Сигналы с амплитудной модуляцией. Амплитудная модуляция

30.08.2019 Разное

Амплитудная модуляция (AM) - наиболее распространенный тип модуляции. В системе с AM амплитуда несущей изменяется в соответствии с изменением сигнала или информации (рис. 14.1). В отсутствие сигнала амплитуда несущей имеет постоянный уровень, как показано на рис. 14.1(б). При модуляции синусоидальным сигналом амплитуда несущей увеличивается или уменьшается относительно своего немодулированного уровня по синусоидальному закону в соответствии с нарастанием или спаданием модулирующего сигнала. Чем больше амплитуда модулирующего сигнала, тем сильнее изменяется амплитуда несущей. Амплитудно-модулированная несущая (рис. 14.1(в)) имеет огибающую, в точности повторяющую форму модулирующего сигнала, и при демодуляции именно эта огибающая выделяется как полезный сигнал.

Глубина модуляции

Отношение амплитуды модулирующего сигнала к амплитуде несущей называется глубиной или коэффициентом модуляции. Она определяет меру изменения уровня несущей при модуляции. Глубина модуляции всегда выражается в процентах, и поэтому о ней говорят как о «процентной» модуляции.
Амплитуда сигнала
Глубина модуляции = ----------- 100%
Амплитуда несущей

(см. рис. 14.1). Например, если амплитуда сигнала равна 1 В, а амплитуда несущей - 2 В, то глубина модуляции составляет (1 В)/(2 В) 100% = 50%. Такую глубину модуляции имеет АМ-несущая, показанная на рис. 14.1.

Рис. 14.1. Амплитудная модуляция (глубина модуляции 50%);
(а) сигнал; (б) несущая; (в) модулированная несущая.

Перемодуляция

На рис. 14.2(а) показана АМ-несущая со 100%-ной глубиной модуляции. Глубина модуляции, превышающая 100%, приводит к искажениям (рис. 14.2(б)). По этой причине глубину модуляции ограничивают. Например, при передачах радиостанции Би-би-си она ограничена величиной 80%.


Рис. 14.2. (а) Модуляция 100%; (б) перемодуляция.

Боковые частоты

Можно показать, что амплитудно-модулированная несущая состоит из трех гармонических (синусоидальных) компонент с постоянными амплитудами и разными частотами. Этими тремя компонентами являются: сама несущая и два сигнала боковых частот f1 и f2. Каждый модулирующий гармонический сигнал порождает две боковые частоты. Пусть fs – частота модулирующего сигнала и fc – частота несущей, тогда

f1 = fc – fs, f2 = fc + fs,

где f1 и f2 – так называемые нижняя боковая и верхняя боковая частоты соответственно. Например, если частота несущей равна 100 кГц, а частота сигнала - 1 кГц, то

Нижняя боковая частота f1 = 100 – 1 = 99 кГц,
Верхняя боковая частота f2 = 100 + 1 = 101 кГц.
Амплитудно-модулированная несущая, т. е. несущая вместе с двумя сигналами боковых частот, может быть представлена в виде трех вертикальных стрелок, каждая из которых соответствует одному гармоническому сигналу (рис. 14.3). То, что изображено на этом рисунке, называется частотным спектром сигнала (в данном случае частотным спектром АМ-несущей).


Рис. 14.3. Частотный спектр AM-несущей. Рис. 14.4. Боковые полосы.

Боковые полосы

Информационные сигналы почти всегда имеют сложную форму и состоят из большого числа гармонических сигналов. Поскольку каждый гармонический сигнал порождает пару боковых частот, то сложный негармонический сигнал будет порождать многочисленные боковые частоты, что приведет к образованию двух полос частот по обе стороны от несущей (рис. 14.4). Это так называемые боковые полосы частот. Область частот между наибольшей верхней боковой частотой f2 и наименьшей верхней боковой частотой f4 называют верхней боковой полосой (ВБП). Аналогично область частот между наибольшей нижней боковой частотой f3 и наименьшей нижней боковой частотой f1 называют нижней боковой полосой (НБП).
Эти две боковые полосы расположены симметрично относительно несущей, и каждая из них содержит одну и ту же информацию. Несущая не несет никакой информации. Всю информацию несут боковые частоты.
При модуляции одиночным гармоническим сигналом принимается, что верхняя и нижняя боковые полосы простираются от несущей до верхней и нижней боковых частот соответственно (рис. 14.5).

