Объявить значения массива в с. Массивы

30.08.2019 Windows

П усть нам необходимо работать с большим количеством однотипных данных. Например, у нас есть тысяча измерений координаты маятника с каким-то шагом по времени. Создавать 1000 переменных для хранения всех значений очень... обременительно. Вместо этого множество однотипных данных можно объединить под одним именем и обращаться к каждому конкретному элементу по его порядковому номеру.
Массив в си определяется следующим образом
<тип> <имя массива>[<размер>];
Например,
int a;
Мы получим массив с именем a , который содержит сто элементов типа int . Как и в случае с переменными, массив содержит мусор.
Для получения доступа до первого элемента, в квадратных скобках пишем его номер (индекс). Например

#include #include void main() { int a; a = 10; a = 333; a = 234; printf("%d %d %d", a, a, a); getch(); }

Первый элемент имеет порядковый номер 0. Важно понимать, почему. В дальнейшем будем представлять память компьютера в виде ленты. Имя массива - это указатель на адрес памяти, где располагаются элементы массива.

Рис. 1 Массив хранит адрес первого элемента. Индекс i элемента - это сдвиг на i*sizeof(тип) байт от начала

Индекс массива указывает, на сколько байт необходимо сместиться относительно начала массива, чтобы получить доступ до нужно элемента. Например, если массив A имеет тип int , то A означает, что мы сместились на 10*sizeof(int) байт относительно начала. Первый элемент находится в самом начале и у него смещение 0*sizeof(int) .
В си массив не хранит своего размера и не проверяет индекс массива на корректность. Это значит, что можно выйти за пределы массива и обратиться к памяти, находящейся дальше последнего элемента массива (или ближе).

Начальная инициализация массива.

Н апишем простую программу. Создадим массив, после чего найдём его максимальный элемент.

#include #include void main() { int a = {1, 2, 5, 3, 9, 6, 7, 7, 2, 4}; unsigned i; int max; max = a; for (i = 1; i<10; i++) { if (a[i] >

Разберём пример. Сначала мы создаём массив и инициализируем его при создании. После этого присваиваем максимальному найденному элементу значение первого элемента массива.

Max = a;

После чего проходим по массиву. Так как мы уже просмотрели первый элемент (у него индекс 1), то нет смысла снова его просматривать.
Тот же пример, только теперь пользователь вводит значения

#include #include void main() { int a; unsigned i; int max; printf("Enter 10 numbers\n"); for (i = 0; i<10; i++) { printf("%d. ", i); scanf("%d", &a[i]); } max = a; for (i = 1; i<10; i++) { if (a[i] > max) { max = a[i]; } } printf("max element is %d", max); getch(); }

В том случае, если при инициализации указано меньше значений, чем размер массива, остальные элементы заполняются нулями.

#include #include void main() { int a = {1,2,3}; unsigned i; for (i = 0; i<10; i++) { printf("%d ", a[i]); } getch(); }

Если необходимо заполнить весь массив нулями, тогда пишем

Int a = {0};

Можно не задавать размер массива явно, например

Int a = {1, 2, 3};

массив будет иметь размер 3

Размер массива

М ассив в си должен иметь константный размер. Это значит, что невозможно, например, запросить у пользователя размер, а потом задать этот размер массиву.

Printf("Enter length of array "); scanf("%d", &length); { float x; }

Создание динамических массивов будет рассмотрено дальше, при работе с указателями и памятью
В некоторых случаях можно узнать размер массива с помощью функции sizeof.

#include #include void main() { int A; //sizeof возвращает размер всего массива в байтах //Для определения количества элементов необходимо //разделить размер массива на размер его элемента int size = sizeof(A) / sizeof(int); printf("Size of array equals to %d", size); getch(); }

Но это вряд ли будет полезным. При передаче массива в качестве аргумента функции будет передаваться указатель, поэтому размер массива будет невозможно узнать.
Статические массивы удобны, когда заранее известно число элементов. Они предоставляют быстрый, но небезопасный доступ до элементов.

Переполнение массива

П ускай у вас есть такой код

Int A; int i; for (i=0; i<=10; i++) { A[i] = 1; }

Здесь цикл for задан с ошибкой. В некоторых старых версиях компиляторов этот код зацикливался. Дело в том, что переменная i располагалась при компиляции сразу за массивом A . При выходе за границы массива счётчик переводился в 1.
Массивы небезопасны, так как неправильная работа с индексом может приводить к доступу к произвольному участку памяти (Теоретически. Современные компиляторы сами заботятся о том, чтобы вы не копались в чужой памяти).
Если вы работаете с массивами, то необходимо следить за тем, чтобы счётчик не превышал размер массива и не был отрицательным. Для этого, как минимум,

  • 1. Используйте тип size_t для индексирования. Он обезопасит вас от отрицательных значений и его всегда хватит для массива любого размера.
  • 2. Помните, что массив начинается с нуля.
  • 3. Последний элемент массива имеет индекс (размер массива - 1)
Никаких полноценных способов проверки, вышли мы за пределы массива или нет, не существует. Поэтому либо мы точно знаем его размер, либо храним в переменной и считываем при надобности.

Примеры

Т еперь несколько типичных примеров работы с массивами
1. Переворачиваем массив.

#include #include //Это макрос. SIZE в коде будет заменено на 10u #define SIZE 10u void main() { int A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; unsigned i, j; //счётчики unsigned half; //середина массива unsigned tmp; //временная переменная для обмена значениями half = SIZE / 2; //Один счётчик идёт слева напрво, другой справа налево for (i = 0, j = SIZE - 1; i < half; i++, j--) { tmp = A[i]; A[i] = A[j]; A[j] = tmp; } for (i = 0; i < SIZE; i++) { printf("%d ", A[i]); } getch(); }

Здесь незнакомая для вас конструкция

#define SIZE 10u

макрос. Во всём коде препроцессор автоматически заменит все вхождения SIZE на 10u.
2. Удаление элемента, выбранного пользователем.

