Что такое биометрические системы защиты. Биометрическая идентификация

30.10.2019 Интернет

Понятие «биометрия» охватывает комплекс различных методов и технологий, позволяющих идентифицировать человека по его биологическим параметрам. Биометрия основана на том, что каждый человек обладает индивидуальным набором физиологических, психосоматических, личностных и прочих характеристик. Например, к физиологическим параметрам можно отнести папиллярные узоры пальцев, рисунок радужной оболочки глаза и т. д.

С возникновением вычислительной техники появились устройства, способные надёжно обрабатывать биометрические данные практически в реальном времени, используя при этом специальные алгоритмы. Это послужило толчком в развитии биометрических технологий. В последнее время сферы их применения постоянно расширяются. На рис. 1 представлены некоторые области применения биометрии.

Биометрические параметры

Биометрическая идентификация (БИ) может использовать различные параметры, которые условно можно разделить на 2 типа: статические и динамические (рис. 2).


Статические параметры определяют «материальные» характеристики человека как физического объекта, обладающего определённой формой, весом, объёмом и т.д. Эти параметры вообще не меняются или мало меняются в зависимости от возраста человека (это правило может нарушаться только в детском возрасте). Однако не все статические параметры могут использоваться, когда идентификация человека должна проводиться быстро (например, в системах контроля доступа). Очевидно, что анализ ДНК требует довольно существенных временных затрат и вряд ли в ближайшее время будет широко задействован в системах контроля доступа.

Динамические параметры в большей степени описывают поведенческие или психосоматические характеристики человека. Эти параметры могут довольно сильно меняться как в зависимости от возраста, так и при изменяющихся внешних и внутренних факторах (нарушениях здоровья и т.д.). Однако существуют области применения, в которых использование динамических параметров очень актуально, например, при проведении графологических экспертиз или для идентификации человека по голосу.

Достоинства, недостатки и особенности БИ в СКУД

В настоящее время в подавляющем большинстве биометрических систем контроля досту-па используются статические параметры. Из них наиболее распространённым параметром явля-ются отпечатки пальцев.

Основными преимуществами использования БИ в СКУД (по сравнению с ключами доступа или проксимити-картами) являются:

  • трудности подделки идентификационного параметра;
  • невозможность утери идентификатора;
  • невозможность передачи идентификатора другому человеку.

Наиболее эффективно перечисленные достоинства используются при организации на основе биометрических систем контроля доступа дополнительного уровня безопасности, т.е. при использовании таких систем совместно с ключами доступа или проксимити-картами.

Наряду с описанными преимуществами существуют определённые ограничения в примене-нии биометрических систем, связанные с «неточностью» или «размытостью» биометрических параметров. Если при использовании проксимити-карты достаточно проверить 2 цифровых кода на полную идентичность, то при сравнении измеренного биометрического параметра с эталонным значением необходимо применять специальные, довольно сложные алгоритмы корреляционного анализа и нечёткой («fuzzy») логики. Это вызвано тем, что при повторном считывании отпечатка пальца или распознавании лица сканер никогда не получит два абсолютно одинаковых изображения. Для решения этой проблемы вместо отсканированных образов используются специальные цифровые модели или шаблоны.

Таким образом, в БИ всегда есть вероятность ошибок двух основных видов:

  • ложный отказ в доступе (коэффициент FRR - False Rejection Rate), когда СКУД не распознаёт (не пропускает) человека, который зарегистрирован в системе,
  • ложная идентификация (коэффициент FAR - False Acceptance Rate), когда СКУД «путает» людей, пропуская человека, который не зарегистрирован в системе, то есть распознаёт его как «своего».

Ситуация осложняется тем, что эти два типа ошибок являются взаимозависимыми. Так, при улучшении параметра FAR, автоматически ухудшится параметр FRR. Другими словами, чем более тщательно система пытается произвести распознавание, чтобы не пропустить «чужого» сотрудника, тем с большей вероятностью она «не узнает своего» (то есть зарегистрированного) сотрудника. Поэтому на практике всегда имеет место некий компромисс между коэффициентами FAR и FRR.

Кроме коэффициентов ошибок идентификации, немаловажным параметром оценки эффективности биометрических систем является скорость идентификации. Это важно, например, на проходных предприятий, когда в короткий промежуток времени через систему проходит большое количество сотрудников. Время срабатывания зависит от многих факторов: метода идентификации, сложности шаблона, количества сотрудников в эталонной базе и т.д. Очевидно, что время срабатывания также коррелирует и с надёжностью идентификации – чем более «тщателен» алгоритм идентификации, тем больше система тратит времени на эту процедуру.

