I5 3570k тесты. ⇡ Экскурс в процессорные микроархитектуры

01.04.2019 Приложения

Почти каждый день, как сводки с фронта, мы с горечью читаем новости о том, что рынок настольных компьютеров продолжает лишаться своих верных сторонников. Потери несёт не только армия пользователей. Один за другим выпадают из числа приверженцев классических десктопов и производители оборудования. Но особенно обидно бывает, когда среди фирм, сделавших себе имя и заработавших огромный капитал именно на рынке настольных систем, обнаруживаются предатели и диверсанты, на словах декларирующие непоколебимую верность старым идеалам, а на деле — не только смотрящие, но и активно ходящие «на сторону» (мобильных устройств, естественно). Вопиющий пример такой вероломной неверности, который ещё пока не затмился в памяти какой-нибудь новой ужасной изменой, совсем недавно показала нам компания Intel.

Да-да, речь идёт о Haswell. О том самом процессоре, который изначально преподносился как очередной цикл разработки высокопроизводительной микроархитектуры, но по факту оказался целенаправленно и глубоко адаптированным для использования в маломощных портативных вычислительных системах. Тот же Haswell, который в итоге получили пользователи настольных систем, острословы нарекли Hasfail не на пустом месте. Десктопные процессоры Core четвёртого поколения, основанные на новом микропроцессорном дизайне, стали для Intel побочным продуктом со всеми вытекающими из этого последствиями. Наш обзор Core i7-4770K обнажил главные недостатки: отсутствие явного прогресса в вычислительной производительности и ухудшение разгонного потенциала. Вывод из всего этого тогда был сделан однозначный: модернизировать имеющиеся системы и переходить на новую платформу LGA1150 смысла нет.

Однако с момента анонса Haswell прошло уже несколько недель, и былое негодование немного улеглось. В голову начали закрадываться мысли о том, не слишком ли мы погорячились в клеймении нового процессорного дизайна позором? Может быть, десктопные Haswell могут-таки быть интересными, ведь в этих процессорах всё же присутствуют определённые улучшения. Иными словами, назрела необходимость в свежем взгляде.

Но повторять по второму разу уже сделанные тесты мы, конечно, не будем. Сегодня мы посмотрим на Haswell под другим углом. А именно — попытаемся понять, какой из интеловских процессоров следует приобрести энтузиасту, располагающему для этой цели бюджетом порядка 200-250 долларов. То есть попробуем ответить на вопрос, какой из имеющихся в магазинах оверклокерских Core i5 обладает наибольшей практической ценностью на сегодняшний день. Со времен Sandy Bridge в каждом новом поколении десктопных CPU мы наблюдали небольшие шажки в сторону улучшения производительности, с одной стороны, но планомерный откат в разгонном потенциале — с другой. Поэтому, выбирая современную платформу, продвинутые пользователи сегодня фактически стоят перед трилеммой: Sandy Bridge, Ivy Bridge или Haswell. И в этом материале мы решили напрямую сравнить все три доступных варианта: Core i5-2550K, Core i5-3570K и Core i5-4670K.

⇡ Экскурс в процессорные микроархитектуры

Все мы привыкли к тому, что чем новее процессор, тем он лучше. И до недавних пор это действительно работало. Улучшались производственные технологические процессы. Это выливалось в рост частотного потенциала и в увеличение сложности процессорных полупроводниковых кристаллов. Возросший транзисторный бюджет расходовался либо на микроархитектурные инновации, либо на увеличение количества ядер или рост объёма кеш-памяти.

Однако с момента появления процессоров поколения Sandy Bridge привычная поступь прогресса стала замедляться. Даже несмотря на то, что для производства Sandy Bridge применяется 32-нм техпроцесс, а для более новых Ivy Bridge и Haswell — 22-нм технология, все эти три поколения десктопных процессоров имеют сходную многоядерную структуру, работают на очень близких тактовых частотах и располагают одинаковыми объёмами кеш-памяти. Фактически все влияющие на производительность различия теперь оказались заглубленными в недра микроархитектуры.

В принципе, в том, что в формальных спецификациях процессоров для настольных систем с 2011 года прекратился рост базовых показателей, нет ничего страшного. Как мы знаем из предшествующего опыта, микроархитектурные улучшения способны на многое. Тем более что и Ivy Bridge, и Haswell — это не простые «тики» в интеловской терминологии. Даже о Ivy Bridge, выход которого был сопряжён со сменой техпроцесса, Intel говорила как о такте «тик+», подчёркивая, что речь идёт не о простом переносе Sandy Bridge на новые технологические рельсы, а о комплексной доработке старого дизайна. Haswell же вообще относится к циклу разработки «так», то есть представляет собой новую версию микроархитектуры без каких-либо оговорок. Поэтому повышения быстродействия можно было ожидать и от имеющегося развития интеловских процессоров, пусть оно и не сопровождается сменой чисел в списке формальных характеристик.

Однако никакого бурного роста производительности десктопных процессоров на самом деле не наблюдается. Причина состоит в том, что основные усилия интеловских разработчиков направлены не в сторону совершенствования вычислительной мощности — ее более чем достаточно, чтобы оставить конкурентов далеко позади, — а на улучшение параметров, критичных для мобильного рынка. Желая одновременно заткнуть за пояс и гибридные процессоры AMD, и мобильные процессоры с архитектурой ARM, Intel планомерно оптимизирует тепловыделение и энергопотребление, а также занимается подтягиванием собственного графического ядра. Для десктопных же процессоров эти параметры малозначимы, поэтому, с точки зрения пользователей настольных компьютеров, развитие Sandy Bridge → Ivy Bridge → Haswell смахивает на проявление технологического инфантилизма.