#include #include #define SIZE 10u void main() { int A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; unsigned i; //счётчик int index; //индекс, введённый пользователем //Выводим массив for (i = 0; i < SIZE; i++) { printf("(%d)=%d ", i, A[i]); } //Просим пользователя ввести валидный индекс while (1) { printf("\nEnter index of element to delete "); scanf("%d", &index); if (index > 0 && index < SIZE) { break; } } //Копируем следующий элемент массива на место удаляемого //и так до конца for (i = index; i < SIZE-1; i++) { A[i] = A; } //Выводим результат for (i = 0; i < SIZE-1; i++) { printf("(%d)=%d ", i, A[i]); } getch(); }

Удаление элемента в данном случае, конечно, не происходит. Массив остаётся того же размера, что и раньше. Мы просто затираем удаляемый элемент следующим за ним и выводим SIZE-1 элементов.
3. Пользователь вводит значения в массив. После этого вывести все разные значения, которые он ввёл.
Пусть пользователь вводит конечное число элементов, допустим 10. Тогда заранее известно, что всего различных значений будет не более 10. Каждый раз, когда пользователь вводит число будем проходить по массиву и проверять, было ли такое число введено.

#include #include #define SIZE 10u void main() { int A = {0}; unsigned i, j; int counter = 1; //сколько разных чисел введено. Как минимум одно. int input; int wasntFound; //флаг, что введённое число не было найдено //Вводим первое число. Оно ещё не встречалось. printf("0. "); scanf("%d", &A); for (i = 1; i < SIZE; i++) { printf("%d. ", i); scanf("%d", &input); wasntFound = 1; //Проверяем, встречалось ли такое число. Если да, //то выставляем флаг и выходим из цикла for (j = 0; j <= counter; j++) { if (input == A[j]) { wasntFound = 0; break; } } //Если флаг был поднят, то заносим число в массив if (wasntFound) { A = input; counter++; } } for (i = 0; i < counter; i++) { printf("%d ", A[i]); } getch(); }

4. Пользователь вводит число - количество измерений (от 2 до 10). После этого вводит все измерения. Программа выдаёт среднее значение, дисперсию, погрешность.

#include #include #include #define SIZE 20u void main() { //Коэффициенты Стьюдента идут, начиная с двух измерений const float student = {12.7, 4.3, 3.2, 2.8, 2.6, 2.4, 2.4, 2.3, 2.3}; float A; unsigned i; unsigned limit; float tmp; float sum = .0f; float mean; float disp; float absError; float relError; do { printf("Enter number of measurements "); scanf("%u", &limit); if (limit > 1 && limit < 11) { break; } } while(1); for (i = 0; i < limit; i++) { printf("#%d: ", i); scanf("%f", &A[i]); sum += A[i]; } mean = sum / (float)limit; sum = .0f; for (i = 0; i < limit; i++) { tmp = A[i] - mean; sum += tmp * tmp; } disp = sum / (float)limit; absError = student * sqrt(sum / (float)(limit - 1)); relError = absError / mean * 100; printf("Mean = %.6f\n", mean); printf("Dispertion = %.6f\n", disp); printf("Abs. Error = %.6f\n", absError); printf("Rel. Error = %.4f%", relError); getch(); }

5. Сортировка массива пузырьком

#include #include #define SIZE 10 #define false 0 #define true !false void main() { float a = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 0.0f}; float tmp; unsigned i, j; char flag; //Выводи массив for (i = 0; i < SIZE; i++) { printf("%.3f ", a[i]); } printf("\n"); //Пока массив не отсортирован do { flag = false; //Проходим по массиву. Если следующий элемент больше предыдущего, то //меняем их местами и по новой проверяем массив for (i = 1; i < SIZE; i++) { if (a[i] > a) { tmp = a[i]; a[i] = a; a = tmp; flag = true; } } } while(flag == true); //Выводим отсортированный массив for (i = 0; i < SIZE; i++) { printf("%.3f ", a[i]); } getch(); }

6. Перемешаем массив. Воспользуемся для этого алгоритмом

Объявление массива в Си
Массив (Array) относится к вторичным типам данных. Массив в Си представляет собой коллекция явно определенного размера элементов определенного типа. то есть в отличие от массивов в Ruby массивы в Си являются однотипными (хранят данные только одного типа) и имеют заранее определенную длину (размер).

В Си массивы можно грубо разделить на 2 типа: массив чисел и массив символов. Разумеется, такое деление абсолютно условное ведь символы — это также целые числа. Массивы символов также имеют несколько иной синтаксис. Ниже приведены примеры объявления массивов:

Int arr; int a = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; char ch = {"R","u","b","y","D","e","v",".","r","u"}; char ch2 = "сайт";

В первом случае мы объявляем массив целых чисел (4 байта на число) размером в 100 элементов. Точнее мы резервируем память для хранения 100 элементов типа int.

Во втором случае мы определяем массив из 10 целочисленных элементов и сразу же присваиваем элементам массива значения.

В третьем случае мы определяем массив символов. В Си нету строк, но есть массивы символов, которые заменяют строки.

В последнем случае мы также объявляем массив символов с помощью специального — более лаконичного синтаксиса. Массивы ch и ch2 практически идентичны, но есть одно отличие. Когда для создания массива мы используем синтаксис со строковой константой, то в конец массива символов автоматически добавляется символ \0, при использовании стандартного синтаксиса обявления массива мы должны самостоятельно добавлять \0 в качестве последнего элемента массива символов. Символ \0 (null) используется для идентификации конца строки. О страках мы поговорим более подробно в отдельной статье.

