Битность изображения. Что такое глубина цвета? Какая бывает глубина цвета изображений

08.03.2020 Звуковые устройства

В мониторах производители могут указывать глубину цвета или количество передаваемых цветов. Экран монитора может передавать цвета с количеством цветовых оттенков например 8 бит, цвет имеет глубину 2 в 8 степени это означает, что один цвет может быть показан с 256 оттенками, в свою очередь оттенки могут комбинироваться, поскольку матрица экрана может отразить 3 цвета (синий, зелёный, красный) то количество оттенков в 8 битной матрице монитора будет 256х256х256=16777216 это 16,7 миллионов цветов.

Мониторы и телевизоры поддерживают глубину цвета

6Bit экраны

6 бит -0,26млн. цветов , самые дешёвые мониторы, используются для офисной работы, совершенно не предназначены для работы с графикой.

8bit экраны

8 бит - 16.7млн . мониторы среднего класса более менее подходят для работы с графикой

10bit экраны

10бит - 1,07млрд цветов такие мониторы подходят для работы с фотографиями и других работ требующих качественных цветовых переходов.

Видеокарта компьютера способна передавать глубину цвета как правило не менее 8 бит, а более мощные 10 бит.

12bit экраны

12 bit экраны очень используются очень мало, причина дороговизна в производстве, небольшой рынок. Как правило такие экраны используются только в дорогих устройствах специального назначения. Пример медицинские диагностические мониторы, когда градация цветовых оттенков играет важную роль. Но стоимость такого монитора раз в 10 больше обычного.

Дабы адаптировать мониторы к мощностям видеокарт был придуман дизеринг или технология (FRC) Frame rate control. Что бы создать большее число оттенков было придумано заставить мигать подсветку пикселей. Благодаря такому усовершенствованию визуальное восприятие цветов стало больше и производители стали такие матрицы называть более лучшими и они получили обозначение A-FRC. На самом деле подсветка не совсем мигает, правильней сказать подсветка имеет несколько уровней яркости. Быстро меняя яркость подсветки меняется оттенок изображения, добавляется количество оттенков.

(8bit+A-FRC) или (8bit+FRC) - если в характеристиках монитора встретится такое обозначение то надо понимать, что реально монитор может показывать изображение с глубиной 8 бит, но в нём применена технология FRC и визуально изображение будет сопоставимо с монитором имеющим глубину цвета в 10 бит. Так ли это сказать трудно, обычному пользователю без специальных приборов проверить работу FRC не возможно.

Но зачем это нужно, исследования показали что максимально человек может различать до 10 млн.цветов, и в зависимости от физиологии конкретного человека уровень восприятия цветов колеблется от 3000 до 10млн. Людей способных распознавать миллионы цветов всего несколько на 1000. Так зачем 10 бит панели если человек не в состоянии распознавать большее количество оттенков. Ответ в индивидуальном восприятии, кто то видит больше оттенков с красным цветом, кто то зелёным. Визуально монитор с глубиной цвета в 10bit будет показывать более красивое изображение.

Но для решения большинства задач вполне достаточно 8 битного монитора.

02.08.2016

Для цифровой фотографии одним из важнейших параметров является глубина цвета. Ее часто называют и глубиной пикселя, и битовым разрешением.

Под этим термином подразумевается величина, которая характеризует количество бит информации, содержащейся в пикселе картинки. Битовое разрешение дает представление об объеме цветовой информации, которая используется для характеристики каждого пикселя изображения.

С увеличением глубины цвета увеличивается и количество информации о цвете, передаваемой цифровым изображением, увеличивается диапазон цветов. Другими словами, чем больше битовая глубина, тем точнее и детальнее само изображение.

Какая бывает глубина цвета изображений?

Глубина пикселя может варьироваться от 1 до 48 битов. С битовой глубиной пикселя = 1 возможно лишь 2 цвета (белый и черный) и 21 допустимое состояние.

Если глубина пикселя будет равна 8, то возможных состояний будет уже больше на 7, а количество оттенков - 256.

Такие изображения с глубиной 24 бита, в которых может содержаться 16.7 млн. цветовых оттенков, способны очень точно и в полной мере передавать все краски окружающей нас действительности.

С большей глубиной цвета (36 или 48 битов) позволяют снимать в формате RAW профессиональные фотокамеры. Иногда именно поэтому многие фотографы предпочитают делать снимки именно а RAW.

Но наиболее распространенным показателем глубины цвета является все же 24 бита - это стандартные фотоснимки обычных фотоаппаратов в формате JPG, они вполне передают все детали и нюансы изображения. Недаром 24-битные изображения имеют название «TruColor», т.е. «настоящий цвет».