Структура биометрической СКУД

Структура биометрической системы доступа включает следующие основные элементы и функции:

  • устройство считывания - сканирует биометрический параметр;
  • локальная база биометрических параметров - содержит биометрические шаблоны, используемые для идентификации;
  • блок идентификации - реализует алгоритм последовательного сравнения считанного шаблона с шаблонами, хранящимися в локальной базе (принцип сравнения «1:N»);
  • локальная база стандартных ключей - содержит коды проксимити-карт, PIN-коды, используемые при выборе шаблона для верификации;
  • блок верификации - реализует сравнение считанного шаблона с заданным эталонным шаблоном, выбираемым по локальной базе стандартных ключей (сравнение «1:1»);
  • информационные интерфейсы RS-485, Ethernet, USB - для информационного обмена;
  • сигнальные интерфейсы - обеспечивают приём сигналов от датчиков контактов двери, кнопки «Выход»;
  • исполнительные органы - реле, обеспечивающие управление электромеханическими замками и пр.

Описанная структура конструктивно может быть реализована различными способами. При встраивании считывателя отпечатка пальца в панель ноутбука роль остальных элементов выполняет «железо» и программное обеспечение компьютера. Часто на практике применяются распределённые системы с вынесенным биометрическим считывателем, устанавливаемым на границе зоны доступа, в то время как остальные элементы располагаются внутри этой охраняемой зоны. Не менее широко распространены решения, где все элементы биометрической системы выполнены как единый модуль - биометрический контроллер доступа.

Контроллер C2000-BIOAccess-F18 в составе ИСО «ОРИОН»

Для развития СКУД на базе ИСО «Орион» в программное обеспечение АРМ «Орион Про» была включена поддержка биометрического контроллера C2000-BIOAccess-F18 (рис. 3).

Этот контроллер предназначен для управления доступом с идентификацией по отпечат-кам пальцев. Он оснащён оптическим считывателем для сканирования пальца, обеспечивает хра-нение в локальной базе 2500 шаблонов для идентификации, при этом время идентификации не превышает 1 с. Величины коэффициентов эффективности распознавания FAR и FRR составляют порядка 1% и 0,001% соответственно. Контроллер может подключаться к ИСО «ОРИОН» двумя способами: по информационному интерфейсу RS-485 и по Ethernet (рис. 4).

Возможность подключения контроллера по сети Ethernet позволяет, при наличии «защищённой» локальной сети, без дополнительных затрат на кабельные линии связи организовать СКУД с биометрической идентификацией. Такая система может легко распределяться по зданию или комплексу зданий в соответствии с топологией локальной сети. Вместе с тем, при необходимости, остаётся возможность подключения биометрического контроллера по выделенной магистрали RS-485.


Встроенные в контроллер реле обеспечивают управление электромеханическим замком и сиреной, кроме этого имеются входы для подключения датчика двери и кнопки «Выход». Нали-чие в контроллере клавиатуры и встроенного считывателя смарт-карт позволяет обеспечить работу СКУД в режимах верификации по разным комбинациям параметров доступа, например «карта+палец», «код +палец». В этих режимах контроллер не производит сравнение отпечатка по всей локальной базе шаблонов, а сравнивает считанный отпечаток с единственным шаблоном, который привязан к коду карты доступа или PIN-коду.

Таким образом, контроллер C2000-BIOAccess-F18 представляет собой законченное решение для контроля и управления доступом в зоне с одной дверью. Наиболее эффективно этот контроллер может использоваться в зонах доступа во внутренние помещения здания с повышенными требованиями по безопасности: банковские хранилища, спецобъекты, помещения повышенной секретности и т.д.

Процедуры и сценарии в ИСО «ОРИОН» с контроллером C2000-BIOAccess-F18

Для регистрации нового пользователя в контроллере предусмотрен специальный режим регистрации отпечатка пальца. При этом для повышения надежности требуется трёхкратное сканирование пальца, в результате чего контроллер формирует цифровой шаблон. Размер одного шаблона составляет около 500 байт.

Все шаблоны отпечатков пальцев (биометрические ключи), так же, как и обычные ключи, хранятся в центральной базе данных ИСО «ОРИОН». При конфигурировании уровней доступа администратором системы каждый контроллер «привязывается» к определённому уровню доступа, и, таким образом, в его локальную (встроенную) базу шаблонов отпечатков пальцев впоследствии будут записаны шаблоны только тех сотрудников, которые имеют соответствующий уровень доступа.

Если один уровень доступа соответствует нескольким зонам доступа, то возникает необходимость регистрации пользователя во всех контроллерах с таким уровнем доступа. Для решения подобных задач (регистрации, обновления или удаления пользователей) АРМ «Орион Про» обеспечивает возможность автоматического обмена информацией по всем контроллерам, входящим в конкретный уровень доступа.

Стандартный сценарий администрирования СКУД в ИСО «ОРИОН» с биометрическими контроллерами выглядит следующим образом:

  • выделяется отдельный биометрический контроллер для регистрации сотрудников (он может быть установлен, например, в отделе кадров предприятия);
  • после успешного прохождения процедуры регистрации шаблон отпечатка пальца (биометрический ключ) зарегистрированного сотрудника автоматически сохраняется в центральной базе данных системы;
  • администратор базы данных предоставляет сотруднику (то есть его биометрическому ключу) конкретные права доступа, и система «привязывает» этот ключ к заданным уровням доступа;
  • система анализирует уровень доступа биометрического ключа и автоматически записывает этот ключ (цифровой шаблон отпечатка пальца) во все контроллеры, управляющие дверями, входящими в заданный уровень доступа.