Пример 1

Несущая с частотой 100 кГц промодулирована по амплитуде сигналом, занимающим полосу частот 400-3400 Гц. Определите ширину боковых полос.

Решение

Частота 3400 Гц, самая высокая в спектре сигнала, порождает две боковые частоты (рис. 14.6):
f1 = 100 000 - 3400 = 96 600 Гц,
f2 = 100 000 + 3400 = 103 400 Гц.


Рис. 14.6.

Частота 400 Гц, самая низкая в спектре сигнала, порождает еще две боковые частоты:

f3 = 100 000 - 400 == 99 600 Гц,
f4 = 100 000 + 400 = 100 400 Гц.

Ширина верхней боковой полосы (ВБП): f2 – f4 = 103400 - 100400 = 3000 Гц.
Ширина нижней боковой полосы (НБП): f3 – f1 = 99 600 - 96 600 = 3000 Гц.

Другими словами, обе боковые полосы имеют одну и ту же ширину, равную разности значений наивысшей и наинизшей частот в спектре модулирующего сигнала: 3400 - 400 = 3000 Гц.
Боковые частоты для любой другой частоты в спектре сигнала будут находиться внутри верхней и нижней боковых полос.

Ширина полосы частот

Так как информацию несут только боковые частоты, то для качественной передачи этой информации ширина полосы частот, занимаемой в эфире АМ-системой, должна быть достаточно велика, чтобы вместить все имеющиеся боковые частоты. При модуляции гармоническим сигналом возникают две боковые частоты. Таким образом, полоса частот простирается от нижней боковой частоты f1 до верхней боковой частоты f2 (как показано на рис. 14.5).
Например, если модулирующий гармонический сигнал имеет частоту 1 кГц, то ВБП = НБП = 1 кГц и ширина полосы составит
НБП + ВБП = 2 1 кГц = 2 кГц.

Другими словами, в данном случае ширина полосы частот, занимаемой амплитудно-модулированной несущей, равна удвоенной частоте модулирующего сигнала.
В случае передачи сложного сигнала ширина полосы частот, занимаемой АМ-системой передачи информации, равна удвоенной наивысшей частоте в спектре модулирующего сигнала и, таким образом, включает в себя все боковые частоты.

Одно- и двухполосная передача

Поскольку одна боковая полоса содержит столько же информации, сколько и другая, передачу можно осуществлять с использованием только одной боковой полосы, и при этом не будет никакой потери информации. При однополосной передаче (SSB - по связной терминологии) одна из боковых полос - или нижняя, или верхняя - подавляется и передается только одна оставшаяся боковая полоса. При двухполосной (DSB) передаче передаются обе боковые полосы.
Однополосная передача занимает лишь половину той полосы частот, которая используется при двухполосной передаче, и по этой причине она применяется в телефонии и радиосвязи. При однополосной передаче в заданном диапазоне частот несущей можно расположить вдвое большее число информационных каналов, чем при двухполосной передаче. В силу простоты двухполосная передача используется всеми радиовещательными системами с AM. Поэтому, когда речь идет о связи с использованием AM, обычно имеется в виду двухполосная передача, если не оговорено обратное.

Пример 2

Несущая промодулирована по амплитуде периодическим сигналом в виде меандра с частотой 100 Гц. Пренебрегая гармониками выше пятой, установите ширину полосы частот, необходимую а) для DSB (двухполосной)-передачи и б) для SSB (однополосной)-передачи.

Решение

Сигнал в виде меандра с частотой 100 Гц содержит следующие гармоники:

основную гармонику =100 Гц,
гармонику 3-го порядка = 3 100 = 300 Гц,
гармонику 5-го порядка = 5 100 = 500 Гц.

Гармониками более высокого порядка пренебрегаем. Таким образом, в обрезанном спектре модулирующего сигнала максимальная частота fмакс = 500 Гц.
Ширина полосы для DSB-передачи = 2 fмакс = 2 500 = 1000 Гц.
Ширина полосы для SSB-передачи = DSB/2 = 1000/2 = 500 Гц.

В этом видео рассказывается об амплитудной модуляции:

Амплиту́дная модуляция - вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда.