Давайте попробуем вспомнить, что происходило с вычислительными ядрами процессоров начиная с 2011 года, когда на рынке появились первые Sandy Bridge c действительно инновационной микроархитектурой с полностью переработанной схемой внеочередного исполнения команд. Первоначальный дизайн Sandy Bridge стал прочным базисом для всех последующих поколений микроархитектуры. Именно тогда появились такие ключевые и актуальные до сих пор элементы, как кольцевая шина, кеш декодированных инструкций «нулевого уровня», принципиально новый блок предсказания переходов, схема исполнения 256-битных векторных инструкций и многое другое. После Sandy Bridge интеловские инженеры ограничивались лишь небольшими изменениями и дополнениями, не затрагивая заложенный в этой микроархитектуре фундамент.

В вышедших годом позже процессорах семейства Ivy Bridge прогресс коснулся вычислительных ядер в очень небольшой степени. Как фронтальная часть конвейера, рассчитанная на обработку четырёх инструкций за такт, так и вся схема внеочередного исполнения команд сохранились в полностью первозданном виде. Однако производительность Ivy Bridge всё-таки стала немного выше, чем у предшественников. Достигнуто это было тремя небольшими шагами. Во-первых, появилась давно назревшая возможность динамического распределения ресурсов внутренних структур данных между потоками, в то время как ранее все очереди и буферы в расчёте на Hyper-Threading делились на два потока жёстко пополам. Во-вторых, был оптимизирован узел исполнения целого и вещественного деления, в результате чего темп выполнения этих операций удвоился. И в-третьих, задача обработки операций пересылки данных между регистрами была снята с исполнительных устройств, а соответствующие команды стали транслироваться в простое разыменование регистров.

С появлением Haswell вычислительная производительность опять немного подросла. И хотя говорить о качественном скачке нет никаких оснований, набор нововведений выглядит отнюдь не ерундовским. В этом процессорном дизайне инженеры глубоко покопались в средней части конвейера, благодаря чему в Haswell возросло количество исполнительных портов (кстати, впервые с 2006 года). Вместо шести их стало восемь, поэтому в теории пропускная способность конвейера Haswell стала на треть больше. Вместе с тем ряд шагов был предпринят к тому, чтобы обеспечить все эти порты работой, то есть улучшить возможности процессора по параллельному исполнению инструкций. С этой целью были оптимизированы алгоритмы предсказания ветвлений и увеличен объём внутренних буферов: в первую очередь — окна внеочередного исполнения команд. Вместе с тем инженеры Intel расширили систему команд, добавив подмножество инструкций AVX2. Главное достояние этого набора — FMA-команды, объединяющие сразу пару операций над числами с плавающей точкой. Благодаря им теоретическая производительность Haswell при операциях над числами с плавающей точкой с одинарной и двойной точностью выросла вдвое. Не обойдённой вниманием осталась и подсистема работы с данными. Расширение внутреннего параллелизма процессора, как и появление новых инструкций, ворочающих большими объёмами данных, потребовали от разработчиков ускорить работу кеш-памяти. Поэтому пропускная способность L1- и L2-кеша в Haswell по сравнению с процессорными дизайнами предыдущих поколений была удвоена.

Впрочем, энтузиасты при выходе новых поколений процессоров хотят видеть не столько обширные списки сделанных изменений, сколько увеличившиеся столбики на диаграммах с производительностью в приложениях. Поэтому наши теоретические выкладки мы дополним и результатами практических тестов. Причём для лучшей иллюстративности в первую очередь мы прибегнем к синтетическому бенчмарку, позволяющему увидеть изменение различных вычлененных из общей картины аспектов быстродействия. Для этой цели отлично подходит популярная тестовая утилита SiSoftware Sandra 2013, пользуясь которой мы сравнили между собой три четырёхъядерных процессора (Sandy Bridge, Ivy Bridge и Haswell), тактовая частота которых была приведена к единому и постоянному значению 3,6 ГГц. Обратите внимание, показатели Haswell приведены на графиках дважды. Один раз — когда в алгоритмах тестирования не используются новые наборы команд, внедрённые в этом процессорном дизайне, и второй раз — с активированными инструкциями AVX2.

Обычный арифметический тест выявляет, что в Haswell произошёл заметный рост производительности целочисленных операций. Увеличение скорости, очевидно, связано с появлением в этой микроархитектуре порта, специально отведённого под дополнительное целочисленное арифметико-логическое устройство. Что же касается скорости стандартных операций с плавающей точкой, то она с выходом новых поколений процессоров не меняется. Это и понятно, ведь ставка нынче делается на внедрение в обиход новых наборов инструкций с более высокой разрядностью.

При оценке мультимедийной производительности на первое место выходит скорость выполнения векторных инструкций. Поэтому здесь преимущество Haswell проявляется особенно сильно при использовании набора AVX2. Если же новые инструкции из рассмотрения исключить, то мы увидим лишь 7-процентное увеличение быстродействия по сравнению с Ivy Bridge. Который, в свою очередь, быстрее Sandy Bridge лишь на 1-2 процента.

Похожим образом дело обстоит и со скоростью работы криптографических алгоритмов. Ввод в строй новых поколений микроархитектур поднимает производительность лишь на единицы процентов. Весомый прирост скорости можно получить только в том случае, если использовать Haswell и его новые команды. Однако не следует обольщаться: извлечение преимущества из AVX2 в реальной жизни требует переписывания программного кода, а это, как известно, — процесс далеко не быстрый.

Не слишком оптимистично выглядит и то, что произошло с латентностью кеш-памяти.