При удалении сотрудника (например, при его увольнении) достаточно удалить из администратора базы данных его биометрический ключ, и система автоматически удалит этот биометрический ключ из всех контроллеров данного уровня доступа.

Такой подход является удобным и достаточно универсальным, что позволяет с успехом использовать его практически во всех организациях.

Таким образом, развитие системы контроля доступа в ИСО «ОРИОН» за счёт применения биометрической идентификации на базе контроллера C2000-BIOAccess-F18 расширяет функциональные возможности как автономной СКУД, так и интегрированной системы в целом, позволяя реализовать повышенные требования к уровню безопасности или, при необходимости, отказаться от использования ключей доступа и проксимити-карт.

К. Грибачев

программист ЗАО НВП «Болид»

ВВЕДЕНИЕ

Понятие «биометрия» охватывает комплекс различных методов и технологий, позволяющих идентифицировать человека по его биологическим параметрам. Биометрия основана на том, что каждый человек обладает индивидуальным набором физиологических, психосоматических, личностных и прочих характеристик. Например, к физиологическим параметрам можно отнести папиллярные узоры пальцев, рисунок радужной оболочки глаза и т.д.

С развитием вычислительной техники появились устройства, способные надежно обрабатывать биометрические данные практически в реальном времени, используя при этом специальные алгоритмы. Это послужило толчком в развитии биометрических технологий. В последнее время сферы их применения постоянно расширяются. На рисунке 1 представлены некоторые области применения биометрии.

Рис. 1. Области применения биометрии

БИОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ

Биометрическая идентификация (БИ) может использовать различные параметры, которые условно можно разделить на 2 типа: статические и динамические (рис. 2).

Статические параметры определяют «материальные» характеристики человека как физического объекта, обладающего определенной формой, весом, объемом и т.д. Эти параметры вообще не меняются или мало меняются в зависимости от возраста человека (это правило может нарушаться только в детском возрасте). Однако не все статические параметры могут использоваться, когда идентификация человека должна проводиться быстро (например, в системах контроля доступа). Очевидно, что анализ ДНК требует довольно существенных временных затрат и вряд ли в ближайшее время будет широко задействован в системах контроля доступа.

Динамические параметры в большей степени описывают поведенческие или психосоматические характеристики человека. Эти параметры могут довольно сильно меняться как в зависимости от возраста, так и при изменяющихся внешних и внутренних факторах (нарушениях здоровья и т.д.). Однако существуют области применения, в которых использование динамических параметров очень актуально, например, при проведении графологических экспертиз или для идентификации человека по голосу.

ПРЕИМУЩЕСТВА ОГРАНИЧЕНИЯ И СПЕЦИФИКА БИОМЕТРИЧЕСКОЙ ИНФОРМАЦИИ

В настоящее время в подавляющем большинстве биометрических систем контроля доступа (БиоСКУД) используются статические параметры. Из них наиболее распространенным параметром являются отпечатки пальцев.

Основными преимуществами использования биометрической информации в СКУД (по сравнению с ключами доступа или прок-симити-картами) являются:

■ трудности подделки идентификационного параметра;

■ невозможность утери идентификатора;

■ невозможность передачи идентификатора другому человеку.

Наряду с описанными преимуществами существуют определенные ограничения в применении биометрических систем, связанные с «неточностью» или «размытостью» биометрических параметров. Это вызвано тем, что, например, при повторном считывании одного и того же отпечатка пальца или при повторной съемке одного и того же лица сканер никогда не получает два абсолютно одинаковых изображения, то есть всегда имеют место различные факторы, в той или иной степени влияющие на результат сканирования. Например, положение пальца в сканере никогда жестко не зафиксировано, выражение лица человека также может изменяться и т.д.

Такая принципиальная «неповторяемость» съема биометрической информации является специфической особенностью биометрических систем, и, как следствие, это приводит к существенно повышенным требованиям, предъявляемым к «интеллектуальности» и надежности вычислительных алгоритмов, а также к быстродействию микропроцессорных элементов СКУД. В самом деле, если при использовании проксимити-карты достаточно сверить два цифровых кода на идентичность, то при сравнении измеренного биометрического параметра с эталонным значением необходимо применять специальные, довольно сложные алгоритмы корреляционного анализа и/или нечеткой («fuzzy») логики.

Для облегчения решения проблемы «нечеткого» распознавания вместо отсканированных образов используются специальные цифровые модели или шаблоны. Такой шаблон представляет собой некоторый цифровой массив определенной структуры, который содержит информацию о считанном образе биометрического параметра, но при этом в шаблоне сохраняются не все данные, как при обычном сканировании, а только наиболее характерная, важная для последующей идентификации информация. Например, в случае использования сканирования лица в шаблон могут входить параметры, описывающие форму носа, глаз, рта и т.д. Конкретный метод преобразования биометрического образа в формат цифрового шаблона не является строго формализуемым, и, как правило, каждая фирма-производитель биометрического оборудования использует свои собственные форматы шаблонов, а также собственные алгоритмы их формирования и сравнения.