Амплитудная модуляция (АМ) – модуляция, при которой незатухающие колебания изменяются по амплитуде в соответствии с модулирующими его колебаниями более низкой частоты.

При амплитудной модуляции (АМ) амплитуда высокочастотного колебания (несущей) изменяется по закону модулирующего (первичного) сигнала.

При АМ спектр модулирующего сигнала переносится в область частот носителя, образуя верхнюю и нижнюю боковые составляющие спектра. Поскольку при таком преобразовании получаются новые частоты, процедура модуляции есть нелинейное преобразование. Но поскольку при АМ спектр модулирующего сигнала не изменяется, а лишь переносится в область высоких частом, АМ считается линейным видом модуляции.

Цель любой модуляции - неискаженная и при меньшем воздействии помех передача сигнала по данной линии связи.

Принципы преобразования спектра при АМ широко используются в технике,

например, при разработке схем радиовещательных и телевизионных приемников, систем многоканальной телефонии с частотным уплотнением линий связи и, в частности, лежат в основе устройства анализатора спектра.

Несущая частота , частота гармонических колебаний, подвергаемых модуляции сигналами с целью передачи информации. Колебания с НЧ иногда называют несущим колебанием. В самих колебаниях с НЧ не содержится информации, они лишь «несут» её. Спектр модулированных колебаний содержит, кроме НЧ боковые частоты, заключающие в себе передаваемую информацию.

Если в качестве первичного сигнала принять сигнал, имеющий формулу синусоиды, то амплитудно-модулированный сигнал будет иметь вид, изображенный на рисунке.

С качественной стороны амплитудная модуляция (AM) может быть определена как изменение амплитуды несущей пропорционально амплитуде модулирующего сигнала.

Гармоническое колебание высокой частоты w модулировано по амплитуде гармоническим колебанием низкой частоты W (t = 1/W - его период), t - время, A - амплитуда высокочастотного колебания, T - его период.



Амплитудная модуляция синусоидальным сигналом, w - несущая частота, W - частота модулирующих колебаний, Амакс и Амин - максимальное и минимальное значения амплитуды.

Для модулирующего сигнала большой амплитуды соответствующая амплитуда модулируемой несущей должна быть большой и для малых значений амплитуды Эта схема модуляции может быть осуществлена умножением двух сигналов.

Глубина амплитудной модуляции - максимальное относительное отклонение амплитуды от среднего

Спектральная плотность модулированного сигнала представляет два спектра модулирующей функции, построенных относительно частот w = w 0 и w = -w 0 (сдвинутых на частоты несущей).

Пример . Спектр однотональной модуляции


Радиосигнал состоит из несущего колебания и двух синусоидальных колебаний, называемых боковыми полосами.

При обычной амплитудной модуляции информация содержится в каждой из двух боковых полос

Несущий сигнал - сигнал, один или несколько параметров которого подлежат изменению в процессе модуляции. Степень изменения параметра определяется мгновенным значением информационного (модулирующего) сигнала.

В качестве несущего может быть использован любой стационарный сигнал. Чаще всего в качестве несущего сигнала используется высокочастотное (относительно информационного сигнала) гармоническое колебание, что обусловлено простотой демодуляции и узким спектром. Однако, в некоторых случаях целесообразно использовать другие виды несущего сигнала, например, прямоугольный.

Несущий сигнал часто называют просто несущая (от несущая частота), либо несущее (колебание). Все эти термины означают практически одно и то же. В английской терминологии несущий сигнал обозначается словом carrier.

Отношение U /U 0 называют коэффициентом модуляции mАМ. Его часто выражают в процентах. Если U 0 >=Umax, то коэффициент mАМ будет изменяться от 0 до 1.

Коэффицие́нт амплиту́дной модуля́ции (коэффициент АМ, устар. глубина модуляции) - основная характеристика амплитудной модуляции - отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений, выраженное в процентах

АМ колебания представляют собой результат сложения трех высокочастотных колебаний; колебания с частотой f 0 и с амплитудой U 0 и двух колебаний с частотами f 0 + F и f 0 - F и амплитудой 0,5 mАМ*U 0 .

В системах с амплитудной модуляцией (АМ) модулирующая волна изменяет амплитуду высокочастотной несущей волны. Анализ частот на выходе показывает присутствие не только входных частот f 0 и F, но также их сумму и разность: f н + F и f н - F. Если модулирующая волна является комплексной, как например сигнал речи, который состоит из множества частот, то суммы и разности различных частот займут две полосы, одна ниже, другая выше несущей частоты. Частоты f н + F и f н - F называются верхней и нижней боковой частотой соответственно.