Обращение к элементам массива в Си

В Си обращение к элементам массива достаточно тривиально и похоже на то как это делается в большинстве других языков программирования. После имени переменной ссылающейся на массив мы в квадратных скобках указываем индекс (еще его называют ключом) элемента. В примере ниже показано как мы обращаемся к первому элементу массива:

#include int main() { int arr; int a = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; char ch = {"R","u","b","y","D","e","v",".","r","u"} ; char ch2 = "сайт"; printf("%d\n", arr); printf("%c\n", ch); }

Код printf(«%d\n», a); напечатает 2, а не 1 потому, что индексация массивов начинается с 0 и лишнее подтверждение тому строка printf(«%c\n», ch); , которая напечатает символ «R» — нулевой элемент массива ch.

В общем случае объявление массива имеет следующий синтаксис:

тип_данных имя_переменной[<количество_элементов>] = <список, элементов, массива>

Количество элементов массива и список элементов являются обязательными атрибутами объявления массива, точнее обязательным является любое одно из них, но не оба сразу.

Для того, чтобы вникнуть в устройство массивов необходимо познакомиться с такой концепцией как указатели в Си.

Указатели в Си
Типы данных необходимы для того, чтобы мочь выделить кусок памяти определенного размера для хранения данных и определения того, что это за данные ибо без явного определения непонятно является ли набор нулей и единиц числом, символом или чем-нибудь еще. В этом случае переменная является ссылкой на фрагмент памяти определенного размера и типа, например, int переменная ссылается на определенную область памяти объемом 4 байта, в которой хранится целое число, а char переменная ссылается на область памяти объемом 1 байт в которой хранится символ (код символа).

Чтобы получить адрес на который ссылается переменная мы используем специальный оператор & — оператор адреса (address operator), пример:

#include int main() { int arr; int a = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; char ch = {"R","u","b","y","D","e","v",".","r","u"} ; char ch2 = "сайт"; int num = 100500; printf("%p\n", &arr); }

Строка printf(«%p\n», &arr); напечатает 0xbfbbe068. 0xbfbbe068 — шестнадцатеричное представление адреса памяти где хранится число 100500.

Указатели — это переменные специального типа, которые хранят не обыкновенные значения, но их адреса в памяти.

#include int main() { int a, b; b = a = 10; printf("A: %p\n", &a); printf("B: %p\n", &b); }

$ ./program
A: 0xbfe32008
B: 0xbfe3200c

В примере выше мы присваиваем переменным a и b одинаковое значение — число 10, но переменные a и b ссылаются на две разные области памяти, то есть мы сохраняем в памяти число 10 два раза. Если мы изменим значение переменной b, то оно это не отразится на переменной a и наоборот. Это отличается от того, как мы работаем с переменными в Ruby, где переменные — это ссылки на объекты хранимые в памяти, и при присваивании в стиле a = b = 10 мы получаем один объект — число 10 и две ссылки на него.

#include int main() { int a = 10; int * b = &a; printf("A:\n\taddress: %p\n\tvalue: %d\n",&a, a); printf("B:\n\taddress: %p\n\tvalue: %d\n",b, *b); }

Результат выполнения:

$ ./program
A:
address: 0xbfed0fa8
value: 10
B:
address: 0xbfed0fa8
value: 10

Указатели и массивы

На самом деле в Си нет массивов в привычном для многих людей понимании. Любой массив в Си — это просто ссылка на нулевой элемент массива. Пример:

#include int main() { int a = {10,20,30}; printf("a-Address:%p\n", &a); printf("a-Address:%p\n", &a); printf("a-Value:%d\n", a); printf("a-Size:%d\n", sizeof(a)); }

Результат:

$ ./program
a-Address:0xbfc029b4
a-Address:0xbfc029b4
a-Value:10
a-Size:12

Как видите я вас не обманул, переменная ссылающаяся на массив на самом деле ссылается только на его нулевой элемент, то есть является указателем на адрес хранения первого элемента.

Когда мы запускаем программу, то операционная система предоставляет программе два особых объема памяти — стек (stack) и кучу (heap). В нашей программе используется только стек. Стек хранит значения упорядочено. Когда мы создаем массив, мы на самом деле создаем указатель ну нулевой элемент коллекции элементов и резервируем память для N-количества элементов. В примере выше мы создали коллекцию из 3 элементов типа int, т.е. каждый элемент занимает 4 байта памяти. Когда мы воспользовались функцией sizeof(), которая возвращает размер в байтах переданного ей аргумента, то получили значение 12 т.е. массив занимает 12 байт памяти: 3элемента * 4 байта. Поскольку для хранения элементов коллекции используется стек — элементы сохраняются по порядку, то есть занимают соседние области стека, а это означает, что мы можем перемещаться по коллекции зная позицию элемента и размер коллекции. Пример:

#include int main() { int a = {10,20,30,40,10}, i; for(i = 0; i <= sizeof(a)/sizeof(int); i++) printf("a[%d] has %d in %p\n", i, a[i], &a[i]); }

Результат:

$ ./program
a has 10 in 0xbfbeda88
a has 20 in 0xbfbeda8c
a has 30 in 0xbfbeda90
a has 40 in 0xbfbeda94
a has 10 in 0xbfbeda98
a has 5 in 0xbfbeda9c

Программа напечатала нам информацию о массиве из 5 элементов: номер элемента, значение и адрес в памяти. Обратите внимание на адреса элементов — это то, о чем я вам говорил. Адреса идут подряд и каждый следующий больше предыдущего на 4. В 5 элементе коллекции, которого мы на самом деле не объявляли хранится общее количество элементов коллекции. Самое интересное — это то, что мы можем аналогичным образом использовать и указатели для прохода по массиву. Пример:

#include int main() { int a = {10,20,30,40,10}, i; int * b = a; for(i = 0; i <= sizeof(a)/sizeof(int); i++) printf("a[%d] has %d in %p\n", i, *(b + i), b + i); }

Примечания

1. Обратите внимание на то, что указателю b мы присваиваем не адрес массива a, а само значение переменной a, ведь a это, по сути и есть указатель.