Следует отдельно отметить и тот факт, что по биометрическому шаблону принципиально невозможно восстановить исходный биометрический образ. Это очевидно, так как шаблон, по сути, является всего лишь моделью, описывающей реальный биометрический образ. Отсюда возникает существенное различие между биометрией в СКУД и, например, биометрией в криминалистике, где используются не модели-шаблоны, а «полные» образы отпечатков пальцев. Это различие важно иметь в виду, так как, например, в приложении к современному законодательству это может означать, что биометрические шаблоны нельзя автоматически относить к персональным данным человека.

Рис. 2. Типы и виды биометрических параметров


ПАРАМЕТРЫ ОЦЕНКИ ЭФФЕКТИВНОСТИ БИОМЕТРИЧЕСКИХ СКУД

В силу описанной выше специфики биометрической информации в любой БиоСКУД всегда есть вероятность возникновения ошибок двух основных видов:

■ ложный отказ в доступе (коэффициент FRR - False Rejection Rate), когда СКУД не распознает (не пропускает) человека, который зарегистрирован в системе;

■ ложная идентификация (коэффициент FAR - False Acceptance Rate), когда СКУД «путает» людей, пропуская «чужого» человека, который не зарегистрирован в системе, распознавая его как «своего». Данные коэффициенты являются важнейшими параметрами оценки надежности

БиоСКУД.

На практике ситуация осложняется тем, что указанные два типа ошибок являются взаимозависимыми. Так, расширение диапазона возможных параметров контроля распознавания таким образом, чтобы система всегда «распознавала своего» сотрудника (то есть снижая коэффициент FRR), автоматически приводит к тому, что в этот новый расширенный диапазон «просочится чужой» сотрудник (то есть увеличится коэффициент FAR). И наоборот, при улучшении коэффициента FAR (то есть при уменьшении его значения) автоматически ухудшится (увеличится) коэффициент FRR. Другими словами, чем более «тщательно» система пытается произвести распознавание, чтобы не пропустить «чужого» сотрудника, тем с большей вероятностью она «не узнает и своего» (то есть зарегистрированного) сотрудника. Поэтому на практике всегда имеет место некий компромисс между коэффициентами FAR и FRR.

Кроме указанных коэффициентов ошибок, немаловажным параметром оценки эффективности БиоСКУД является скорость идентификации. Это важно, например, на проходных предприятий, когда в короткий промежуток времени через систему проходит большое количество сотрудников. Время срабатывания зависит от многих факторов: алгоритма идентификации, сложности шаблона, количества биометрических шаблонов сотрудников в эталонной базе БиоСКУД и т.д. Очевидно, что время срабатывания также коррелирует и с надежностью идентификации - чем более «тщателен» алгоритм идентификации, тем больше система тратит времени на эту процедуру.

МЕТОДЫ ЗАЩИТЫ ОТ ИМИТАЦИИ И ОШИБОК ПОЛЬЗОВАТЕЛЕЙ

Очевидно, что при всех своих преимуществах использование биометрической информации автоматически не гарантирует абсолютную надежность системы контроля доступа. Кроме описанных выше ошибок идентификации, существует и определенная вероятность задействования злоумышленниками биометрических имитаторов для «обмана» БиоСКУД. В качестве средств имитации могут выступать, например, муляжи пальцев с нанесенным русунком отпечатка, цветные фотографии лица и т.п.

Современные БиоСКУД имеют средства защиты от подобных биоимитаторов. Кратко перечислим некоторые из них:

■ измерение температуры (пальца, ладони);

■ измерение электрических потенциалов (пальца);

■ измерение наличия кровотока (ладони и пальцы);

■ сканирование внутренних параметров (рисунок вен рук);

■ использование трехмерных моделей (лица).

Кроме защиты от имитаторов, БиоСКУД должна обладать и средствами защиты от ошибок самих пользователей. Например, при сканировании отпечатка пальца сотрудник может нечаянно или нарочно расположить палец под углом, дети могут поместить одновременно два пальца в сканер и т.п. С целью устранения таких явлений применяются, например, следующие методы:

■ специальные алгоритмы фильтрации «аномальных» параметров;

■ многократное сканирование (например, троекратное сканирование отпечатка пальца при регистрации);

■ возможность повторных попыток идентификации.

ЗАКЛЮЧЕНИЕ

Использование биометрических данных в СКУД - это перспективная и быстро развивающаяся технология. Внедрение биометрии требует повышения уровня «интеллекта» СКУД, разработки новых наукоемких алгоритмических и программных методов, усовершенствования аппаратных средств. Таким образом, можно сделать вывод, что внедрение биометрических технологий способствует развитию отрасли систем контроля и управления доступом в целом.

Модуль поиска не установлен.