Верхняя боковая полоса является копией изначального разговорного сигнала, только сдвинутого на частоту Fc. Нижняя полоса это инвертированная копия изначального сигнала, т.е. верхние частоты в оригинале являются нижними частотами в нижней боковой.

Нижняя боковая полоса это зеркальное отображение верхней боковой по отношению к частоте несущей Fc.

Система с АМ, которая передает обе боковых и несущую, известна, как двухполосная система (DSB - double sidebaud). Несущая не несет никакой полезной информации и может быть убрана, но с несущей или без, полоса сигнала DSB вдвое больше полосы изначального сигнала. Для сужения полосы возможно вытеснение не только несущей, но и одной из боковых, так как они несут одну информацию. Этот вид работы известен, как однополосная модуляция с подавленной несущей (SSB-SC - Single SideBand Suppressed Carrier).


Амплитудная модуляция сложного сигнала

Любая передающая радиостанция, работающая в режиме амплитудной модуляции, излучает не одну частоту, а целый набор (спектр) частот. В простейшем случае (с синусоидальным сигналом) этот спектр содержит лишь три составляющие - несущую и две боковые. Если же модулирующий сигнал не синусоидальный, а более сложный, то вместо двух боковых частот в модулированном колебании будут две боковые полосы, частотный состав которых определяется частотным составом модулирующего сигнала.

Поэтому каждая передающая станция занимает в эфире определённый частотный интервал. Во избежание помех несущие частоты различных станций должны отстоять друг от друга на расстоянии, большем, чем сумма боковых полос. Ширина боковой полосы зависит от характера передаваемого сигнала: для радиовещания - 10 кгц, для телевидения - 6 Мгц. Исходя из этих величин, выбирают интервал между несущими частотами различных станций. Для получения амплитудно-модулированного колебания колебание несущей частоты и модулирующий сигнал подают на специальное устройство - модулятор.

Демодуляция сигнала АМ достигается путем смешивания модулированного сигнала с несущей той же самой частоты, что и на модуляторе.

Изначальный сигнал затем получают, как отдельную частоту (или полосу частот) и его можно отфильтровать от других сигналов. Несущая для демодуляции генерируется на месте и она может не совпадать каким либо образом с частотой несущей на модуляторе. Небольшая разница между двумя частотами является причиной несовпадения частот, что присуще телефонным цепям.

За счет амплитудной модуляции сложного сигнала происходит увеличение скорости передачи данных.

где m=k AM S m /U mo – коэффициент амплитудной модуляции. На рис. 5 показаны модулированные сигналы с коэффициентами АМ, равными m=0,5 и m=1 соответственно. При стопроцентной амплитудной модуляции (m=1) имеют место максимальные изменения амплитуды модулированного сигнала: амплитуда изменяется от нуля до удвоенного значения.

Используя тригонометрическую формулу для произведения косинусов, выражение (3) можно представить в виде формулы (4). Все три слагаемые в правой части формулы (4) – гармонические колебания. Первое слагаемое представляет собой исходное немодулированное колебание (несущую). Второе и третье слагаемые называют, соответственно, верхней и нижней боковыми составляющими.

До настоящего времени в радиоэлектронике не разработано эффективных методов непосредственного перемножения двух или нескольких аналоговых сигналов. Поэтому при осуществлении амплитудной модуляции применяются косвенные методы перемножения с помощью нелинейных или параметрических цепей.

Одним из вариантов построения амплитудных модуляторов являются АМ на основе резонансных усилителей мощности, использующих эффект преобразования суммы модулирующего и несущего колебаний, подаваемых на безынерционный нелинейный элемент. Простейший АМ создают на основе нелинейного резонансного усилителя (рис. 6), включив на входе последовательно источники постоянного напряжения смещения U o , модулирующего сигнала е(t) и генератор несущего колебания U n (t), и настроив колебательный контур на несущую частоту ω o .