2. Использование квадратных скобой с указанием индексов элементов массива — это такой синтаксический сахар в Си для более удобного и понятного обращения к элементам коллекции.

3. Как я уже говорил, в Си нету традиционных массивов потому, я называю их коллекциями для того, чтобы подчеркнуть эту особенность Си.

4. Адрес 1 элемента массива больше адреса 0 элемента массива на объем памяти выделяемой под хранение элемента данного типа. Мы работаем с элементами типа int, для хранения каждого из которых используется 4 байта. Адрес элемента массива в памяти и вообще любых данных — это адрес первого байта выделяемой под его хранение памяти.

5. Для упрощения понимания представьте, что память компьютера — это огромный кинотеатр, где места пронумерованы от 0 до, скачем 1_073_741_824. У данных типа char задница нормального размера и они помещаются в одном кресле (занимают один байт), а у толстых посетителей типа long double задницы огромные и каждый из них вмещается только на 10 сидениях. Когда у толстых посетителей кинотеатра спрашивают номер их места, они говорят только номер первого кресла, а количество и номера всех остальных кресел можно легко вычислить исходя из комплекции посетителя (типа данных). Массивы можно представить в виде групп однотипных посетителей кинотеатра, например группа худеньких балерин типа char из 10 человек займет 10 мест потому, что char вмещается в одном кресле, а группа любителей пива состоящая из 5 человек типа long int займет 40 байт.

6. У операторов & и * имеется несколько популярных названий, но вы можете называть их хоть Васей и Петей. Главное, что стоит запомнить — это:

& — показывает номер первого занятого посетителем кинотеатра сидения. То есть адрес первого занимаемого байта.

* — позволяет обратиться к посетителю сищящему на определенном месте. То есть позволяет получить значение, что хранится по определенному адресу в памяти.

На этом статья окончена, но не окончена тема массивов и указателей, а тем более изучения всего языка Си.

Responses

  1. anonymouse says:

    Проверь, действительно ли эти два массива одинаковы:
    char ch = {‘R’,"u’,"b’,"y’,"D’,"e’,"v’,’.’,"r’,"u’};
    char ch2 = «сайт»;
    Во втором случае массив содержит на один элемент больше, /0, который используется как ограничитель при печати, копировании строк и так далее.

  2. admin says:

    На самом деле оба массива содержат символ \0 в качестве 10 элемента, по этому они действительно одинаковы, но о символе \0 я расскажу в отдельной статье посвященной символьным массивам и строкам.

  3. anonymouse says:

    Да, ты оказался прав, я написал тот комментарий до того как сам проверил вот этот код в GCC:
    #include
    #include

    int main(void)
    {
    char ch = {‘R’,"u’,"b’, ‘y’, ‘D’, ‘e’, ‘v’, ‘.’, ‘r’, ‘u’};
    char ch2 = «сайт»;

    printf(«%x\n», ch[ strlen(ch) ]);

    return 0;
    }
    Печатает ноль.

  4. admin says:

    Самое интересно, что если верить спецификации ANSI C, то ты прав ведь там ничего не сказано об автодобавлении нулевого символа в конец массива символов созданного стандартным для массивов способом (и в K&R это в обоих вариантах делается явно). Думаю, это или отличие в С99 или в компиляторе дело, так как производители компиляторов реализуют возможности С99 в основном частично, а некоторые добавляют что-то свое. Теперь понятно, почему выбор компилятора так важен. Нужно будет над этим вопросом попозже поработать и написать статью о различиях компиляторов Си, поддержке ими С99 и различиях между ANSI C и C 99.

  5. admin says:

    Провел расследование, все таки я дезинформировал тебя. В традиционном синтаксисе \0 не добавляется, это просто такое совпадение, что следующим в стеке идет символ \0, но он не относится к массиву символов. Если использовать strlen() то явно видна разница в 1 символ между традиционным синтаксисом создания массива. где символы просто перечисляются и использованием строковой константы. null-символ добавляется автоматически только в конец массива символов созданного при помощи строковой констранты.

  6. andr says:

    Очень много вводящих в заблуждение высказываний. Такими статьями начинающих программистов только портить. :)
    Например, «В 5 элементе коллекции, которого мы на самом деле не объявляли хранится общее количество элементов коллекции.», — вот это невиданные сказки. В языке С нигде не хранится длина массивов. В этом примере происходит выход за пределы массива ‘a’, т.к. для 5-ти элементов массива последний индекс == 4, а ты его индексируешь до 5-ти. Тем самым обращаешься по адресу переменной i, которую компилятор разместил в памяти сразу после массива, поэтому на последнем цикле (когда i == 5) и получаешь в результате 5-ку на выходе.

    «Как я уже говорил, в Си нету традиционных массивов потому, я называю их коллекциями для того, чтобы подчеркнуть эту особенность Си.» — это совсем что-то непонятное. Что такое «традиционные массивы»? Коллекции, кстати, это более широкий термин. Под определение коллекций подходят массивы, списки, матрицы, стеки и даже хеш-таблицы. Зачем вводить неподходящие термины и вводить в заблуждение читателей?