Внедрение биометрических технологий идентификации личности - веяние времени

Сергей Курбатов

Очевидно, что в условиях существующих и вероятных угроз террористических атак, иных незаконных действий и акций, затрагивающих экономические, информационные и иные права и свободы граждан, общества и государства, возрастает значимость идентификации личности человека.
Считается, что биометрические технологии являются наиболее надежными и приспособленными для массовой идентификации.

В идеальном случае использование биометрической информации позволяет осуществлять поиск и опознание личности более точно, нежели при помощи ставших привычными фотографий.

Введение

Поиск и опознание личности предусматривает использование биометрического контроля доступа - автоматизированного метода, с помощью которого путем проверки (исследования) уникальных физиологических особенностей или поведенческих характеристик человека осуществляется его идентификация.

Важным преимуществом идентификации на основе биометрических параметров является теоретическая возможность ее полной автоматизации. Для этого требуется лишь создать базу биометрических "слепков" и соединить ее со считывающим устройством (сенсором).

Физиологические особенности, например, такие как папилярный узор пальца, геометрия ладони или рисунок (модель) радужной оболочки глаза, являются постоянными физическими характеристиками человека. Данный тип измерений (проверки) практически неизменен, так же как и сами физиологические характеристики.

Поведенческие же характеристики, такие как подпись, голос или клавиатурный почерк, находятся под влиянием как управляемых действий, так и менее управляемых психологических факторов. Поскольку поведенческие характеристики могут изменяться с течением времени, зарегистрированный биометрический образец должен обновляться при каждом его использовании. Хотя биометрия, основанная на поведенческих характеристиках, менее дорога и представляет меньшую угрозу для пользователей, физиологические черты позволяют осуществить большую точность идентификации личности и ее безопасность. В любом случае, оба метода обеспечивают значительно более высокий уровень идентификации, чем сами по себе пароли или карты.

Реализация крупных биометрических проектов на государственном уровне, как ответ на террористические и иные угрозы, разрушила негативный ореол вокруг технологий идентификации личности, что сделало их привлекательными для коммерческого использования корпоративными клиентами.

Биометрические технологии в мире для мира

Системы биометрического контроля в нынешнем неспокойном мире являются суровой реальностью. Еще недавно установленные в общественных местах системы идентификации человека по отпечаткам пальцев, радужной оболочке глаза, голосу или внешности представлялись чем-то фантастическим и даже зловещим - этаким символом наступающего тоталитарного будущего. Сегодня это уже реальность, которая никого не пугает, в том числе и в России. Так, 9 апреля представители аэропорта "Домодедово" сообщили о внедрении комплекса биометрического контроля в терминалах аэропорта . Сейчас система используется для ограничения доступа в служебные помещения, но её предполагается задействовать и для регистрации пассажиров. Аналогичные системы после известной трагедии в Беслане в ближайшее время будут внедрены и в других аэропортах России.

В США и Европе развертывание систем биометрического контроля началось лишь немногим ранее. С 5 января 2004 года прибывающие в США иностранцы обязаны проходить процедуру идентификации личности, основанную на использовании биометрической информации. С октября 2004 года при пересечении границы США въезжающий будет обязан приложить ладонь к специальному сенсору, а система сверит отпечаток с имеющимся в базе для подтверждения личности пассажира. Новые правила коснутся лишь 5% въезжающих (процедуру дактилоскопии не проходят граждане стран, где действует режим безвизового въезда в США) . Несмотря на это, представители министерства безопасности США считают эти меры ключевыми для предотвращения террористических атак.

С этого года в Италии на смену существующим выездным документам придет новый электронный паспорт. От старого он отличается тем, что содержит чип с учетными данными, отпечатки пальцев и фотографию владельца. МВД Германии планирует к концу этого года установить систему сканирования глазной радужной оболочки в аэропорту Франкфурта.

Следующим шагом должно стать дополнение биометрической информацией паспортов граждан стран ЕС, что планируется сделать в течение ближайших трёх лет. Планы внедрения с 2006 г. биометрических загранпаспортов есть и у России .

Всего на программу перевода населения Европы на технологию идентификации личности с помощью биометрической технологии выделено 140 миллионов евро . Переход на документы нового поколения, по прогнозам, займет не менее 5 лет.

В Израиле введена биометрическая система пограничного контроля за входом и выходом с территории сектора Газа палестинских рабочих.

Биометрические паспорта собирается вводить и Япония. Она также намерена для обеспечения безопасности оснастить международные аэропорты и другие пункты транспортных перевозок оборудованием с использованием технологии биометрии.

В Объединенных Арабских Эмиратах с 2001 года действует национальная биометрическая система пограничного контроля, позволившая предотвратить въезд 4300 человек по поддельным документам .

Применение биометрической идентификации в целях обеспечения государственной, общественной и коммерческой безопасности становится массовым. Настороженность, которую проявляли люди в этом вопросе ранее, опасаясь нарушения своих прав, уступила место трезвому расчету. Все постепенно понимают, что о грядущем тотальном контроле говорить не приходится: системы биометрической идентификации всего лишь займут свою нишу среди прочих систем безопасности.