Латентность, такты
Sandy Bridge Ivy Bridge Haswell
L1D-кеш 4 4 4
L2-кеш 12 12 12
L3-кеш 18 19 21

Кеш третьего уровня в Haswell действительно работает с бо льшими задержками, нежели в процессорах прошлого поколения, так как Uncore-часть этого процессора получила асинхронное тактование относительно вычислительных ядер.

Однако увеличение задержек с лихвой компенсируется двукратным ростом полосы пропускания, произошедшим не только в теории, но и на практике.

Пропускная способность, Гбайт/с
Sandy Bridge Ivy Bridge Haswell
L1D-кеш 510,68 507,64 980,79
L2-кеш 377,37 381,63 596,7
L3-кеш 188,5 193,38 206,12

Но в целом микроархитектура Haswell на фоне Sandy Bridge всё-таки не выглядит заметным продвижением вперёд. Принципиальное преимущество наблюдается лишь при задействовании набора команд AVX2, и наблюдать его пока можно лишь в синтетических тестах, так как реальное программное обеспечение должно ещё пройти по длительному пути оптимизации и адаптации. Если же новые инструкции в рассмотрение не брать, то средний уровень превосходства Haswell над Sandy Bridge составляет порядка 10 процентов. И такой разрыв старичкам Sandy Bridge должно быть вполне по силам преодолеть за счёт разгона. Особенно если учесть тот факт, что частотный потенциал старых процессоров выше, чем у их современных последователей.

⇡ Три поколения Core i5 для оверклокеров

Если пойти в магазин и посмотреть, какие оверклокерские процессоры семейства Core i5 можно приобрести, то выбор сведётся к трём вариантам, относящимся к разным поколениям: Core i5-2550K, Core i5-3570K и Core i5-4670K. Для наглядности сопоставим их характеристики:

Core i5-2550K Core i5-3570K Core i5-4670K
Микроархитектура Sandy Bridge Ivy Bridge Haswell
Ядра/потоки 4/4 4/4 4/4
Технология Hyper-Threading Нет Нет Нет
Тактовая частота 3,4 ГГц 3,4 ГГц 3,4 ГГц
Максимальная частота в турборежиме 3,8 ГГц 3,8 ГГц 3,8 ГГц
TDP 95 Вт 77 Вт 84 Вт
Производственная технология 32 нм 22 нм 22 нм
HD Graphics Нет 4000 4600
Частота графического ядра - 1150 МГц 1200 МГц
L3-кеш 6 Мбайт 6 Мбайт 6 Мбайт
Поддержка DDR3 1333 1333/1600 1333/1600
Расширения набора инструкций AVX AVX AVX 2,0
Упаковка LGA1155 LGA1155 LGA1150
Цена Нет данных Нет данных Нет данных

Три Core i5 разных поколений выглядят в этой таблице почти как братья-близнецы. Однако более подробное знакомство с каждым из этих трёх процессоров позволяет выявить любопытные нюансы.

Core i5-2550 K . Это — одна из самых поздних моделей Sandy Bridge. Она была выпущена спустя год после основного анонса и снята с производства лишь совсем недавно, а потому всё ещё широко представлена в розничной продаже. Но если вы всерьёз задумываетесь о построении системы на базе процессора Core i5-2550K, то считаем своим долгом напомнить ряд важных моментов.

Во-первых, несмотря на то, что в формальных характеристиках рабочие частоты всех старших моделей Core i5 обозначены одинаково: от 3,4 до 3,8 ГГц, в действительности Core i5-2550K в штатном режиме работает при чуть меньшей частоте, нежели процессоры с более поздними версиями микроархитектуры. Дело в том, что технология Turbo Boost в Sandy Bridge не столь агрессивна, как в Ivy Bridge и Haswell, и при полной нагрузке частота превышает номинальную на 100, а не на 200 МГц.

Во-вторых, процессоры Sandy Bridge — и Core i5-2550K в их числе — обладают несколько менее гибким контроллером памяти, нежели Ivy Bridge и Haswell. Оверклокерскую память с частотами до DDR3-2400 он поддерживает, но вот шаг изменения этой частоты составляет 266 МГц. То есть выбор режимов памяти при использовании Core i5-2550K несколько ограничен.

И в-третьих, Core i5-2550K — это единственный из интеловских оверклокерских процессоров, лишённый графического ядра. На самом-то деле ядро на полупроводниковом кристалле есть, но оно жёстко отключено на этапе сборки процессора. Это, кстати, - одна из причин, по которым Core i5-2550K хорошо разгоняется.

Однако главное основание привлекательности Core i5-2550K как объекта для разгона заключается в том, что Sandy Bridge — это последнее из семейств десктопных интеловских CPU средней ценовой категории, где в качестве термоинтерфейса между полупроводниковым кристаллом и процессорной крышкой применяется специальный припой для бесфлюсовой пайки, а не пластичный материал с сомнительной теплопроводностью. Последовавший позднее перевод полупроводникового производства на 22-нм технологию и сопровождающее этот шаг снижение тепловыделения кристаллов Intel посчитала достаточным аргументом для упрощения методики сборки CPU за счёт отказа от пайки. Однако оверклокеры от этого серьёзно пострадали, так как термоинтерфейс между кристаллом процессора и его крышкой неожиданно стал существенным препятствием на пути переноса теплового потока и организации хорошего охлаждения.

Core i5-3570 K . Типичный носитель дизайна Ivy Bridge — первого поколения интеловских процессоров, выпускаемых по 22-нм техпроцессу. Использование более совершенного, чем ранее, технологического процесса позволило Intel существенно понизить процессорное тепловыделение и энергопотребление. Системы, построенные на базе Core i5-3570K, заведомо экономичнее, нежели аналогичные конфигурации на Sandy Bridge. Однако это преимущество Intel конвертировать в увеличение тактовых частот не стала. Рабочие частоты старшего из Core i5 третьего поколения, Core i5-3570K, от частот Core i5-2550K почти не отличаются.

