информация о самом файле и его данные, которые были сохранены непосредственно на жестком диске.

    Все выполняемые команды с файлами имеют свойство сохраняться, что помогает впоследствии восстанавливаться системе самостоятельно после сбоя операционной системы, с которой она работает.

    ФС — EFS

    Очень распространенной является файловая система EFS, которая считается шифрованной. Она работает с операционкой Windows. Эта система обуславливает сохранение файлов на жестком диске в зашифрованном виде. Это самая действенная защита всех файлов.
    Шифрование устанавливается в свойствах файла с помощью галочки напротив вкладки, говорящей о возможности шифровки. Воспользовавшись этой функцией можно указывать, кому доступны для просмотра файлы, то есть, кому разрешено с ними работать.

    ФС – RAW

    Файловые элементы – это самые уязвимые единицы программирования. Ведь именно они и являются информацией, которая хранится на дисках компьютерной техники. Они могут повреждаться, удаляться, скрываться. В общем, работа пользователя только и нацелена на создание, сохранение и перемещение оных.
    Операционная система не всегда показывает идеальные свойства своей работы и имеет характерность выходить из строя. Происходит это по многим причинам. Но сейчас не об этом.

    Очень многие пользователи сталкиваются с уведомлением о том, что повреждена система RAW. Это действительно ФС или нет? Таким вопросом задаются многие. Оказывается, это не совсем так. Если объяснять на уровне языка программирования, то RAW – это ошибка, а именно логическая ошибка, которая внедрена уже в операционку Windows в целях обезопасить ее от выхода из строя. Если техника выдает какие-то сообщения по поводу RAW, значит нужно иметь в виду, что под угрозой структура файловой системы, которая работает неверно либо ей грозит постепенное разрушение.

    Если такая проблема на лицо, то вы не сможете получить доступ ни к одному файлу в компе, а также он откажется выполнять и иные операционные команды.

    ФС – UDF

    Это файловая система для оптических дисков, котрая имеет свои особенности:

    — наименования файлов не должны превышать 255 символов;
    — именной регистр может быть как нижним, так и верхним.

    Работает она с операционкой Windows XP.

    ФС — EXFAT

    И еще одна современная файловая система – EXFAT, которая является неким посредническим звеном между Windows и Linux, обеспечивающим эффективную трансформацию файлов из одной системы в иную, поскольку файлообменники у них разные. Используется она на переносных накопителях информации, таких как флешки.

    Из выше написанного, можно сделать верный вывод. Каждая охарактеризованная ФС отличается своими особенностями, создает определенные форматы файлов. Вот почему иногда не получается получить доступ к каким-то файлам, значит они созданы совсем в иной файловой системе, которую ваша распознать не может.
    Надеемся, что изложенная в этой статье информация поможет вам избежать многих проблем во время работы с информационными файлами. Теперь вы самостоятельно можете определить, с какой и ФС работает ОС вашего компьютера, и с какими данными вам приходится работать ежедневно в потоке их систематической оперативной обработки.

    Структура файловой системы. Механизм доступа к файлам.

    Файл (file ) - поименованная совокупность данных. С файлами возможно производить операции как с единым целым при помощи операторов: oткрыть(open ), закрыть(close ), создать(create ), уничтожить(destroy ), копировать(copy ), переименовать(rename ), вывести(list ). Кроме того, возможны операции над отдельными компонентами файлов: прочитать(read ), записать(write ), обновить(update ), вставить(insert ), исключить(delete ).

    Организация файлов

    Под организацией файлов понимается способ расположения записей во внешней памяти. Существуют следующие способы организации.

    · Последовательная - записи располагаются в физическом порядке, т. е. “следующая” запись - это запись, которая физически следует за предыдущей, здесь записи могут быть как фиксированной длины, так и переменной.

    Записи фиксированной

    длины

    Записи переменной

    длины

    Указатели длины записи

    · Индексно-последовательная - записи располагаются в логической последовательности в соответствии со значениями ключей, содержащихся в каждой записи. Доступ к индексно-последовательным записям может осуществляться последовательно, в порядке возрастания/убывания значений ключа, либо прямо по ключу, путем поиска по системному индексу.

    https://pandia.ru/text/78/277/images/image012_9.gif" height="108 src=">.gif" width="214">

    · Прямая - доступ к записям осуществляется произвольно по их физическим адресам на запоминающем устройстве прямого доступа.

    · Библиотечная - это по сути файл, состоящий из последовательных подфайлов, где каждый последовательный подфайл называется элементом, или членом файла. Начальный адрес каждого такого элемента хранится в директории файла. Библиотечные (секционированные) файлы наиболее часто используются для хранения программных библиотек или библиотек макросов.