Существуют также 15 и 16 битные фотографии. Их еще называют «HighColor». Они передают оттенки, к которым наиболее восприимчив глаз человека.

На что влияет глубина цвета?

Во-первых, как понятно из вышесказанного, от глубины цвета зависит качество цветопередачи и, соответственно, качество самой фотографии. Оптимальным показателем глубины цвета является 24 бита, которого и придерживается большинство обычных фотографов.

Во-вторых, нужно помнить, что объем файла с изображением во многом зависит как от размеров картинки, так и от глубины цвета. Чем больше битовое разрешение изображения, тем больше будет объем его файла и его вес. Следовательно, нужно заранее подумать об обеспечении фотоаппарата картой памяти достаточного объема.

Интересные публикации на сайте

Посетите практически любой форум по фотографии, и вы непременно наткнетесь на дискуссию относительно преимуществ RAW и JPEG файлов. Одна из причин, по которой некоторые фотографы предпочитают формат RAW - это бóльшая глубина бита (глубина цвета)*, содержащаяся в файле. Это позволяет вам получать фотографии большего технического качества, чем те, что вы можете получить из файла JPEG.

*Bit depth (глубина бита), или Color depth (глубина цвета, в русском языке чаще используется именно это определение) - количество бит, используемых для представления цвета при кодировании одного пикселя растровой графики или видеоизображения. Часто выражается единицей бит на пиксель (англ. bits per pixel, bpp). Wikipedia

Что такое глубина цвета?

Компьютеры (и устройства, которые управляются встроенными компьютерами, такие как цифровые SLR-камеры) используют двоичную систему исчисления. Двоичная нумерация состоит из двух цифр - 1 и 0 (в отличие от десятичной системы исчисления, включающей 10 цифр). Одна цифра в двоичной системе исчисления называется «бит» (англ. «bit», сокращенно от «binary digit», «двоичная цифра»).

Восьмибитное число в двоичной системе выглядит так: 10110001 (эквивалентно 177 в десятичной системе). Таблица ниже демонстрирует, как это работает.

Максимально возможное восьмибитное число - это 11111111 - или 255 в десятичном варианте. Это значимая цифра для фотографов, поскольку она возникает во многих программах для обработки изображений, а также в старых дисплеях.

Цифровая съемка

Каждый из миллионов пикселей на цифровой фотографии соответствует элементу (также называемому «пиксель», англ. «pixel») на сенсоре (сенсорная матрица) камеры. Эти элементы при попадании на них света генерируют слабый электрический ток, измеряемый камерой и записывающийся в JPEG или RAW файл.

Файлы JPEG

Файлы JPEG записывают информацию о цвете и яркости для каждого пикселя тремя восьмиразрядными числами, по одному числу для красного, зеленого и синего каналов (эти цветовые каналы такие же, как те, что вы видите при построении цветовой гистограммы в Photoshop или на вашей камере).

Каждый восьмибитный канал записывает цвет по шкале 0-255, предоставляя теоретический максимум в 16,777,216 оттенках (256 x 256 x 256). Человеческий глаз может различать приблизительно около 10-12 миллионов цветов, так что это число обеспечивает более чем удовлетворительное количество информации для отображения любого объекта.

Этот градиент был сохранен в 24-битном файле (по 8 бит на каждый канал), что достаточно для передачи мягкой градации цветов.

Этот градиент был сохранен как 16-битный файл. Как вы можете видеть, 16 бит недостаточно для передачи мягкого градиента.

RAW файлы

RAW файлы присваивают больше бит каждому пикселю (большинство камер имеют 12 или 14-битные процессоры). Больше бит - больше числа, а, следовательно, больше тонов на каждый канал.

Это не приравнивается к большему количеству цветов - JPEG файлы уже могут записывать больше цветов, чем может воспринять человеческий глаз. Но каждый цвет сохраняется с гораздо более тонкой градацией тонов. В таком случае говорят, что изображение имеет большую глубину цвета. Таблица ниже иллюстрирует, как глубина бита приравнивается к количеству оттенков.

Обработка внутри камеры

Когда вы настраиваете камеру на запись фотографий в режиме JPEG, внутренний процессор камеры считывает информацию, полученную от сенсора в момент, когда вы делаете снимок, обрабатывает ее в соответствии с параметрами, выставленными в меню камеры (баланс белого, контраст, насыщенность цвета и т.д.), и записывает ее как 8-битный JPEG файл. Вся дополнительная информация, полученная сенсором, отбрасывается и теряется навсегда. В итоге, вы используете лишь 8 бит из 12 или 14 возможных, которые сенсор способен зафиксировать.