Что ещё хуже, несмотря на более низкое номинальное напряжение и тепловыделение в номинальном режиме, разгоняются процессоры поколения Ivy Bridge куда менее охотно, чем их предшественники. Проблема в том, что из-за сопровождающего внедрение более тонкого техпроцесса уменьшения физических размеров кристалла плотность излучаемого им теплового потока возросла. В то же время отвод этого тепла искусственно затруднён совершённой интеловскими технологами диверсией по удалению из под процессорной крышки проверенного годами высокоэффективного термоинтерфейса. Поэтому без применения экстремальных методов охлаждения Ivy Bridge в разгоне столь же высоких частот, как и Sandy Bridge, не достигают.

Так что, если закрыть глаза на незначительные микроархитектурные улучшения и снизившиеся энергетические аппетиты, единственное, чем Core i5-3570K может быть лучше Core i5-2550K в оверклокерской системе, — это более гибким контроллером DDR3 SDRAM, позволяющим выставлять на памяти более высокие, чем ранее, частоты и варьировать их с меньшим шагом.

Core i5-4670 K . Новейший процессор на базе микроархитектуры Haswell для новой платформы LGA1150 вновь обладает практически такими же формальными характеристиками, как и предшественники. Иными словами, повышения номинальных тактовых частот в серии Core i5 мы не видели уже очень давно. При этом Core i5-4670K по сравнению с Ivy Bridge удивляет ростом расчётного тепловыделения, случившимся на фоне неизменности полупроводникового техпроцесса.

Но всё вполне объяснимо. Рост тепловыделения обуславливается кардинальными изменениями в конструкции платформы: в LGA1150 существенная часть преобразователя питания перенесена c материнских плат внутрь процессора. C одной стороны, это существенно упростило конструкцию платформы, так как все необходимые для своей работы напряжения процессор теперь формирует самостоятельно. С другой же — дало процессору полный набор средств контроля и управления собственным энергопотреблением.

Что же до разгона, то определённую пользу встроенный контроллер питания приносит и здесь. Он очень точен, и выдаваемые им напряжения практически не искажаются при росте тока или температуры. При выставлении фиксированного напряжения на процессорных ядрах это позволяет забыть об ужасах Loadline Calibration, то есть упрощает подбор параметров в оверклокерских конфигурациях. Однако следует иметь в виду, что при динамическом задании процессорных напряжений в режимах offset и adaptive встроенный контроллер при разгоне сходит с ума и очень рьяно завышает напряжение при росте нагрузки. Поэтому использование таких режимов нежелательно, оно не позволяет раскрывать оверклокерский потенциал Haswell в полной мере.

Впрочем, всё это не столь важно, так как схема финальной сборки десктопных Haswell не изменилась. Между полупроводниковым кристаллом и процессорной крышкой проложена не лучшего качества термопаста, поэтому разгон Core i5-4670K, как и Core i5-3570K, в подавляющем большинстве случаев упирается в неустранимый обычными средствами перегрев процессорного кристалла.

По этой же причине не внушают оптимизма и сделанные в платформе LGA1150 изменения, позволяющие разгонять Core i5-4670K не только множителем, но и частотой базового тактового генератора. Конечно, всё это добавляет определённую гибкость при выборе вариантов, но, к сожалению, приблизить максимально достижимые в разгоне частоты к планке, установленной процессорами Sandy Bridge, без применения экстремальных методов охлаждения не позволяет. Более того, как показывает практика, из-за своего более высокого тепловыделения Haswell разгоняются даже хуже, чем их предшественники поколения Ivy Bridge.

Сегодня в Лаборатории сайт редкий гость, мы не так часто рассматриваем новинки на рынке процессоров. Этот пробел сегодня закроет процессор , заменяющий в основном тестовом стенде место Intel Core i5-2320. Этот чип будет трудиться вплоть до выхода нового поколения Haswell.

Его выбор не случаен, как и переход с архитектуры Sandy Bridge на Ivy Bridge. Сравнительные тесты были проведены на недавних семплах, вы могли с ними ознакомиться, это материнская плата MSI Z77 MPower и .
Год назад компания Intel выпустила на рынок новые процессоры. Релиз был отложен с января на апрель, и это неудивительно - со стороны лагеря AMD ничего не ожидалось, спешки в 2012 году не было. В действительности процессоры Sandy Bridge 32 нм и AMD конкурировали между собой по производительности, но всерьёз AMD не составляла конкуренцию по соотношению производительность/цена. Ещё один момент: в сущности, в то время это отсутствие новых платформ, единственное нововведение, которое могло заинтересовать,- встроенный контроллер USB 3.0, сильно страдало из-за начала массового распространения в новых материнских платах среднего и высокого сегмента. Пользователя было сложно простимулировать на обновление своего «железа».

Появление архитектуры Sandy Bridge было шагом вперёд. Покупатели получили внутренние улучшения процессоров без коренных изменений, это все те же процессоры. Значительные изменения коснулись видеоядра новых процессоров, Intel Core i7 получили на борт GMA HD 4000, i5 и i3 в свою очередь могут оснащаться и GMA HD 2500. Отличаются они количеством конвееров, сами отличия на деле только в функциональности по сравнению с GMA HD 2000. А вот уже в GMA HD 4000 используется 16 конвееров, что скажется на быстродействии, и если к этому ещё добавить поддержку DirectX 11, внимание к младшим видеокартам должно уменьшиться.