    Методы доступа

    Операционные системы реализуют, как правило, различные методы доступа к файлам, которые можно сгруппировать в две категории:

    · методы доступа с очередями;

    · базисные методы доступа.

    Методы доступа с очередями применяются в тех случаях, когда последовательность обработки записей можно предвидеть, например при последовательной и индексно-последовательной организациях. В этих методах предусматривается упреждающая буферизация и планирование операций ввода-вывода. Кроме того, эти методы обеспечивают автоматическое блокирование и деблокирование записей.

    Базисные методы доступа применяются обычно в случаях, когда последовательность обработки записей предвидеть нельзя, в частности при прямом или произвольном доступе. Базисными методами читаются и записываются физические блоки, блокирование и деблокирование, при необходимости, определяет сам пользователь.

    Характеристики файлов

    · Изменчивость - указывает на частоту внесения в файл новых записей и удаление старых. Когда частота мала, файл называют статичным , а когда велика - динамичным или изменчивым файлом.

    · Активность - определяется процентом записей файла, обрабатываемых в течение данного прогона.

    · Размер - определяет количество информации, хранящейся в файле.

    Файловая система

    Файловая система - это часть общей системы управления памятью (см. Структура ядра ОС), назначение которой сводится в основном к управлению файлами, хранящимися во внешней памяти, а также к контролируемому разделению информации между пользователями.

    Функции файловой системы

    · предоставление возможности создавать, модифицировать, уничтожать файлы;

    · контролируемое разделение файлов несколькими пользователями;

    · предоставление пользователю возможности задания различной структуры файлов и возможности управления передачей информации между файлами;

    · в системе должны быть предусмотрены средства обеспечения сохранности и восстановления информации в файлах;

    · система должна обеспечивать независимость файлов от внешних устройств, т. е. пользователям должна быть предоставлена возможность обращения к файлам с использованием символических имен;

    · система должна предоставлять защиту информации в файлах от несанкционированнного доступа (возможность шифрования и дешифрования данных);

    · файловая система должна иметь “дружественный” интерфейс по отношению к пользователю.

    Состав файловой системы

    Файловая система, входящая в состав ядра ОС, как правило, содержит следующие средства:

    · Методы доступа , которые определяют конкретную организацию доступа к данным, хранящимся в файлах.

    · Средства управления файлами, обеспечивающие хранение файлов, обращение к ним, коллективное использование и защиту.

    · Средства управления внешней памятью, обеспечивающие распределение пространства внешней памяти для размещения файлов.

    · Средства обеспечения целостности файлов, которые гарантируют сохранность информации файла.

    Размещение файлов в дисковой памяти

    Размещение файлов в дисковой памяти во многом похоже на распределение памяти при мультипрограммировании с переменными разделами. Заметим, что в процессе работы системы, дисковое пространство подвержено фрагментации, в связи с чем, размещение файлов приходится осуществлять по разбросанным блокам. Очевидно, возможно использовать уже рассмотренный нами способ “сбора мусора”, однако это не всегда бывает эффективно.

    Связное распределение памяти

    1 Свободен

    2

    3

    4

    5 Свободен

    Связное распределение памяти предполагает, что каждому файлу отводится одна непрерывная область внешней памяти. Одним из достоинств этого метода является то, что последовательные логические записи размещаются, как правило, физически рядом, что позволяет повысить скорость доступа. Достаточно просто в этом случае и реализовать каталоги, т. к. для каждого файла необходимо хранить только начальный адрес и длину файла. Недостатком такого подхода к распределению памяти является то, что после уничтожения файлов и возвращении, занимаемого ими ресурса в список свободных, вновь размещаемые файлы должны укладываться в существующие свободные области. Таким образом мы здесь сталкиваемся с теми же проблемами, что и при фрагментации в системах мультипрограммирования с переменными разделами - необходимость объединения свободных соседних участков памяти. Кроме того, при работе с динамично меняющимися размерами файлов этот способ может оказаться нерациональным.

    Несвязное распределение памяти

    Распределение при помощи списков секторов

    В этом случае память рассматривается как набор индивидуальных секторов. Файлы состоят из секторов, которые могут находиться в различных местах внешней памяти. Секторы, принадлежащие одному файлу, содержат ссылки-указатели друг на друга, образующие список. В списке свободного пространства содержатся все свободные секторы внешней памяти.

    1

    2 Свободен

    3

    4 Свободен

    5

    При необходимости увеличения размера файла, соответствующий процесс запрашивает дополнительное количество секторов из числа свободных, а при уменьшении размера, освободившиеся секторы возвращаются в список свободных. Таким образом, удается избежать необходимости уплотнения памяти.