Для получения однотонального АМ-сигнала к входу модулятора необходимо приложить напряжение

Анализировать работу модулятора можно с помощью диаграмм токов и напряжений (рис. 7). Предположим, что сквозная характеристика транзистора (зависимость тока коллектора I к от напряжения база – эмиттер U бэ) аппроксимирована двумя отрезками прямых линий. Вследствие перемещения рабочей точки относительно напряжения смещения Uo по закону модулирующего сигнала е(t) происходит изменение угла отсечки тока в кривой несущего колебания. В результате импульсы коллекторного тока i к транзистора, отражающие изменение несущего колебания, оказываются промодулированными по амплитуде.

В спектре импульсов коллекторного тока транзистора содержится множество гармонических составляющих с частотами ω 0 и Ω, а также с кратными и комбинационными (суммарными и разностными составляю щими гармоник ω 0 и Ω) частотами. Резонансный контур должен иметь полосу пропускания Δω АМ = 2Ω для выделения из спектра импульсов коллекторного тока только гармоники с частотами ω 0 – Ω, ω 0 и ω 0 + Ω.


Рис. 7. Диаграммы токов и напряжений

2.2. Угловая модуляция

При угловой модуляции (angle modulation) в несущем гармоническом колебании u(t) = U m cos(wt+j) значение амплитуды колебаний U m остается постоянным, а информация s(t) переносится либо на частоту w, либо на фазовый угол j. И в том, и в другом случае текущее значение фазового угла гармонического колебания u(t) определяет аргумент y(t) = wt+j, который называют полной фазой колебания.

Фазовая модуляция (ФМ, phase modulation – PM).При фазовой модуляции значение фазового угла постоянной несущей частоты колебаний w o пропорционально амплитуде модулирующего сигнала s(t). Соответственно, уравнение ФМ – сигнала определяется выражением:

u(t) = U m cos, (6)

где k – коэффициент пропорциональности. Пример однотонального ФМ–сигнала приведен на рис. 8.

При s(t) = 0, ФМ–сигнал является простым гармоническим колебанием и показан на рисунке функцией u o (t). С увеличением значений s(t) полная фаза колебаний y(t)=w o t+k×s(t) нарастает во времени быстрее и опережает линейное нарастание w o t. Соответственно, при уменьшении значений s(t) скорость роста полной фазы во времени спадает. В моменты экстремальных значений s(t) абсолютное значение фазового сдвига Dy между ФМ – сигналом и значением w o t немодулированного колебания также является максимальным и носит название девиации фазы (вверх Dj в = k×s max (t) или вниз Dj н = k×s min (t) с учетом знака экстремальных значений модулирующего сигнала).

Для колебаний с угловой модуляцией применяется также понятие мгновенной частоты (instantaneous frequency), под которой понимают производную от полной фазы по времени:

На (рис. 9) приведена схема фазового модулятора (аналогичная схема используется в радиостанции «Кама – Р»). Напряжение высокой частоты через автотрансформаторную связь поступает на первичный контур – катушку L1 и варикап V1. Далее, через конденсаторы связи С1, С2 напряжение подается на второй контур – L2, V2 и третий – L3, V3. Варикапы выполняют роль контурных конденсаторов.

При отсутствии модулирующего напряжения с микрофона (U=0) на варикапах действует постоянное напряжение смещения, которое устанавливается потенциометрами R10–R12. Напряжение смещения подбирается ток, чтобы каждый контур был настроен на частоту входного напряжения . Поэтому высокочастотное напряжение проходит все 3 контура, не получая дополнительного сдвига по фазе.

При появлении на выводах 1, 2 звукового напряжения U оно через разделительные конденсаторы С6–С8 подается на варикапы. Напряжение смещения суммируется с напряжением модуляции и емкости варикапов изменяются в такт со звуковым напряжением. Вследствие меняющейся расстройки колебательных контуров выходное напряжение оказывается промодулированным по фазе. Количество контуров определяет глубину модуляции.

Конденсаторы С3–С5 имеют малое сопротивление токам высокой частоты (короткое замыкание) и относительно большое для токов звуковой частоты. Благодаря этим конденсаторам и резисторам R4–R6 осуществляется развязка между высокочастотной и низкочастотной частями схемы.

При передаче сообщений телеграфом излучение высокочастотной энергии периодически прекращается и возобновляется. Этот процесс называется манипуляцией.