  7. admin says:

    andr спасибо за замечание. Я только недавно начал изучать Си, и это были мои предположения. Си несколько непривычен для меня, вот и получаются такие ошибки. Скоро поправлю.

  8. faustman says:

    Про худеньких балерин и группу любителей пива хорошо сказал!))

  9. Myname says:

    А у меня gcc a, которое, вы говорите, хранит количество элементов, выдает значение 32767.

Что такое массивы в си?

Как объявлять массивы в си?

Как инициализировать массивы в си?

Массивы в Си для чайников.

Массивы в C

Массив в Си - это набор элементов одного типа, обратиться к которым можно по индексу. Элементы массивов в C расположены друг за другом в памяти компьютера.

Простой пример создания и заполнения массива в C:

// @author Subbotin B.P..h> void main(void) { int nArr; nArr = 1; nArr = 2; nArr = 3; printf("\n\tArray\n\n"); printf("nArr\t=\t%d\n", nArr); printf("nArr\t=\t%d\n", nArr); printf("nArr\t=\t%d\n", nArr); return 0; }

Получаем:

В примере объявляем массив, содержащий элементы типа int:

здесь имя массива nArr, количество элементов массива равно трём, тип элементов массива int.

Массив - это набор элементов. К каждому элементу массива можно обратиться по его номеру. Номер принято называть индексом. Нумерация элементов массива идёт с нуля. Присвоим значение первому элементу массива, а первый элемент имеет индекс ноль:

Присвоим значение второму элементу массива, а второй элемент имеет индекс один:

Присвоим значение третьему элементу массива, а третий элемент имеет индекс два:

При выводе на экран элементов массива мы получаем их значения. Вот так:

printf("nArr\t=\t%d\n", nArr);

Чтоб получить элемент массива, надо указать имя массива и индекс элемента:

это первый элемент массива, ведь у первого элемета индекс ноль.

Присвоим значение третьего элемента массива переменной int a:

индекс третьего элемента массива равен двум, так как отсчёт индексов ведут с нуля.

Теперь общее правило объявления массивов в Си: при объявлении массива нужно указать его имя, тип элементов, количество элементов. Количество элементов есть натуральное число, т.е. целое положительное. Ноль не может быть количеством элементов. Нельзя задавать переменное количество элементов массива. Вот примеры объявлений массивов в C:

int nArr; // Объявлен массив, предназначенный для хранения ста целых чисел;
float fArr; // Объявлен массив, предназначенный для хранения 5-ти чисел типа float;
char cArr; // Объявлен массив, предназначенный для хранения двух символов;

Ошибкой будет объявить массив с переменным количеством элементов:

Int varElem;
int nArr; // Ошибка! Количество элементов нельзя задавать переменной;

Но можно задавать количество элементов постоянной величиной: или непосредственным целым положительным числом 1, 2, 3... или константой:

Const int arrayLength = 3;
int nArr;

При объявлении массива в Си его сразу можно инициализировать:

int nMassiv = {1, 2, 3};

Можно не указывать количество элементов массива в квадратных скобках, если инициализируются все элементы массива:

int nMassiv = {1, 2, 3};

количество элементов будет в этом случае определено автоматически.

Можно определить лишь часть элементов массива при его объявлении:

int nMassiv = {1, 2};

в этом примере первые два элемента массива инициализированы, а третий не определен.

Пример массива символов:

char cArr = {"S", "B", "P"};

При объявлении массива нельзя указывать количество элементов переменной. Но можно использовать переменные при обращении к элементам массивов:

Int ind = 0;
char cr = cArr;

Это используется при работе с циклами. Пример:

// @author Subbotin B.P..h> void main(void) { const int arrayLength = 3; int nArr; for(int inn = 0; inn < 3; inn++) { nArr = inn + 1; } printf("\n\tArray\n\n"); for(int inn = 0; inn < 3; inn++) { printf("nArr[%d]\t=\t%d\n", inn, nArr); } return 0; }

В примере в первом цикле заполняем массив элементами типа int, а во втором цикле выводим эти элементы на экран.

Массив это структура данных, представленная в виде группы ячеек одного типа, объединенных под одним единым именем. Массивы используются для обработки большого количества однотипных данных. Имя массива является , что такое указатели расскажу немного позже. Отдельная ячейка данных массива называется элементом массива. Элементами массива могут быть данные любого типа. Массивы могут иметь как одно, так и более одного измерений. В зависимости от количества измерений массивы делятся на одномерные массивы, двумерные массивы, трёхмерные массивы и так далее до n-мерного массива. Чаще всего в программировании используются одномерные и двумерные массивы, поэтому мы рассмотрим только эти массивы.

Одномерные массивы в С++

Одномерный массив — массив, с одним параметром, характеризующим количество элементов одномерного массива. Фактически одномерный массив — это массив, у которого может быть только одна строка, и n-е количество столбцов. Столбцы в одномерном массиве — это элементы массива. На рисунке 1 показана структура целочисленного одномерного массива a . Размер этого массива — 16 ячеек.

Рисунок 1 — Массивы в С++

Заметьте, что максимальный индекс одномерного массива a равен 15, но размер массива 16 ячеек, потому что нумерация ячеек массива всегда начинается с 0. Индекс ячейки – это целое неотрицательное число, по которому можно обращаться к каждой ячейке массива и выполнять какие-либо действия над ней (ячейкой).

//синтаксис объявления одномерного массива в С++: /*тип данных*/ /*имя одномерного массива*/; //пример объявления одномерного массива, изображенного на рисунке 1: int a;

где, int —целочисленный ;

А — имя одномерного массива;
16 — размер одномерного массива, 16 ячеек.