    Недостатком же такого способа распределения памяти является увеличение накладных расходов для создания механизма обработки ссылок-указателей, а также возможное увеличение времени доступа.

    Поблочное распределение памяти

    Вариант поблочного распределения совмещает в себе элементы связного и несвязного распределения, в этом случае память распределяется не индивидуальными секторами, а блоками смежных секторов, причем при выделении новых блоков система стремится выбирать свободные блоки, как можно ближе к уже существующим блокам файла. При каждом обращении к файлу вначале определяется соответствующий блок, а затем соответствующий сектор в рамках этого блока.

    Реализация поблочного распределения памяти может осуществляться при помощи цепочек блоков, цепочек индексных блоков и таблиц отображения.

    Цепочка блоков

    Каталог

    https://pandia.ru/text/78/277/images/image022_2.gif" width="108" height="21">.gif" width="166" height="70">

    Gif" width="51" height="12">Файл Местоположение Данные Данные Данные Nil

    В схеме с цепочками блоков строка в каталоге указывает на первый блок файла, далее каждый блок фиксированной длины, входящий в состав файла, содержит две части: собственно данные и указатель следующего блока. Минимально выделяемая единица памяти - это блок фиксированного размера.

    Очевидно, что для нахождения конкретной записи в файле, необходимо просмотрев цепочку, найти соответствующий блок, а затем в блоке необходимую запись. Поскольку блоки могут быть разбросаны по всему диску, то этот процесс может занимать много времени. Для сокращения времени доступа можно цепочки делать с двунаправленными ссылками, что дает возможность просматривать цепочку в обоих направлениях.

    Цепочка индексных блоков

    Каталог

    https://pandia.ru/text/78/277/images/image028_3.gif" width="166" height="2 src=">Файл Местоположение

    Цепочка индексных блоков

    https://pandia.ru/text/78/277/images/image033_0.gif" width="166" height="165 src=">left">

    https://pandia.ru/text/78/277/images/image039_0.gif" width="108" height="21"> https://pandia.ru/text/78/277/images/image028_3.gif" width="166" height="2 src=">Файл Местоположение Блок 6 А(2)

    В схеме с таблицами поблочного отображения вместо указателей используются номера блоков. Обычно номера легко преобразуются в фактические адреса. Используется таблица отображения файлов, в которой содержатся по одной строке на каждый блок диска. Строка в каталоге пользователя указывает на строку таблицы отображения, соответствующей первому блоку данного файла. Каждая строка таблицы отображения содержит номер следующего блока данного файла. Таким образом, можно все блоки файла находить последовательно просматривая строки таблицы отображения файлов. В тех строках таблицы, которые соответствуют последним блокам файлов, обычно устанавливается пустой указатель Nil . В некоторых строках таблицы указывается признак “свободен”, указывающий на то, что данный блок может быть выделен по очередному запросу.

    Главное достоинство подобной схемы состоит в том, что по таблице отображения файлов можно судить о физическом соседстве блоков.

    Файл - логическая единица распределения памяти . Он является также совокупностью логически взаимосвязанной информации. Файловая система располагается во внешней памяти (на дисках) и организована по уровням. Структура многоуровневой файловой системы изображена на рис. 19.11.

    Рис. 19.11. Многоуровневая файловая система.

    На верхнем уровне абстракции работают пользовательские программы, использующие высокоуровневые примитивы вида WriteLine(F, X) .Уровнем ниже располагаются модули интерфейса логических файлов – логических записей, блоков и операций обмена. Еще ниже следуют модули организации файлов, затем – операции базовой системы файлов. На нижних уровнях располагаются драйверы устройств (управление вводом-выводом) и аппаратура (устройства ввода-вывода и их контроллеры).

    – структура в памяти, содержащая информацию о файле. Типовая структура блока управления файлом представлена в таблица 3.

    Системные структуры в памяти для управления файловой системой

    При открытии файла и при дальнейшем выполнении операций над ним ОС хранит в памяти целый ряд системных структур, изображенных на рис. 19.12.

    Рис. 19.12. Структуры ОС в памяти для управления файловой системой.

    При открытии файла, при исполнении операции , где указывается путь доступа к файлу в структуре директорий, система находит ссылку на блок управления файлом. При выполнении операций обмена ОС считывает в память блоки данных файла, над которыми выполняются операции . Кроме того, ОС хранит общесистемную таблицу открытых файлов. Для каждого процесса также хранится таблица файлов, открытых только этим процессом.

    Ключевые термины

    Network File System (NFS) – широко распространенная система общего доступа к файлам через локальную сеть .

    Абсолютный путь - полный путь доступа к файлу, начиная от логического имени раздела, либо от корневой системной директории.

    Атрибуты файла – общие свойства, описывающие содержимое файла.