Возвращаясь к процессору Intel Core i5-3570К: как можно понять по названию, он относится к К-семейству, дающему разблокированные множители. Новые процессоры с индексом K 5 перестали иметь удешевлённого двойника с такой же тактовой частотой, схожий подход мы ранее видели в Black Edition. Если у Intel Core i5-3550 и i5-3570К отличия идут на 100 МГц по базовой частоте и встроенной графике, то i7-3770 и i7-3770K теперь различаются только по базовой частоте, видеоядро и максимальная частота одинаковая. Intel задала представителям магазинов сложную задачу - объяснить покупателям разницу и преимущества при переплате и кажущейся схожести.

Сразу отмечу, что решения с архитектурой Ivy Bridge не обеспечивают существенного прироста производительности относительно Sandy Bridge. Но есть несомненные плюсы, как говорил, в графике, меньшем TDP и изменениях в архитектуре. Процессор мы будем тестировать в сравнении с Intel Core i5-2320, используемом в последних тестах на сайт, подопытной материнской платой будет MSI Z77 MPower с отличным потенциалом разгона. Вы сможете оценить вместе с нами возможности разгона передовой на сегодня архитектуры компании Intel.

Доступность Intel Core i5-3570K Ivy Bridge

На момент написания теста средняя стоимость Intel Core i5-3570K Ivy Bridge по данным сервиса Яндекс.Маркет составляет 7500 рублей . Стоимость весьма привлекательная с учётом предоставляемых возможностей, и по нашему мнению является пограничной среди предоставляемых решений для массового использования.

Из конкурентов помимо самих решений Intel могу отметить лишь AMD FX-8350 Vishera, хочется верить, что в лагере AMD ещё представят интересные решения в текущем году.

Внешний вид Intel Core i5-3570K Ivy Bridge

В Лабораторию сайт поступило OEM-решение, покупать BOX-вариант нецелесообразно, для раскрытия потенциала «коробочного» варианта охлаждения будет объективно недостаточно.

По сравнению с более ранним Intel Core i5-3550 увеличилась тактовая частота на 100 МГц, появился разблокированный множитель и графика Intel HD Graphics 4000. В остальном это все тот же представитель семейства Core i5.

На теплораспределительной крышке указано название модели, тактовая частота и маркировка. Судя по данным, наш чип произведён в Costa Rica.

На внутренней стороне размещены контакты процессорного разъёма LGA 1155 и согласующие элементы.

Начинка Intel Core i5-3570K Ivy Bridge

Характеристики у Intel Core i5-3570K Ivy Bridge весьма внушительны, покупатель получает четырёхъядерный CPU с разблокированным множителем, на выходе дающем отличный разгонный потенциал. Характеристики процессора подтверждаются CPU-Z:

Как можно заметить, он построен по 22 нм техпроцессору, на момент снятия показаний напряжение на ядре составляет 1,176 В, а тактовая частота - 3518 МГц. Кэш процессора распределён по аналогии с чипами на базе Sandy Bridge, по 64 Кб кэш-памяти первого уровня и 256 Кб памяти второго уровня для каждого ядра и L3 память, общая на весь процессор в размере 6 Мб.

Контроллер памяти у Intel Core i5-3570К поддерживает память DDR3-1333 и DDR3-1600.

Благодаря технологии TurboBoost 2.0, частота процессоров поднимается в случае надобности до 3,8 ГГц. А при повышении температуры до максимальной планки идет понижение частоты.

Материнская плата MSI Z77 Mpower позволяет одним кликом поднять частоту до 4221 МГц у Intel Core i5-3570К:

Получаем следующие данные CPU-Z:

Сделать это сможет и неподготовленный пользователь простым нажатием на кнопку OC Genie.

Процессор также предоставляет возможность изменять режимы памяти:

Ещё одним бонусом является графическое ядро Intel HD Graphics 4000 с реализованным режимом Turbo Boost для iGPU

Тестирование Intel Core i5-3570K Ivy Bridge

Используется тестовый стенд:
Модель Данные
Корпус Aerocool Strike-X Air
Материнская плата MSI Z77 MPower
Процессор Intel Core i5-3570K Ivy Bridge
Кулер для процессора DeepCool Ice Blade Pro v2.0
Оперативная память GeIL EVO Veloce DDR3-2400 Frost White 16 Гб Kit CL11
Видеокарта MSI Radeon HD 7850 2GB Power Edition
Жесткий диск ADATA XPG SX900 256 ГБ
Жесткий диск 2 WD Red WD20EFRX
Блок питания Aerocool Templarius 750W
Аудио Creative Sound Blaster Tactic3D Rage
Монитор iiyama ProLite E2773HDS
Мышка Defender Warhead GMX-1800
Операционная система Microsoft Windows Ultimate 7 64-bit
Futuremark PCMark 7 Overall

(Intel Core i5-2320 - 4610, Intel Core i5-3570K Ivy Bridge - 5110, Intel Core i5-3570K Ivy Bridge Оверклокинг - 5320)

Futuremark PCMark 7 Computation

(Intel Core i5-2320 - 5910, Intel Core i5-3570K Ivy Bridge - 6451, Intel Core i5-3570K Ivy Bridge Оверклокинг - 6573)

(Intel Core i5-2320 - 6911, Intel Core i5-3570K Ivy Bridge - 7218, Intel Core i5-3570K Ivy Bridge Оверклокинг - 7325)

(Intel Core i5-2320 - 5982, Intel Core i5-3570K Ivy Bridge - 7020, Intel Core i5-3570K Ivy Bridge Оверклокинг - 7182)

Данные WinRAR

(Intel Core i5-2320 - 4401, Intel Core i5-3570K Ivy Bridge - 5145, Intel Core i5-3570K Ivy Bridge Оверклокинг - 5580)

А вот здесь уже преимущество нового чипа очевидно, скорость распаковки значительно возросла.