Постобработка

RAW файл отличается от JPEG тем, что содержит все данные, зафиксированные сенсором камеры за период экспонирования. Когда вы обрабатываете RAW файл, используя программное обеспечение для конвертации RAW, программа осуществляет преобразования, аналогичные тем, что производит внутренний процессор камеры, когда вы снимаете в JPEG. Различие состоит в том, что вы выставляете параметры внутри используемой программы, а те, что выставлены в меню камеры, игнорируются.

Выгода от дополнительной глубины бита RAW файла становится очевидной при постобработке. JPEG файл стоит использовать, если вы не собираетесь делать какую-либо постобработку и вам достаточно выставить экспозицию и все другие настройки во время съемки.

Однако, в реальности большинство из нас хочет внести хотя бы несколько исправлений, если это даже просто яркость и контраст. И это именно тот момент, когда JPEG файлы начинают уступать. С меньшим количеством информации на пиксель, когда вы проводите корректировку яркости, контраста или цветового баланса, оттенки могут визуально разделиться.

Результат наиболее очевиден в областях плавного и продолжительного перехода оттенков, таких как на голубом небе. Вместо мягкого градиента от светлого к темному, вы увидите расслоение на цветовые полосы. Этот эффект также известен как постеризация (англ. «posterisation»). Чем больше вы корректируете, тем сильнее он проявляется на изображении.

С файлом RAW, вы можете вносить гораздо более сильные изменения в оттенок цвета, яркость и контраст до того, как вы увидите снижение качества изображения. Это также позволяют сделать некоторые функции RAW-конвертера, такие как настройка баланса белого и восстановление «пересвеченных» областей (highlight recovery).

Это фото получено из JPEG файла. Даже при таком размере видны полосы в небе как результат постобработки.

При тщательном рассмотрении на небе виден эффект постеризации. Работа с 16-битным TIFF файлом может ликвидировать, или по крайней мере минимизировать, эффект полос.

16-битные TIFFфайлы

Когда вы обрабатываете RAW файл, ваше программное обеспечение предоставляет вам опцию по сохранению его как 8 или 16-битного файла. Если вы довольны обработкой и не хотите вносить еще какие-либо изменения, вы можете сохранить его как 8-битный файл. Вы не заметите никаких различий между файлом 8 бит и 16 бит на вашем мониторе или когда вы распечатаете изображение. Исключение - тот случай, когда у вас есть принтер, распознающий 16-битные файлы. В этом случае, из файла 16 бит вы можете получить лучший результат.

Однако если вы планируете осуществлять постобработку в Photoshop, тогда рекомендуется сохранять изображение как 16-битный файл. В этом случае изображение, полученное из 12 или 14-битного сенсора, будет «растянуто», чтобы заполнить 16-битный файл. После этого вы можете поработать над ним в Photoshop, зная, что дополнительная глубина цвета поможет вам достичь максимального качества.

Опять же, когда вы завершили процесс обработки, вы можете сохранить файл как 8-битный файл. Журналы, издатели книг и стоки (и практически любой клиент, покупающий фотографии), требуют 8-битные изображения. Файлы 16 бит могут потребоваться, только если вы (или кто-то другой) намереваетесь редактировать файл.

Это изображение, которое я получил, используя настройку RAW+JPEG на камере EOS 350D. Камера сохранила две версии файла - JPEG, обработанный процессором камеры, и RAW файл, содержащий всю информацию, записанную 12-битным сенсором камеры.

Здесь вы видите сравнение правого верхнего угла обработанного JPEG файла и RAW файла. Оба файла были созданы камерой с одной и той же настройкой экспозиции, и единственное различие между ними - это глубина цвета. Я смог «вытянуть» не различимые в JPEG «пересвеченные» детали в RAW файле. Если бы я хотел поработать над этим изображением дальше в Photoshop, я мог бы сохранить его как 16-битный файл TIFF, чтобы обеспечить максимально возможное качество изображения в течение процесса обработки.

Почему фотографы используют JPEG?

То, что не все профессиональные фотографы используют формат RAW все время, еще ничего не значит. Как свадебные, так и спортивные фотографы, например, зачастую работают именно с форматом JPEG.

Для свадебных фотографов, которые могут снять тысячи снимков на свадьбе, это экономит время на последующей обработке.