    Блок – логическая единица информации (часть) файла, как правило, объединяющая несколько записей , с целью оптимизации операций ввода-вывода .

    Блок управления файлом (File control block - FCB) – структура в памяти, содержащая информацию о файле и используемая операционной системой.

    Директория (справочник, папка) - directory , folder – структура во внешней памяти, содержащая символьные имена файлов и других директорий и ссылки на них.

    Дополнение к файлу объектного кода (ДФОК) :в системе "Эльбрус" - файл , содержащий в унифицированном виде таблицы именованных сущностей, определенных в программе и ее процедурах (метаданные ).

    Заголовок файла – головная запись файла, в которой содержатся его атрибуты .

    Запись (record) – элементарная единица , часть файла, в терминах которых выполняются операции обмена с файлом.

    Защита (Protection) – управляющая информация , задающая полномочия чтения, изменения и исполнения файла.

    Контейнер (в системе "Эльбрус") – хранилище файлов на одном или нескольких дисках.

    Монтирование – подсоединение отдельного поддерева еще не смонтированной файловой системы к какой-либо вершине (точке монтирования) общего дерева доступных файловых систем.

    Набор данных (data set) - термин фирмы IBM для обозначения файла .

    Общий доступ (sharing) – возможность доступа к файлам и директориям различным пользователям, в том числе – по локальной сети.

    Относительный путь - путь доступа к файлу относительно некоторой текущей директории .

    Память файла - его записи, содержащие собственно хранимую в нем информацию.

    Путь (path) – многослоговое имя файла или директории, состоящее из имени корневой директории (или логического диска) и последовательности имен директорий последующих уровней.

    Раздел (partition) – смежная область дисковой памяти, имеющая свое логическое имя (обычно одна из первых букв латинского алфавита).

    Резервное копирование (back-up) копирование файлов и директорий на внешние носители – ленту (стример ), flash-память , внешний переносной жесткий диск , компакт-диск (CD , DVD ), с целью их сохранности.

    Cправочник внешних ссылок (СВС) – в системе "Эльбрус": справочник , имеющийся у каждого файла и используемый для хранения его внешних ссылок на другие файлы; элементы СВС адресуются по номерам, а не по именам.

    Точка монтирования (mount point) – узел в дереве файловых систем, к которому подсоединяется новая файловая система при монтировании .

    Файл (file) – смежная область логического адресного пространства, как правило, хранящаяся во внешней памяти.

    Файл объектного кода (ФОК) – в системе "Эльбрус": файл , в котором хранится двоичный код исполняемой программы.

    Файловая система поддерево директорий на некоторой машине, расположенных в одном разделе .

    Вопросы

    1. Что такое файл?

    2. Какого типа информация может храниться в файле?

    3. Какую структуру может иметь файл?

    4. Какие программы интерпретируют содержимое файла?

    5. Каковы основные атрибуты файла ?

    6. Каковы основные операции над файлом?

    7. Каким образом система определяет тип файла?

    8. Какие расширения имен используются в операционных системах?

    9. Какие методы доступа к файлам Вам известны?

    10. Какие операции определены над файлами прямого доступа?

    11. Какие операции определены над файлами последовательного доступа ?

    12. Что такое индексный файл и для чего он используется?

    13. Что такое директория?

    14. Каковы особенности, достоинства и недостатки файловой системы "Эльбруса"?

    15. Что такое раздел?

    16. Каковы основные операции над директорией?

    17. Каковы цели логической организации директорий?

    18. Какая организация директорий является наиболее предпочтительной и почему?

    19. Какие проблемы возникают при организации директорий в виде произвольного графа?

    20. Что такое монтирование файловых систем?

    21. Что такое точка монтирования?

    22. Что такое общий доступ к файлам и почему он необходим?

    23. Что такое NFS ?

    24. Что такое защита файлов ?

    25. Какие полномочия защиты и для каких пользователей рассматриваются в UNIX?

    26. Что такое блок управления файлом?

    27. Какие уровни абстракции можно выделить в реализации файловых систем?

    28. Какие структуры в памяти создает ОС при открытии файла и для управления операциями обмена?

    Упражнения

    1. Реализуйте набор основных операций над файлами, используя низкоуровневые примитивы ввода-вывода.

    2. Реализуйте операции последовательного доступа к файлам, используя операции прямого доступа.

    3. Реализуйте индексные файлы и операции ускоренного поиска информации по основным файлам с использованием индексных файлов.

    4. Реализуйте структуру директорий и основные операции над ней, используя операции над файлами. Храните все ссылки в символической форме.

    5. Разработайте и реализуйте алгоритм поиска циклических ссылок в структуре директорий.


    ©2015-2019 сайт
    Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
    Дата создания страницы: 2016-04-11