Области применения биометрических решений

Выделим в первую очередь области, в которых биометрия уже нашла свое применение и активно используется на протяжении нескольких лет, и отдельно опишем новые перспективные направления использования. Области применения и основные характеристики биометрических решений приведены в табл.1. .


п/п
Области применения Основные характеристики
1. Компьютер-ная безопас-ность В данной области биометрия используется для замены (иногда для усиления) стандартной процедуры входа в различные программы по паролю, смарт-карте, таблетке touch-memory и т.д.
Самым распространенным решением на базе биометрических технологий является идентификация (или верификация) по биометрическим характеристикам в корпоративной сети или при входе на рабочую станцию (персональный компьютер, ноутбук и т.д.).
2. Торговля Основные направления:>br>- в магазинах, ресторанах и кафе биометрические идентификаторы используются либо непосредственно как средство идентификации покупателя и последующего снятия денег с его счета, либо для подтверждения права покупателя на какие-либо скидки и другие льготы;
- в торговых автоматах и банкоматах как средство идентификации человека взамен магнитных карточек или в дополнение к ним;
- в электронной коммерции биометрические идентификаторы используются как средства удаленной идентификации через Интернет, что значительно надежнее паролей, а в сочетании со средствами крипто-графии дает электронным транзакциям очень высокий уровень защиты.
3. Системы СКУД В системах контроля и управления доступом (СКУД) с сетевой архитектурой, когда в здании есть несколько входов, оборудованных биометрическими замками, шаблоны биометрических характеристик всех сотрудников хранятся централизованно, вместе с информацией о том, кому и куда (и, возможно, когда) разрешен вход.
В СКУД реализуются следующие технологии распознавания: отпечаток пальца, лицо, форма руки, ра-дужная оболочка глаза, голос.
4. Системы АДИС Основным назначением систем гражданской идентификации и автоматизированных дактилоскопических информационных систем (АДИС) является управление правами, которые предоставлены государством гражданам и иностранцам. Права гражданства, голосования, места жительства или работы для иностранцев, право получать социальное обеспечение и т.д. признаются и подтверждаются с помощью документов и разнообразных карт.
В настоящее время такие системы получили очень широкое распространение из-за того, что некоторые страны стали использовать их для проверки личности въезжающих.
5. Комплексные системы К системам данного типа относятся решения, сочетающие в себе системы первых трех классов.
Сотрудник компании регистрируется у администратора системы всего один раз, и дальше ему автоматически назначаются все необходимые привилегии как на вход в помещение, так и на работу в корпоративной сети и с ее ресурсами.

Табл. 1. Области применения биометрических решений

Как видно из табл.1, основными областями применения биометрических технологий являются:

Компьютерная безопасность;
- торговля;
- системы контроля и управления доступом (СКУД);
- системы гражданской идентификации и автоматизированные дактилоскопические информационные системы (АДИС);
- комплексные системы.

Биометрические системы гражданской идентификации представляют собой эффективное и рентабельное решение, позволяющее повысить безопасность государства, исключить мошенничества граждан, иностранцев и нелегальных мигрантов, а также защитить граждан от мошенничества с их персональными данными.

Необходимо различать системы гражданской идентификации (по принятой в других странах терминологии системы Civil ID) и криминалистические автоматизированные дактилоскопические информационные системы - АДИС (AFIS). Параметры этих систем принципиально различаются. Основные различия этих систем сведены в табл.2. .

Кроме этих основных секторов применения в настоящее время начинается активное использование биометрии и в некоторых других областях, таких как:

Игорный бизнес. Биометрия используется по двум направлениям: проверка всех находящихся по "черным спискам" (аналог массовой идентификации по лицам, используемой в аэропортах), а также как система идентификации и платежное средство постоянных клиентов;
- идентификация в мобильных устройствах, таких как мобильные телефоны, компактные ПК и т.д.;
- в транспортной области как платежное средство;
- электронные системы голосования (используются вместо карточек);
- медицина. Биометрия используется для идентификации медицинских работников при получении доступа к закрытым данным и для электронной подписи записей в истории болезни.

Итак, мы видим, что применение биометрических технологий постепенно переходит из области альтернативы другим системам идентификации (карточным, парольным и т.д.) в области, характерные только для нее, в которых разворачивается конкуренция только между методами биометрической идентификации.

Некоторые характеристики биометрических технологий

На сегодняшний день наиболее часто используемым носителем биометрической информации являются отпечатки пальцев. Однако все существующие дактилоскопические системы страдают недостаточной надежностью. По мнению эксперта по информационной безопасности Саймона Дэвиса из Лондонской школы экономики, их точность составляет в лучшем случае 99% , то есть на каждые сто процедур авторизации приходится одно ложное срабатывание. Немного более оптимистичную оценку дают производители оборудования, но в любом случае параметры надежности большинства биометрических технологий на сегодняшний день нельзя назвать удовлетворительными для массовой идентификации с целью обеспечения государственной безопасности.