Частотная модуляция (ЧМ, frequency modulation – FM) характеризуется линейной связью модулирующего сигнала с мгновенной частотой колебаний, при которой мгновенная частота колебаний образуется сложением частоты высокочастотного несущего колебания w o со значением амплитуды модулирующего сигнала с определенным коэффициентом пропорциональности:

Уравнение ЧМ – сигнала:

u(t) = U m cos(ω o t+k s(t) dt +j o). (8)

Аналогично ФМ, для характеристики глубины частотной модуляции используются понятия девиации частоты вверх Dw в = k×s max (t), и вниз

Dw н = k×s min (t).

Частотная и фазовая модуляция взаимосвязаны. Если изменяется начальная фаза колебания, изменяется и мгновенная частота, и наоборот. По этой причине их и объединяют под общим названием угловой модуляции. По форме колебаний с угловой модуляцией невозможно определить, к какому виду модуляции относится данное колебание, к ФМ или ЧМ, а при достаточно гладких функциях s(t) формы сигналов ФМ и ЧМ вообще практически не отличаются.

Схема частотного модулятора представлена на рис. 10.

При рассмотрении схемы следует сказать о том, что в отличие от амплитудной модуляции частотная модуляция осуществляется непосредственно в задающем генераторе передатчика. На рис. 10 показан упрощенный вариант схемы частотной модуляции с применением варикапа.

Варикап представляет собой специальной конструкции полупроводниковый диод. Если диод включить в обратном направлении, то его закрытый p–n переход может рассматриваться как конденсатор. Регулируя напряжение запирания, можно изменять емкость этого «конденсатора». На рисунке транзистор VT2 с колебательным контуром Ск, Lk и катушкой связи Lсв образуют генератор синусоидальных колебаний с самовозбуждением.

Так как параллельно контуру с конденсатором Ск через Ссв подключается емкость варикапа, то частота генерируемых колебаний в режиме «молчания» будет определяться следующим образом:

(9)

Здесь – емкость варикапа в исходном состоянии при отсутствии звукового напряжения .

Начальная емкость определяется начальным запирающим напряжением, которое равно напряжению на Rk при протекании тока покоя .

Модулятором в схеме является усилитель напряжения звуковой частоты на транзисторе VT1 с коллекторной нагрузкой и варикапом.

При воздействии на микрофон с коллекторной нагрузки Rk снимается звуковое напряжение , которое через высокочастотный дроссель L1 подается на варикап и изменяет его емкость и следовательно частоту генерируемых высокочастотных колебаний.

Конденсатором Ссb можно регулировать девиацию частоты генерируемых колебаний. Высокочастотный дроссель позволяет развязать высокочастотную часть схемы от низкочастотной, иными словами, исключить

попадание высокочастотного напряжения на коллектор транзистора усилителя низкой частоты.

2.3. Импульсная модуляция

Импульсная модуляция (ИМ) не является в действительности каким-то особым типом модуляции. Далее различают импульсную амплитудную и импульсную частотную модуляции. Здесь учитывают то, каким образом информация представлена - с помощью импульса или ряда импульсов. Можно рассматривать в качестве модулируемой величины амплитуду импульса или его ширину, или его положение в последовательности импульсов и т. д. Следовательно, существует большое разнообразие методов импульсной модуляции. Все они используют в качестве формы передачи или AM, или ЧМ.

Импульсная модуляция может быть использована для передачи как цифровых, так и аналоговых форм сигнала. Когда речь идет о цифровых сигналах, мы имеем дело с логическими уровнями (высоким и низким) и можем модулировать несущую (с помощью AM или ЧМ) рядом импульсов, которые представляют цифровое значение.

При использовании импульсных методов для передачи аналого­вых сигналов необходимо сначала преобразовать аналоговые данные в импульсную форму. Это преобразование также относится к модуляции, так как аналоговые данные используются для модулирования (изменения) последовательности импульсов или импульсной поднесущей. На рис. 11а показана модуляция синусоидальным сигналом последовательности импульсов.

Амплитуда каждого импульса в модулированной последовательности зависит от мгновенного значения аналогового сигнала. Синусоидальный сигнал можетбыть восстановлен из последовательности модулированных импульсов путем простой фильтрации. На рис. 11б графически показан процесс восстановления первоначального сигнала путем соединения вершин импульсов прямыми линиями. Однако восстановленная на рис. 11б форма колебаний не является хорошим воспроизведением первоначального сигнала из-за того, что число импульсов на период аналогового сигнала невелико. При использовании большего числа импульсов, т. е. при большей частоте следования импульсов по сравнению с частотой модулирующего сигнала, может быть достигнуто более качественное воспроизведение. Этот процесс амплитудно-импульсной модуляции (АИМ), относящийся к модуляции поднесущей последовательности импульсов, может быть выполнен путем выборки аналогового сигнала через постоянные интервалы времени импульсами выборки с фиксированной длительностью.