Данные игр (fps) World of Tanks 0.8.4

Данные игр (fps) Crysis 2

(Intel Core i5-2320 - 118, Intel Core i5-3570K Ivy Bridge - 121, Intel Core i5-3570K Ivy Bridge Оверклокинг - 121)

Данные игр (fps) Far Cry 2

(Intel Core i5-2320 - 181, Intel Core i5-3570K Ivy Bridge - 93, Intel Core i5-3570K Ivy Bridge Оверклокинг - 197)

По играм можно было получить лучшие результаты при использовании двух видеокарт в SLI-режиме, и материнская плата MSI Z77 MPower , и процессор поддерживают эту схему. Результаты в этом случае будут более интересные. В целом же, согласно полученным результатам, можно смело сказать, что этого процессора хватит для игр любой скорости.

Температура процессора

(Intel Core i5-3570K Ivy Bridge - 28, Intel Core i5-3570K Ivy Bridge Оверклокинг - 54)

Энергопотребление

(Intel Core i5-3570K Ivy Bridge - 41, Intel Core i5-3570K Ivy Bridge Оверклокинг - 58)

Как можно видеть, энергопотребление меняется в зависимости от нагрузки на систему. И хотя в целом 22 нм техпроцесс снизил TDP, при разгоне или в современных играх оно практически сводится на нет. Данные по MSI Kombuster:

(Intel Core i5-2320 - 1288, Intel Core i5-3570K Ivy Bridge Оверклокинг - 1321)

Данные теста кеша и памяти:

Преимущества в ряде тестов продемонстрировала технология Turbo Boost 2.0, они связаны с математическим вычислением и архивированием, время при выполнении трудоёмких задач сокращается.

Если сравнивать с прошлыми решениями, то разница не такая, какую хотелось бы видеть: прирост составляет примерно 20%, конечный пользователь, вероятнее всего, его не заметит. При сборке можно учитывать этот момент и взять младшее решение Intel Core i5-2500K, и как говорил выше, переплачивать за более дорогие варианты смысла нет. Тестируемый процессор Intel Core i5-3570K Ivy Bridge является золотой серединой при выборе решений поколений Ive Bridge. Порадовала и переработка графического ядра, оно способно потягаться с дешёвыми видеокартами в выполнении офисных задач и неприхотливых играх.

Intel Core i5-3570K Ivy Bridge в паре с платой MSI Z77 MPower продемонстрировали возможности разгона. Частоту процессора можно поднять до 4.22 ГГц и на выходе получить стабильную систему. При этом увеличивает напряжение на ядре до 1.296V. Есть и небольшой потенциал по дальнейшему разгону, но он будет идти в ущерб стабильности. Уровень температуры процессора держится на приемлемом уровне при любых режимах работы.

Итоги по Intel Core i5-3570К

Подводя итоги, могу сказать, что производительности процессора Intel Core i5-3570K Ivy Bridge достаточно для выполнения ресурсоёмких задач и комфортного сжигания времени в современных играх. Естественно, максимально потенциал можно раскрыть при соответствующем подборе компонентов, достойная плата, комплект памяти и производительная видеокарта рекомендуется. Сама платформа Ive Bridge безусловно интересна, с процессором мы будем знакомиться и дальше при проведении тестов в Лаборатории сайт. Этот чип будет использоваться нами вплоть до выхода Haswell.

Процессор Intel Core i5-3570K Ivy Bridge получает заслуженную награду «Золото.. Данное решение является золотой серединой из представленных на сегодня.

Героями данного обзора стали старшие четырехъядерные процессоры Intel Core i7-3770К, Core i7-3770, Core i5-3570К и Core i5-3570. В качестве соперников были взяты следующие модели:

  • Core i7-2600К;
  • Core i7-2600;
  • Core i5-2500К;
  • Core i5-2500;

  • FX-8150 BE;
  • FX-6100 BE;
  • Phenom II X6 1090T BE;
  • Phenom II X4 980 BE.

Тестовая конфигурация

Тесты проводились на следующем стенде:

  • Материнская плата №1: GigaByte GA-Z77X-UD5H, LGA 1155, BIOS F7;
  • Материнская плата №2: ASRock 990FX Extreme4, АМ3+, BIOS 1.5;
  • Видеокарта: GeForce GTX 680 2048 Мбайт - 1006/1006/6008 МГц (Gainward);
  • Система охлаждения CPU: Cooler Master V8 (~1100 об/мин);
  • Оперативная память: 2 x 4096 Мбайт DDR3 Geil BLACK DRAGON GB38GB2133C10ADC (Spec: 2133 МГц / 10-11-11-30-1t / 1.5 В) , X.M.P. - off;
  • Дисковая подсистема: SATA-II 500 Гбайт, WD 5000KS, 7200 об/мин, 16 Мбайт;
  • Блок питания: Thermaltake Toughpower 1200 Ватт (штатный вентилятор: 140 мм на вдув);
  • Корпус: открытый тестовый стенд;
  • Монитор: 23" Acer V233H (Wide LCD, 1920x1080 / 60 Гц).

Процессоры

  • Core i7-3770К - 3500 @ 4600 МГц;
  • Core i7-3770 - 3400 @ 4200 МГц;
  • Core i5-3570К - 3400 @ 4600 МГц;
  • Core i5-3570 - 3400 @ 4200 МГц;

  • Core i7-2600К - 3400 @ 5000 МГц;
  • Core i7-2600 - 3400 @ 4100 МГц;
  • Core i5-2500К - 3300 @ 5000 МГц;
  • Core i5-2500 - 3300 @ 4000 МГц;

  • FX-8150 BE - 3600 @ 4600 МГц;
  • FX-6100 BE - 3300 @ 4500 МГц;
  • Phenom II X6 1090T BE - 3300 @ 4100 МГц;
  • Phenom II X4 980 BE - 3700 @ 4100 МГц.