Безошибочно идентифицировать человека не так просто, как кажется

Параметр Гражданские системы Криминалистические системы
Размер баз данных (БД) До нескольких десятков миллионов записей для систем дак-тилоскопической регистрации общенационального масштаба Сотни тысяч - несколько миллионов записей
Производительность До нескольких десятков тысяч запросов в сутки От нескольких сотен до нескольких тысяч за-просов в сутки
Присутствие эксперта Не требуется. Оператор не должен обладать знаниями в об-ласти распознавания отпечатков пальцев и криминалистики Требуется работа высококвалифицированного эксперта-криминалиста
Состав идентифици-рующей записи в БД Информация о гражданском состоянии, контрольные изобра-жения отпечатков пальцев, полученные прикладыванием (обычно 2 отпечатка), фотография, образец подписи (необяза-тельно), цифровые изображения либо иная информация о документах, удостоверяющих личность (также необязательно) Алфавитно-цифровая информация, изображения десяти отпечатков пальцев, полученные как прикладыванием, так и откаткой; отпечатки ладоней, изображения следов пальцев с мест преступлений, изображения и описания татуировок, шрамов, особых примет, фотографии (обычно три)
Рабочие места От нескольких сотен до нескольких тысяч удаленных рабочих станций (контрольных пунктов), распределенных по большой территории. От нескольких до нескольких десятков рабочих мест

Табл. 2. Сравнительные характеристики биометрических систем

Сравнительные характеристики биометрических технологий приведены в табл.3. , носителями биометрической информации являются:

Узор радужки;
- отпечатки пальцев;
- размер, длина и ширина ладоней;
- контур, форма; расположение глаз и носа;
- форма букв, манера письма, нажим;
- характеристики голоса.

Стандарты в биометрических технологиях

Как известно, самый яркий индикатор развития какой-либо области - появление в ней промышленных стандартов. Высокие темпы развития биометрических технологий обусловили появление в этой области большого числа стандартов.

Метод Носитель биометрической информации Вероятностьошибки Надежность Сфера применения
Распознавание радужной оболочки глаза Узор радужки 1/1200000 Высокая Критичные к количеству ошибок сервисы
Дактилоскопия Отпечатки пальцев 1/1000 Средняя Универсальная
Форма руки Размер, длина и ширина ладоней 1/700 Низкая
Распознавание лица Контур, форма; расположение глаз и носа 1/100 Низкая Некритичные к количеству ошибок сервисы
Подпись Форма букв, манера письма, нажим 1/100 Низкая Некритичные к количеству ошибок сервисы
Распознавание голоса Характеристики голоса 1/30 Низкая Телефонные сервисы

Табл. 3. Сравнительные характеристики биометрических технологий

Попробуем продемонстрировать предпосылки стандартизации биометрических технологий на примерах.

После закупки и установки программно-аппаратного комплекса заказчик уже не может заменить не устраивающее его конечное оборудование (например, считыватели радужной оболочки глаза на сканеры отпечатков пальцев) или, наоборот, оставив конечное оборудование, перейти на другую программную платформу.
- Биометрические характеристики, используемые в различных методах идентификации, могут быть "скомпрометированы" (лицо сфотографировано, голос записан на кассету, отпечаток пальца снят с предмета, подпись подделана и т. д.), следовательно, необходимы дополнительные механизмы, способные защитить конечного пользователя от подлогов.
- Компании-разработчики при попытке совместить несколько биометрических технологий в одной системе или "усилить" существующую систему каким-либо другим способом идентификации обязательно сталкиваются с отсутствием единого формата представления биометрических данных.

Необходимость стандартизации биометрии была продиктована требованиями рынка, согласно которым для дальнейшего развития этой технологии она должна стать упорядоченной, структурированной и гибкой.

Категории стандартов

Условно все стандарты биометрических технологий можно разделить на следующие категории :

Стандарты, определяющие прикладной программный интерфейс (API) для разработки различных биометрических систем;
- стандарты, определяющие единый формат представления биометрических данных;
- специализированные стандарты по технологиям и применениям;
- стандарты, определяющие требования безопасности для систем, в которых используются биометрические технологии.

Рассмотрев ранее области применения биометрических систем, их основные характеристики, попытаемся сформулировать обобщенные критерии выбора таких систем российским пользователем для решения задач, рассмотренных выше.

Обобщенные критерии выбора систем

Вообще говоря, общепринятых критериев, которые можно было бы использовать при построении биометрических систем в масштабах какого-либо предприятия, не существует. Итак, первое, с чем необходимо определиться, - это непосредственно технология распознавания, которую предстоит использовать. Для этого нужно руководствоваться совокупностью следующих двух критериев.

Точность технологии. Существует два статистических показателя, определяющих точность технологии: вероятность "не пропустить своего" и вероятность "пропустить чужого" . В общем случае для каждой технологии эти показатели достаточно разнятся, но для каждого конкретного производителя и его оборудования эти данные указываются точно. Поэтому при выборе оборудования обязательно обращайте внимание на эти показатели.