Спортивные фотографы используют JPEG файлы для того, чтобы иметь возможность отсылать фотографии своим графическим редакторам в течение мероприятия. В обоих случаях скорость, эффективность и меньший размер файлов формата JPEG делает использование этого типа файлов логичным.

Глубина цвета на компьютерных экранах

Глубина бита также относится к глубине цвета, которую компьютерные мониторы способны отображать. Читателю, использующему современные дисплеи, возможно, тяжело будет в это поверить, но компьютеры, которыми я пользовался в школе, могли воспроизводить только 2 цвета - белый и черный. «Must-have» компьютер того времени - Commodore 64, способный воспроизводить аж 16 цветов. В соответствии с информацией из «Википедии», было продано более 12 единиц этого компьютера.


Компьютер Commodore 64. Автор фотографии Билл Бертрам (Bill Bertram)

Несомненно, вы не сможете редактировать фотографии на машине с 16 цветами (64 Кб оперативной памяти в любом случае больше не потянут), и изобретение 24-битных дисплеев с реалистичным цветовоспроизведением - одна из вещей, которые сделали цифровую фотографию возможной. Дисплеи с реалистичным цветовоспроизведением, как и файлы JPEG, формируются при помощи трех цветов (красного, зеленого и синего), каждый с 256 оттенками, записанными в 8-битную цифру. Большинство современных мониторов используют либо 24-битные, либо 32-битные графические устройства с реалистичным цветовоспроизведением.

Файлы HDR

Многие из вас знают, что изображения с расширенным динамическим диапазоном (HDR) создаются путем комбинирования нескольких версий одного и того же изображения, снятого с разными настройками экспозиции. Но знаете ли вы, что программное обеспечение формирует 32-битное изображение с более чем 4 миллиардами тональных значений на каждый канал на пиксель - просто скачок по сравнению с 256 оттенками в файле JPEG.

Настоящие HDR файлы не могут быть корректно отображены на компьютерном мониторе или распечатанной странице. Вместо этого они урезаются до 8 или 16-битных файлов при помощи процесса, называемого тональная компрессия (англ. «tone-mapping»), который сохраняет характеристики оригинального изображения с расширенным динамическим диапазоном, но позволяет воспроизвести его на устройствах с узким динамическим диапазоном.

Заключение

Пиксели и биты - основные элементы для построения цифрового изображения. Если вы хотите получить максимально хорошее качество снимка на вашей камере, необходимо понимать концепцию глубины цвета и причины, по которым формат RAW позволяет получить изображение лучшего качества.

Глубина цвета - термин, обозначающий, какое количество цветов или оттенков передает изображение, и изменяется в битах. Подавляющее число изображений, с которыми производится работа, имеют глубину цвета 8 бит на канал, что позволяет в каждом канале изображения хранить до 256 его оттенков. Что это значит? Глубина цвета определяет, сколько бит изображения отводится под хранение графической информации. Чем больше бит отводится под хранение цвета одной точки, тем большее количество цветов одновременно можно передать. При глубине цвета 1 бит, под каждый отдельный пиксел отводится 1 бит информации, и каждый из них может быть или черным, или белым. Так хранится цветовая информация в файлах цветовой модели Bitmap. При использовании двух бит возможно хранение цветовой информации об одном из четырех возможных цветах каждого пиксела. При использовании 4 бит на пискел - уже 16 - и цветов (значения глубины цвета, большие 1 и до 8 бит на точку характерны для т.н. индексированных палитр, что активно используется, например, в файлах формата *.GIF). 8 бит позволяет хранить до 256 различных цветов. Это значение глубины цвета считается стандартным и используется по умолчанию в большинстве пакетов подготовки иллюстраций. Более высокие значения глубины цвета (16 бит) позволяет хранить 65,536 оттенков цвета одновременно. Поддержка файлов с такой глубиной цвета реализована, например, в Adobe Photoshop. Однако, эти файлы имеют гораздо больший объем, в 2 раза превышающий стандартный. Поэтому используется этот режим как переходной, и для совместимости со сканерами и другими устройствами ввода растровых изображений, где данные поступают с цифро-аналогового преобразователя (оцифровываются) с повышенной глубиной цвета. Зачем нужна большая глубина цвета, если выходные файлы с большими значениями (свыше 8 бит на канал) считаются нестандартными для полиграфии? Дело в том, что при хранении промежуточных результатов (например, сканированные оригиналы с высококачественного сканера, например) и их многократной цветокоррекции при низкой глубине цвета иногда можно наблюдать искажения, проявляющиеся в характерной "постеризации" изображения, когда в "тонких" растяжках и градиентах можно наблюдать некоторые искажения в виде "ступенчатого" изменения цвета. Этот эффект показан ниже на рисунке.