Всегда сразу после имени массива идут квадратные скобочки, в которых задаётся размер одномерного массива, этим массив и отличается от всех остальных переменных.

//ещё один способ объявления одномерных массивов int mas, a;

Объявлены два одномерных массива mas и а размерами 10 и 16 соответственно. Причём в таком способе объявления все массивы будут иметь одинаковый тип данных, в нашем случае — int .

// массивы могут быть инициализированы при объявлении: int a = { 5, -12, -12, 9, 10, 0, -9, -12, -1, 23, 65, 64, 11, 43, 39, -15 }; // инициализация одномерного массива

Инициализация одномерного массива выполняется в фигурных скобках после знака равно , каждый элемент массива отделяется от предыдущего запятой.

Int a={5,-12,-12,9,10,0,-9,-12,-1,23,65,64,11,43,39,-15}; // инициализации массива без определения его размера.

В данном случае компилятор сам определит размер одномерного массива. Размер массива можно не указывать только при его инициализации, при обычном объявлении массива обязательно нужно указывать размер массива. Разработаем простую программу на обработку одномерного массива.

// array.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include << "obrabotka massiva" << endl; int array1 = { 5, -12, -12, 9, 10, 0, -9, -12, -1, 23, 65, 64, 11, 43, 39, -15 }; // объявление и инициализация одномерного массива cout << "indeks" << "\t\t" << "element massiva" << endl; // печать заголовков for (int counter = 0; counter < 16; counter++) //начало цикла { //вывод на экран индекса ячейки массива, а затем содержимого этой ячейки, в нашем случае - это целое число cout << "array1[" << counter << "]" << "\t\t" << array1 << endl; } system("pause"); return 0; }

// код Code::Blocks

// код Dev-C++

// array.cpp: определяет точку входа для консольного приложения. #include using namespace std; int main(int argc, char* argv) { cout << "obrabotka massiva" << endl; int array1 = { 5, -12, -12, 9, 10, 0, -9, -12, -1, 23, 65, 64, 11, 43, 39, -15 }; // объявление и инициализация одномерного массива cout << "indeks" << "\t\t" << "element massiva" << endl; // печать заголовков for (int counter = 0; counter < 16; counter++) //начало цикла { //вывод на экран индекса ячейки массива, а затем содержимого этой ячейки, в нашем случае - это целое число cout << "array1[" << counter << "]" << "\t\t" << array1 << endl; } return 0; }

В строках 10 — 11 объявлен и проинициализирован целочисленный одномерный массив с именем array1 , размер которого равен 16 ячейкам, то есть такой массив может хранить 16 чисел. Любая обработка массива осуществима только совместно с циклами. Какой цикл выбрать для обработки массива — это вам решать. Но лучше всего для этой задачи подходит . Переменную-счётчик counter будем использовать для обращения к элементам одномерного массива array1 . В условии продолжения цикла for стоит строгий знак неравенства, так как шестнадцатого индекса в одномерном массиве array1 нет. А так как нумерация ячеек начинается с нуля, то элементов в массиве 16. В теле цикла for оператор cout печатает элементы одномерного массива (см. Рисунок 2).

Obrabotka massiva indeks element massiva array1 5 array1 -12 array1 -12 array1 9 array1 10 array1 0 array1 -9 array1 -12 array1 -1 array1 23 array1 65 array1 64 array1 11 array1 43 array1 39 array1 -15 Для продолжения нажмите любую клавишу. . .

Рисунок 2 — Массивы в С++

Разработаем ещё одну программу на обработку одномерного массива в С++. Программа должна последовательно считывать десять введённых чисел с клавиатуры. Все введённые числа просуммировать, результат вывести на экран.

// array_sum.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include << "Enter elementi massiva: " << endl; int sum = 0; for (int counter = 0; counter < 10; counter++) // цикл для считывания чисел cin >> << "array1 = {"; for (int counter = 0; counter < 10; counter++) // цикл для вывода элементов массива cout << array1 << " "; // выводим элементы массива на стандартное устройство вывода for (int counter = 0; counter < 10; counter++) // цикл для суммирования чисел массива sum += array1; // суммируем элементы массива cout << "}\nsum = " << sum << endl; system("pause"); return 0; }

// код Code::Blocks

// код Dev-C++

// array_sum.cpp: определяет точку входа для консольного приложения. #include using namespace std; int main(int argc, char* argv) { int array1; // объявляем целочисленный массив cout << "Enter elementi massiva: " << endl; int sum = 0; for (int counter = 0; counter < 10; counter++) // цикл для считывания чисел cin >> array1; // считываем вводимые с клавиатуры числа cout << "array1 = {"; for (int counter = 0; counter < 10; counter++) // цикл для вывода элементов массива cout << array1 << " "; // выводим элементы массива на стандартное устройство вывода for (int counter = 0; counter < 10; counter++) // цикл для суммирования чисел массива sum += array1; // суммируем элементы массива cout << "}\nsum = " << sum << endl; return 0; }

Перед тем как выполнять обработку массива его необходимо объявить, причём размер одномерного массива равен 10, так как это оговорено условием задачи. В переменной sum будем накапливать сумму элементов одномерного массива. Первый цикл for заполняет объявленный одномерный массив, введёнными с клавиатуры числами, строки 12 — 13 . Переменная счётчик counter используется для последовательного доступа к элементам одномерного массива array1 , начиная с индекса 0 и до 9-го включительно. Второй цикл for выводит на экран элементы массива, строки 15 — 16 . Третий цикл for последовательно считывает элементы одномерного массива и суммирует их, сумма накапливается в переменной sum , строки 17 — 18 . Результат работы программы смотреть на рисунке 3.