Программное обеспечение:

  • Операционная система: Windows 7 x64 SP1;
  • Драйверы видеокарты: NVIDIA GeForce 306.63 Beta;
  • Утилиты: FRAPS 3.5.3 Build 15007, AutoHotkey v1.0.48.05, MSI Afterburner 2.2.4.

Инструментарий и методика тестирования

Для более наглядного сравнения процессоров все игры, используемые в качестве тестовых приложений, запускались в разрешениях 1680х1050.

В качестве средств измерения быстродействия применялись встроенные бенчмарки, утилиты FRAPS 3.5.3 Build 15007 и AutoHotkey v1.0.48.05. Список игровых приложений:

  • Assassin"s Creed Revelations (Порт).
  • Batman Arkham City (Бенчмарк).
  • Battlefield Bad Company 2 (Накопление сил).
  • Borderlands (Бесплодные земли).
  • Call of Duty: Modern Warfare 3 (Акт 1. Черный вторник).
  • DIRT 3 (Бенчмарк - ASPEN).
  • Dragon Age Origins (Остагар).
  • Far Cry 2 (Первая поездка).
  • Formula 1 2010 (Бенчмарк).
  • Grand Theft Auto 4 EFLC (Бенчмарк - Потерянные и Проклятые).
  • Hard Reset (Бенчмарк).
  • Just Cause 2 (Бетонные джунгли).
  • Lost Planet Colonies (Бенчмарк - Зона 1).
  • Metro 2033 (Бенчмарк).
  • Prototype 2 (Воскрешение)
  • Resident Evil 5 (Бенчмарк - Сцена 2).
  • The Elder Scrolls V: Skyrim (Солитьюд).
  • The Witcher 2: Assassins of Kings (Окрестности Флотзама).
  • World in Conflict: Soviet Assault (Бенчмарк - Побережье).
  • World of Tanks (Энск).

Во всех играх замерялись минимальные и средние значения FPS. В тестах, в которых отсутствовала возможность замера минимального FPS , это значение измерялось утилитой FRAPS. VSync при проведении тестов был отключен.

Чтобы избежать ошибок и минимизировать погрешности измерений, все тесты производились по три - пять раз. При вычислении среднего FPS за итоговый результат бралось среднеарифметическое значение результатов всех прогонов (трех не «холостых»). В качестве минимального FPS выбиралось минимальное значение показателя по результатам трех прогонов.

Технические характеристики процессоров Intel

Технические характеристики процессоров AMD

Разгон процессоров

Процессоры разгонялись следующим образом. Стабильность разгона проверялась утилитой ОССТ 3.1.0 «Perestroika» путем получасового прогона ЦП на максимальной матрице с принудительной 100% нагрузкой. Соглашусь с тем, что разгон тестируемых процессоров не является абсолютно стабильным, но для любой современной игры он подходит на все сто.

При максимальном разгоне у всех версий Phenom II частота контроллера памяти была поднята до 2400 - 2800 МГц.

Core i7-3770К

Штатный режим. Тактовая частота 3500 МГц, базовая частота 100 МГц (100х35), частота DDR3 - 1600 МГц (100х16), напряжение питания 1.11 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - включен, Hyper Threading - включен.

Процессор удалось разогнать до частоты 4600 МГц. Для этого множитель был поднят до 46 (100х46), частота DDR3 - 2133 МГц (100х21.33), напряжение питания - до 1.2 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - выключен, Hyper Threading - выключен.

Core i7-3770

Штатный режим. Тактовая частота 3400 МГц, базовая частота 100 МГц (100х34), частота DDR3 - 1600 МГц (100х16), напряжение питания 1.1 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - включен, Hyper Threading - включен.

Процессор удалось разогнать до частоты 4200 МГц. Для этого множитель был поднят до 40 (105х40), частота DDR3 - 2240 МГц (105х21.33), напряжение питания - до 1.2 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - включен, Hyper Threading - выключен.

Core i5-3570К

Штатный режим. Тактовая частота 3400 МГц, базовая частота 100 МГц (100х34), частота DDR3 - 1600 МГц (100х16), напряжение питания 1.08 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - включен.

Процессор удалось разогнать до частоты 4600 МГц. Для этого множитель был поднят до 46 (100х46), частота DDR3 - 2133 МГц (100х21.33), напряжение питания - до 1.2 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - выключен.

Core i5-3570

Штатный режим. Тактовая частота 3400 МГц, базовая частота 100 МГц (100х34), частота DDR3 - 1600 МГц (100х16), напряжение питания 1.1 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - включен.

Процессор удалось разогнать до частоты 4200 МГц. Для этого множитель был поднят до 40 (105х40), частота DDR3 - 2240 МГц (105х21.33), напряжение питания - до 1.2 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - включен.

Core i7-2600K

Процессор удалось разогнать до частоты 4800 МГц. Для этого множитель был поднят до 48 (100х48), частота DDR3 - 2133 МГц (100х21.33), напряжение питания - до 1.41 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - выключен, Hyper Threading - выключен.

Core i7-2600

Штатный режим. Тактовая частота 3400 МГц, базовая частота 100 МГц (100х34), частота DDR3 - 1333 МГц (100х13.3), напряжение питания 1.18 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - включен, Hyper Threading - включен.

Процессор удалось разогнать до частоты 4100 МГц. Для этого множитель был поднят до 39 (105х39), частота DDR3 - 2240 МГц (105х21.33), напряжение питания - до 1.3 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - включен, Hyper Threading - выключен.