Рис. 1. Пример проблемной растяжки при
низкой глубине цвета и многократной цветокоррекции

Градиент с низким значением глубины цвета выглядит более ступенчато, чем его аналог с более высоким значением глубины цвета. Обычно такие проблемы возникают при слишком сильной или многократной цветокоррекции изображения (например, исправление очень некачественного оригинала). Изображение с высокой глубиной цвета в этом случае выглядит лучше. Однако, в подавляющем большинстве случаев вполне приемлемо сканирование и обработка оригиналов со стандартной глубиной цвета 8 бит на канал. Большее значение выбирайте в случае, если у вас High-end сканер или оригинал требует кардинальной коррекции цветов (сильное затемнение или осветление). Следует учесть, что далеко не все пакеты работают с файлами, где использована нестандартная глубина цвета. Например, в Adobe Photoshop работа в принципе возможна, но не поддерживается работа с большинством инструментов и фильтров.

Иногда о глубине цвета судят как о произведении глубин цветов всех его каналов. Например, для RGB - изображения с глубиной цвета 8 бит на канал это значение будет составлять 24 бита(что позволяет хранить до 16,7 миллионов различных цветов), а для файла в цветовой модели CMYK - 32 бита.

Цвет каждого пиксела цифрового изображения описывается несколькими числами (в зависимости от используемой цветовой системы). Количество бит, отводимое на представление информации о цвете каждого пиксела, называют глубиной цвета (color depth ) или битовой глубиной цвета (bit depth). Иногда под цветовой глубиной понимают максимальное количество цветов, которые можно представить.

Глубина цвета определяет, как много цветов может быть использовано при отображении одного пиксела. Например, если цветовая глубина равна 1 бит, то пиксел может представлять только один из двух возможных цветов – белый или черный. Если цветовая глубина равна 8 бит, то количество возможных цветов равно 2 8 = 256. При глубине цвета 24 бит количество цветов превышает 16 миллионов, что фактически превосходит способность глаза человека разрешать цвета. Такой режим называется True Color (истинный цвет ). В связи с тем, что 24-pазpядное представление неудобно с точки зpения обpаботки изобpажения, обычно в режиме TrueColor используется 32 бита. В случае 32-pазpядного пpедставление информации о цвете младшие тpи байта по-прежнему описывают цвет точки, а стаpший байт либо упpавляет дополнительными паpаметpами (напpимеp, альфа-каналом, инфоpмацией о взаимном пеpекpывании объектов или глубине в тpехмеpном изобpажении), либо не используется. Понятно, что при таком представлении увеличивается размер изображения, однако существенно возрастает скорость его обработки центральным и графическим процессорами компьютера.

Квантование цвета

Квантование цвета (color quantization ) используется для получения малого числа характерных цветов в изображении. Задачу квантования в данном случае можно сформулировать как выбор заданного количества "наилучших" цветов, имеющихся в полноцветном изображении, и замены всех остальных цветов изображения подходящими заместителями из этого списка. Раньше процесс квантования цвета был необходим потому, что видеосистема компьютера могла работать лишь с ограниченной цветовой палитрой (как правило, 256 цветов). Теперь оно используется с целью уменьшения размера графического файла, создания спецэффектов, повышения резкости границ и т.п.

Самым простым подходом здесь является выбор комплекта цветов для палитры с равномерным распределением каждой из цветовых компонент. Он обеспечивает широкий выбор цветов, но при этом не учитывается тот факт, что в большинстве изображений нет равномерного цветового распределения.

На данный момент существует несколько методик квантования цвета. Одним из наиболее эффективных является метод квантования цветов медианным сечением . При этом цветовое пространство рассматривается как трехмерный куб. Каждая ось куба соответствует одному из трех основных цветов: красному, зеленому или синему. Каждая из трех сторон разбивается на 255 равных частей, деления на осях нумеруются от 0 до 255, причем большее значение соответствует большей интенсивности цвета. Метод медианного сечения делит куб на 256 параллелепипедов, каждый из которых содержит примерно одинаковое количество пикселов. При таком разбиении куба центральная точка каждого параллелепипеда представляет оптимальный выбор для цветовой палитры. В той области куба, которая густо заполнена точками, будет больше параллелепипедов и, соответственно, в палитру попадет больше цветов. А там, где точек меньше, будет взято меньшее количество цветов. При этом ни один цвет не будет отброшен полностью, а предпочтение будет отдано тем цветам, которые встречаются чаще.