Enter elementi massiva: 0 1 2 3 4 5 6 7 8 9 array1 = {0 1 2 3 4 5 6 7 8 9 } sum = 45 Для продолжения нажмите любую клавишу. . .

Рисунок 3 — Массивы в С++

Сначала последовательно были введены все 10 чисел, после чего отобразился одномерный массив, и напечаталась сумма чисел массива.

Двумерные массивы в С++

До этого момента мы рассматривали одномерные массивы, которыми не всегда можно ограничиться. Допустим, необходимо обработать некоторые данные из таблицы. В таблице есть две характеристики: количество строк и количество столбцов. Также и в двумерном массиве, кроме количества элементов массива, есть такие характеристики как, количество строк и количество столбцов двумерного массива. То есть, визуально, двумерный массив — это обычная таблица, со строками и столбцами. Фактически двумерный массив — это одномерный массив одномерных массивов. Структура двумерного массива, с именем a , размером m на n показана ниже (см. Рисунок 4).

Рисунок 4 — Массивы в С++

где, m — количество строк двумерного массива;
n — количество столбцов двумерного массива;
m * n — количество элементов массива.

// синтаксис объявления двумерного массива /*тип данных*/ /*имя массива*/;

В объявлении двумерного массива, также как и в объявлении одномерного массива, первым делом, нужно указать:

  • тип данных;
  • имя массива.

После чего, в первых квадратных скобочках указывается количество строк двумерного массива, во вторых квадратных скобочках — количество столбцов двумерного массива. Двумерный массив визуально отличается от одномерного второй парой квадратных скобочек. Рассмотрим пример объявления двумерного массива. Допустим нам необходимо объявить двумерный массив, с количеством элементов, равным 15. В таком случае двумерный массив может иметь три строки и пять столбцов или пять строк и три столбца.

// пример объявление двумерного массива: int a;

  • a — имя целочисленного массива
  • число в первых квадратных скобках указывает количество строк двумерного массива, в данном случае их 5;
  • число во вторых квадратных скобках указывает количество столбцов двумерного массива, в данном случае их 3.

// инициализация двумерного массива: int a = { {4, 7, 8}, {9, 66, -1}, {5, -5, 0}, {3, -3, 30}, {1, 1, 1} };

В данном массиве 5 строк, 3 столбца. после знака присвоить ставятся общие фигурные скобочки, внутри которых ставится столько пар фигурных скобочек, сколько должно быть строк в двумерном массиве, причём эти скобочки разделяются запятыми. В каждой паре фигурных скобочек записывать через запятую элементы двумерного массива. Во всех фигурных скобочках количество элементов должно совпадать. Так как в массиве пять строк, то и внутренних пар скобочек тоже пять. Во внутренних скобочках записаны по три элемента, так как количество столбцов — три. Графически наш массив будет выглядеть, как двумерная таблица (см. Рисунок 5).

Рисунок 5 — Массивы в С++

В каждой ячейке двумерного массива a показано значение, в нижнем правом углу показан адрес данной ячейки. Адресом ячейки двумерного массива является имя массива, номер строки и номер столбца.

Разработаем несложную программу, на обработку двумерного массива, которая называется «Лабиринт». Лабиринт должен быть построен на основе двумерного массива. Размер лабиринта выберем на свое усмотрение.

// array2.cpp: определяет точку входа для консольного приложения. #include "stdafx.h" #include < 33; i++) //переключение по строкам { for (int j = 0; j < 20; j++)// переключение по столбцам if (mas[i][j] == 1) { // вывести два раза символ (номер которого 176 в таблице аски) в консоль cout << static_cast(176); cout << static_cast(176); } else cout << " "; // вывести два пробела cout << endl; } system("pause"); return 0; }

// код Code::Blocks

// код Dev-C++

// array2.cpp: определяет точку входа для консольного приложения. #include using namespace std; int main(int argc, char* argv) { // 1-условно "стенки лабиринта" // 2-"правильный путь, выход из лабиринта" // 0-"ложный путь" int mas = { {1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,}, // инициализация двумерного массива {1,2,1,0,0,1,0,1,2,2,2,1,1,1,1,0,0,0,0,1,}, {1,2,1,1,0,1,0,1,2,1,2,2,2,2,1,0,1,1,0,1,}, {1,2,2,2,2,2,2,1,2,1,1,1,1,2,1,0,0,1,0,1,}, {1,1,1,1,1,1,2,1,2,1,0,0,1,2,1,1,0,1,0,1,}, {1,0,0,1,0,0,2,2,2,1,1,0,0,2,0,0,0,1,0,1,}, {1,0,1,1,0,1,1,1,1,1,0,0,1,2,1,1,1,1,0,1,}, {1,0,0,0,0,0,0,0,0,1,1,1,1,2,1,0,0,0,0,1,}, {1,1,1,1,1,1,0,1,1,1,2,2,2,2,1,0,1,1,1,1,}, {1,1,0,0,0,1,0,0,1,1,2,1,1,1,1,0,0,0,0,1,}, {1,0,0,1,0,0,0,0,0,1,2,2,2,2,1,1,1,1,0,1,}, {1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,0,0,0,0,1,}, {1,2,2,2,2,2,2,2,2,2,2,2,2,2,1,0,1,1,1,1,}, {1,2,1,1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,1,}, {1,2,1,0,0,0,1,2,2,2,1,0,0,0,0,0,1,1,0,1,}, {1,2,1,1,1,1,1,2,1,2,1,1,1,0,1,0,0,0,0,1,}, {1,2,1,2,2,2,1,2,1,2,2,2,1,1,1,1,1,1,1,1,}, {1,2,1,2,1,2,1,2,1,0,1,2,2,2,2,2,2,2,2,1,}, {1,2,1,2,1,2,1,2,1,0,1,1,1,1,1,1,1,1,2,1,}, {1,2,1,2,1,2,1,2,1,0,0,0,0,0,0,0,0,0,2,1,}, {1,2,1,2,1,2,2,2,1,0,1,1,1,1,1,1,0,1,2,1,}, {1,2,1,2,1,1,1,1,1,0,0,0,1,0,1,0,0,1,2,1,}, {1,2,1,2,2,1,0,0,1,1,1,0,0,0,1,0,1,1,2,1,}, {1,2,1,1,2,1,1,0,0,0,0,0,1,0,1,0,0,1,2,1,}, {1,2,1,1,2,1,0,0,1,1,1,1,1,1,1,1,1,1,2,1,}, {1,2,1,1,2,1,1,0,1,2,2,2,2,2,2,2,2,2,2,1,}, {1,2,1,1,2,1,0,0,1,2,1,1,1,1,1,1,1,1,1,1,}, {1,2,1,1,2,1,0,1,1,2,1,1,1,1,1,1,1,1,2,2,}, {1,2,1,1,2,1,0,0,1,2,1,1,2,2,2,2,2,2,2,1,}, {1,2,1,1,2,1,0,1,1,2,1,1,2,1,1,1,1,1,1,1,}, {1,2,1,1,2,1,0,0,1,2,1,1,2,1,0,0,0,1,0,1,}, {1,2,2,2,2,1,0,1,1,2,2,2,2,0,0,1,0,0,0,1,}, {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,} }; // два цикла - внутренний и внешний, осуществляющие обращение к каждому элементу массива for (int i = 0; i < 33; i++) //переключение по строкам { for (int j = 0; j < 20; j++)// переключение по столбцам if (mas[i][j] == 1) { // вывести два раза символ (номер которого 176 в таблице аски) в консоль cout << static_cast(176); cout << static_cast(176); } else cout << " "; // вывести два пробела cout << endl; } return 0; }