Импульсы выборки - это импульсы, амплитуды которых равны величине первоначального аналогового сигнала в момент выборки. Частота выборки (число импульсов в секунду) должна быть, по крайней мере, в два раза большей, чем самая высокая частота аналогового сигнала. Для лучшей воспроизводимости частота выборки обычно устанавливается в 5 раз большей самой высокой частоты модуляции.

АИМ является только одним типом импульсной модуляции. Кроме него существуют:

ШИМ – широтно-импульсная модуляция (модуляция импульсов по длительности);

ЧИМ – частотно-импульсная модуляция;

КИМ – кодово-импульсная модуляция.

Широтно-импульсная модуляция преобразует уровни выборок напряжений в серии импульсов, длительность которых прямо пропорциональна амплитуде напряжений выборок. Отметим, что амплитуда этих импульсов постоянна; в соответствии с модулирующим сигналом изменяется лишь длительность импульсов. Интервал выборки (интервал между импульсами) также фиксирован.

Частотно-импульсная модуляция преобразует уровни выборок напряжений в последовательность импульсов, мгновенная частота которых, или частота повторения, непосредственно связана с величиной напряжений выборок. И здесь амплитуда всех импульсов одинакова, изменяется только их частота. По существу это аналогично обычной частотной модуляции, лишь несущая имеет несинусоидальную форму, как в случае обычной ЧМ; она состоит из последовательности импульсов.

Амплитудная модуляция — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда
Первый опыт передачи речи и музыки по радио методом амплитудной модуляции произвёл в 1906 году американский инженер Р. Фессенден. Несущая частота 50 кГц радиопередатчика вырабатывалась машинным генератором (альтернатором), для её модуляции между генератором и антенной включался угольный микрофон, изменяющий затухание сигнала в цепи. С 1920 года вместо альтернаторов стали использоваться генераторы на электронных лампах. Во второй половине 1930-х годов, по мере освоения ультракоротких волн, амплитудная модуляция постепенно начала вытесняться из радиовещания и радиосвязи на УКВ частотной модуляцией. С середины XX века в служебной и любительской радиосвязи на всех частотах внедряется модуляция с одной боковой полосой (ОБП), которая имеет ряд важных преимуществ перед АМ. Поднимался вопрос о переводе на ОБП и радиовещания, однако это потребовало бы замены всех радиовещательных приёмников на более сложные и дорогие, поэтому не было осуществлено. В конце XX века начался переход к цифровому радиовещанию с использованием сигналов с амплитудной манипуляцией.
Аудиосигнал может модулировать амплитуду (AM) или частоту (ЧМ) несущей. Пусть S(t) — информационный сигнал, |S(t)|<1, U_c(t) — несущее колебание. Тогда амплитудно-модулированный сигнал U_\text{am}(t) может быть записан следующим образом: U_\text{am}(t)=U_c(t).\qquad\qquad(1) Здесь m — некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал U_c(t), модулированный по амплитуде сигналом S(t) с коэффициентом модуляции m. Предполагается также, что выполнены условия: |S(t)|<1,\quad 0Пример Допустим, что мы хотим промодулировать несущее колебание моногармоническим сигналом. Выражение для несущего колебания с частотой \omega_c имеет вид (начальную фазу положим равной нулю U_c(t)=C\sin(\omega_c t). Выражение для модулирующего синусоидального сигнала с частотой \omega_s имеет вид U_s(t)=U_0\sin(\omega_s t+\varphi), где \varphi — начальная фаза. Тогда U_\mathrm{am}(t)=C\sin(\omega_c t). Приведённая выше формула для y(t) может быть записана в следующем виде: U_\mathrm{am}(t)=C\sin(\omega_c t)+\frac{mCU_0}{2}(\cos((\omega_c-\omega_s)t-\varphi)-\cos((\omega_c+\omega_s)t+\varphi)). Радиосигнал состоит из несущего колебания и двух синусоидальных колебаний, называемых боковыми полосами, каждое из которых имеет частоту, отличную от \omega_c. Для синусоидального сигнала, использованного здесь, частоты равны \omega_c+\omega_s и \omega_c-\omega_s. Пока несущие частоты соседних радиостанций достаточно разнесены, и боковые полосы не перекрываются между собой, станции не будут влиять друг на друга.