Core i5-2500K

Процессор удалось разогнать до частоты 4800 МГц. Для этого множитель был поднят до 48 (100х48), частота DDR3 - 2133 МГц (100х21.33), напряжение питания - до 1.4 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - выключен.

Core i5-2500

Штатный режим. Тактовая частота 3300 МГц, базовая частота 100 МГц (100х33), частота DDR3 - 1333 МГц (100х13.3), напряжение питания 1.2 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - включен.

Процессор удалось разогнать до частоты 4000 МГц. Для этого множитель был поднят до 38 (105х38), частота DDR3 - 2240 МГц (105х21.33), напряжение питания - до 1.3 В, напряжение питания DDR3 - 1.5 В, Turbo Boost - включен.

FX-8150 BE

Штатный режим. Тактовая частота 3600 МГц, частота системной шины 200 МГц (200х18), частота DDR3 - 1866 МГц (200х9.33), напряжение питания ядра 1.26 В, напряжение питания DDR3 - 1.5 В, Turbo Core и APM - включен.

Процессор удалось разогнать до частоты 4600 МГц. Для этого множитель процессора был поднят до значения 23 (200х23), напряжение питания ядра - до 1.45 В, напряжение питания DDR3 - 1.5 В. Частота DDR3 составила 2133 МГц (200х10.67), Turbo Core и APM - выключены.

FX-6100 BE

Штатный режим. Тактовая частота 3300 МГц, частота системной шины 200 МГц (200х16.5), частота DDR3 - 1866 МГц (200х9.33), напряжение питания ядра 1.18 В, напряжение питания DDR3 - 1.5 В, Turbo Core и APM - включен.

Процессор удалось разогнать до частоты 4500 МГц. Для этого множитель процессора был поднят до значения 22.5 (200х22.5), напряжение питания ядра - до 1.42 В, напряжение питания DDR3 - 1.5 В. Частота DDR3 составила 2133 МГц (200х10.67), Turbo Core и APM - выключены.

Phenom II X6 1090Т BE

Штатный режим. Тактовая частота 3200 МГц, частота системной шины 200 МГц (200х16), частота DDR3 - 1600 МГц (200х8), напряжение питания ядра 1.33 В, напряжение питания DDR3 - 1.65 В, Turbo Core - включен.

Процессор удалось разогнать до частоты 4100 МГц. Для этого множитель процессора был поднят до значения 20.5 (200х20.5), напряжение питания ядра - до 1.5 В, напряжение питания DDR3 - 1.65 В. Частота DDR3 составила 1600 МГц (200х8), Turbo Core - выключен.

Phenom II X4 980 BE

Штатный режим. Тактовая частота 3700 МГц, частота системной шины 200 МГц (200х18.5), частота DDR3 - 1600 МГц (200х8), напряжение питания ядра 1.4 В, напряжение питания DDR3 - 1.5 В.

Процессор удалось разогнать до частоты 4100 МГц. Для этого множитель процессора был поднят до значения 20.5 (200х20.5), напряжение питания ядра - до 1.5 В, напряжение питания DDR3 - 1.5 В. Частота DDR3 составила 1600 МГц (200х8).

Перейдем непосредственно к тестам.

Intel традиционно заставляет пользователей путаться в своей продукции, блуждая между числовыми обозначениями процессоров в одной линейке. Intel Core i5 не стала исключением, хотя в случае с двумя ее флагманами 3570k и 3570 путаницы возникнуть не должно. Обе модели представляют собой решение производительное, относительно недорогое и современное, и на их основе собирают мультимедийные и игровые системы.

Определение

Intel Core i5 3570 — четырехъядерный процессор марки i5 от Intel, построенный на микроархитектуре Ivy Bridge и предназначенный для настольных систем. Позиционируется как разумный компромисс в плане стоимости и производительности.

Intel Core i5 3570k — четырехъядерный процессор марки i5 от Intel c разблокированным множителем, построенный на микроархитектуре Ivy Bridge и предназначенный для систем, предполагающих оверклокинг.

Сравнение

Как свидетельствует буква k в названии модели, 3570k — процессор с разблокированным множителем, и его можно разогнать не только по шине, а увеличением этого самого множителя, повысив тем самым производительность. Модель 3570 разблокированного множителя не имеет, поэтому для оверклокеров представляет мало интереса. Разгон значительно повышает температуру, так что применение 3570k влечет за собой затраты на хорошую систему охлаждения.

Процессор Intel Core 3570 принял на борт графическое ядро HD Graphics 2500, 3570k включает графику HD Graphics 4000. Это отличие может лечь в основу выбора, так как производительность первого при выполнении обширного ряда задач у первого ядра практически в два раза ниже, чем у старшей модели. Технически графика HD Graphics 2500 функционально идентична HD Graphics 4000, только исполнительных блоков задействовано меньше.

Intel Core i5 3570k

Как ни странно, старшая модель 3570k лишена поддержки многих технологий, реализованных в 3570. Это, например, средство безопасности Intel vPro, технология виртуализации направленного ввода/вывода Intel VT-d, среда изолированного запуска программ Intel Trusted Execution.

Intel Core i5 3570k обойдется дороже Intel Core i5 3570 примерно на 20 долларов, или около 700-800 руб.

Выводы сайт

  1. Процессор Intel Core i5 3570k имеет разблокированный множитель, способен к разгону и предназначен для оверклокинга.
  2. Процессор Intel Core i5 3570k включает графическое ядро HD Graphics 4000, Intel Core i5 3570 — HD Graphics 2500, соответственно производительность первого в графике выше.
  3. Процессор Intel Core i5 3570 поддерживает больше фирменных технологий.
  4. Процессор Intel Core i5 3570k дороже.