Правильный и ложный пути можно было бы обозначать одной и той же цифрой, например, нулём, но для наглядности правильный путь обозначен цифрой 2. Инициализация массива выполнялась вручную, только для того, что бы упростить программу. Так как в программе выполняется обработка двумерного массива, нужны два цикла, для переключения между элементами двумерного массива. Первый цикл for выполняет переключение между строками двумерного массива. Так как строк в двумерном массиве 33, то и переменная-счетчик i инкрементируется от 0 до 33, строка 46 . Внутри первого цикла стоит цикл for , который переключается между элементами строки двумерного массива. В теле второго цикла for внутри выполняетcя унарная операция преобразования типа данных — static_cast<>() , которая печатает символ , под номером 176. операция преобразования типов данных дублируется для увеличения ширины лабиринта. Результат работы программы (см. Рисунок 6).

Рисунок 6 — Массивы в С++

Еще одним видом массивов C# являются массивы массивов, называемые также изрезанными массивами (jagged arrays). Такой массив массивов можно рассматривать как одномерный массив, элементы которого являются массивами, элементы которых, в свою очередь, снова могут быть массивами, и так может продолжаться до некоторого уровня вложенности.

В каких ситуациях может возникать необходимость в таких структурах данных? Эти массивы могут применяться для представления деревьев, у которых узлы могут иметь произвольное число потомков. Таковым может быть, например, генеалогическое дерево. Вершины первого уровня -Fathers , представляющие отцов, могут задаваться одномерным массивом, так что Fathers [ i ] - этоi -й отец. Вершины второго уровня представляются массивом массивов -Children , так чтоChildren [ i ] - это массив детейi -го отца, аChildren [ i ][ j ] - это j-й ребенокi -го отца. Для представления внуков понадобится третий уровень, так чтоGrandChildren [ i ][ j ][ k ] будет представлять к -го внукаj -го ребенка i -го отца.

Есть некоторые особенности в объявлении и инициализации таких массивов. Если при объявлении типа многомерных массивов для указания размерности использовались запятые, то для изрезанных массивов применяется более ясная символика - совокупности пар квадратных скобок; например, int [ ] задает массив, элементы которого - одномерные массивы элементов типа int .

Сложнее с созданием самих массивов и их инициализацией. Здесь нельзя вызвать конструкторnew int , поскольку он не задает изрезанный массив. Фактически нужно вызывать конструктор для каждого массива на самом нижнем уровне. В этом и состоит сложность объявления таких массивов. Начнем с формального примера:

//массив массивов - формальный пример
//объявление и инициализация
int [ ] jagger = new int [ ] {
new int[ ] {5, 7, 9, 11},
new int[ ] {2, 8},
new int[ ] {6, 12, 4}
};

Массивjagger имеет всего два уровня. Можно считать, что у него три элемента, каждый из которых является массивом. Для каждого такого массива необходимо вызвать конструкторnew , чтобы создать внутренний массив. В данном примере элементы внутренних массивов получают значение, будучи явно инициализированы константными массивами. Конечно, допустимо и такое объявление:

int [ ] jagger 1 = new int [ ] {
new int ,
new int ,
new int
};

В этом случае элементы массива получат при инициализации нулевые значения. Реальную инициализацию нужно будет выполнять программным путем. Стоит заметить, что в конструкторе верхнего уровня константу 3 можно опустить и писать простоnew int [ ] . Вызов этого конструктора можно вообще опустить - он будет подразумеваться:

int [ ] jagger 2 = {
new int,
new int,
new int
};

А вот конструкторы нижнего уровня необходимы. Еще одно важное замечание - динамические массивы возможны и здесь. В общем случае, границы на любом уровне могут быть выражениями, зависящими от переменных. Более того, допустимо, чтобы массивы на нижнем уровне были многомерными.