Для передачи на расстояние без проводов речи, музыки, изображения используется переменное напряжение высокой частоты (свыше 100 кГц), излучаемое в пространстве антенной радиопередатчика. Чтобы осуществить радиотелефонную передачу сигнала, амплитуда высокой частоты передатчика или его частота должна меняться по закону низкой (звуковой) частоты Амплитудная модуляция характеризуется коэффициентом глубины модуляции (m), который выражает отношение приращения амплитуды высокой частоты (dUm) к ее среднему значению (Um):m= dUm/Um * 100%В процессе радиопередачи он может меняться от 0 до 80 процентов - более увеличивать нецелесообразно, так как могут появляться нелинейные искажения сигнала низкой частоты. Если модуляцию высокой частоты произвести сигналом одной какой-либо низкой частоты (Fн), то промодулированный сигнал будет представлять совокупность трех частот: несущей, верхней боковой и нижней боковой. Если же модуляцию произвести целым спектром частот, то получится спектр высоких частот с верхней и нижней боковыми полосами. Поэтому один вещательный радиопередатчик занимает в высокочастотном диапазоне полосу шириной не менее 10 кГц.

На панели любого современного радиоприемника есть переключатель AM-FM. Как правило, обычный потребитель не задумывается о том, что означают эти буквы, ему достаточно запомнить, что на FM есть его любимая УКВ-радиостанция, транслирующая сигнал в стереозвучании и с прекрасным качеством, а на АМ можно поймать «Маяк». Если же вникнуть в технические подробности хотя бы на уровне пользовательской инструкции, то выяснится, что АМ - это амплитудная модуляция, а FM - частотная. Чем же они отличаются?

Для того чтобы из громкоговорителя радиоприемника зазвучала музыка, должен претерпеть определенные изменения. В первую очередь его следует сделать пригодным для радиотрансляции. Амплитудная модуляция стала первым способом, которым инженеры-связисты научились передавать речевые и музыкальные программы в эфире. Американец Фессенден в 1906 году с помощью механического генератора получил колебания в 50 килогерц, ставшие первой в истории несущей частотой. Далее он решил техническую проблему самым простым способом, установив микрофон на выходе обмотки. При воздействии на угольный порошок внутри мембранной коробки менялось его сопротивление, и величина сигнала, поступающего от генератора на передающую антенну, уменьшалась или увеличивалась в зависимости от них. Так была изобретена амплитудная модуляция, то есть изменение размаха несущего сигнала таким образом, чтобы форма огибающей линии соответствовала форме передаваемого сигнала. В двадцатые годы механические генераторы были вытеснены электронно-ламповыми. Это значительно уменьшило габариты и вес передатчиков.

Отличается от амплитудной тем, что размах несущей волны остается неизменным, меняется ее частота. По мере развития электронной базы и схемотехники появились другие способы, с помощью которых информационный сигнал «садился» на частоту радиодиапазона. Изменение фазы и широты импульса дали название фазовой и широтно-импульсной модуляциям. Казалось, что амплитудная модуляция как способ радиотрансляции устарела. Но вышло иначе, она сохранила свои позиции, хотя и в несколько измененном виде.

Растущие требования к информационной насыщенности частот побуждали инженеров искать способы увеличить количество каналов, передаваемых на одной волне. Возможности многоканальной трансляции определяются и барьером Найквиста, однако, помимо квантования сигнала, появилась возможность увеличить информационную нагрузку на посредством изменения фазы. Квадратурно-амплитудная модуляция - это такой способ передачи, при котором на одной частоте передаются разные сигналы, сдвинутые по фазе относительно друг друга на 90 градусов. Четырехфазность образует квадратуру или комбинацию двух составляющих, описываемых тригонометрическими функциями sin и cos, отсюда и название.

Квадратурная амплитудная модуляция получила широкое распространение в цифровой связи. По своей сути она представляет собой сочетание фазной и амплитудной модуляции.