Например, для помещения, в котором имеют право находиться только 5 человек, устанавливается биометрический замок, с вероятностью "пустить чужого" 1 из 10000 случаев, очевидно, что этого достаточно, но если использовать этот же замок для пропуска ста человек - эта вероятность должна быть как минимум на два порядка меньше. С другой стороны, если устанавливать на турникетах проходной предприятия биометрические считыватели с высокой вероятностью "не пропустить своего" - значительно увеличивается риск получить на проходной большие очереди.

Удобство использования. Нужно предусмотреть, насколько сотрудникам компании будет удобно проходить биометрические процедуры идентификации в рамках решаемой задачи. Например, при использовании биометрии в компьютерной защите: при входе в сеть, разблокировке рабочей станции или авторизации в различных программах прикладывать палец к миниатюрному сканеру гораздо удобнее, чем многократно сканировать радужную оболочку глаза или проверять геометрию руки в громоздком настольном сканере.

После выбора технологии предстоит выбрать производителя оборудования, которое удовлетворяло бы вашим требованиям и, что не менее важно, представителя компании-производителя в России. Так как заниматься закупкой сложной биометрической системы за рубежом самостоятельно - это риск не только сильно переплатить за оборудование и долго ждать таможенного оформления и доставки "до двери", но и в дальнейшем сталкиваться с существенными проблемами с сопровождением, технической поддержкой и т.д.

На этом этапе к предыдущим критериям добавляются следующие.

Стоимость системы. Вопреки мнению о дороговизне внедрения биометрических систем, за последние пять лет их цена в среднем упала в 2-3 раза, хотя еще и не достигла того уровня, на котором построение сложных биометрических систем себе могут позволить все. При оценке системы нужно учитывать, что ее стоимость складывается из очень многих составляющих. Например, для сетевой защиты эти компоненты будут следующими: конечное оборудование (считывающие устройства), сервер аутентификации и пользовательские лицензии к нему, услуги по внедрению и сопровождению и, если требуется, отдельно разработка модуля интеграции с каким-либо специальным корпоративным программным обеспечением.

Скорость работы биометрической системы. С этим критерием ситуация очевидна: чем быстрее пользователь распознается в системе, тем лучше. Нужно отметить, что скорость зависит от выбора метода распознавания - верификации или идентификации, так как очевидно, что сравнение шаблонов "один к одному" намного быстрее сравнения одного шаблона со всей базой зарегистрированных и, соответственно, чем больше такая база, тем медленнее приходит ответ о прохождении процедуры проверки. На этот случай многие производители предлагают специализированные серверы, производительность которых позволяет осуществлять быстрый поиск по многотысячным базам.

Кроме этого существует еще несколько критериев оценки биометрических систем, но они носят частный характер для каждой технологии.

Заключение

В заключение, на фоне информации об областях применения и принципах построения биометрических систем, хотелось бы сказать о ближайших перспективах развития биометрии в России. Российский рынок биометрии постепенно набирает обороты, и в настоящее время в России уже существует целый ряд компаний, которые смогут не только спроектировать и развернуть сложную биометрическую систему масштаба предприятия, но разработать модули интеграции биометрии для самых различных областей применения.

Литература

1. Никитин Л. Тоталитаризм с человеческим лицом. "Эксперт" №16 (417), 2004, с.58
2. Материалы сайта http://www.rg.ru ;
3. Материалы сайта http://www.expert.ru
4. Материалы сайта http://pcmag.ru ;
5. Материалы сайта http://www.biometrics.ru ;
6. Материалы сайта http://infosafe.ru .


Михайлов Алексей Алексеевич
начальник сектора отдела ФКУ НИЦ «Охрана» МВД России, подполковник полиции,

Колосков Алексей Анатольевич
старший научный сотрудник ФКУ НИЦ «Охрана» МВД России, подполковник,

Дронов Юрий Иванович
старший научный сотрудник ФКУ НИЦ «Охрана» МВД России

ВСТУПЛЕНИЕ

В настоящее время наблюдается бурное развитие биометрических систем контроля и допуска (далее биометрии) как за рубежом, так и в России. Действительно, использование биометрии для целей охраны чрезвычайно привлекательно. Любой ключ, таблетку - TouchMemory, Proxy-карту или другой материальный идентификатор можно украсть, сделать дубликат и таким образом получить доступ к объекту охраны.

Цифровой ПИН-код (вводится человеком с помощью клавиатуры) можно зафиксировать с помощью банальной видеокамеры, и потом есть возможность шантажа человека или угрозы физического воздействия на него с целью получения значения кода. Редко кто из читателей, на собственном опыте или на опыте своих знакомых, не сталкивался с таким способом мошенничества. Появился даже термин, обозначающий данный способ изъятия честно заработанных денег у граждан, - скимминг (от англ. skim - снимать сливки).

Биометрический идентификатор невозможно украсть или получить путем шантажа, что делает в перспективе его очень привлекательным для целей охраны и доступа. Правда, можно попытаться создать имитатор биологического признака человека, но тут должна проявить себя в полной мере биометрическая система и отвергнуть подделку.

Вопрос «обхода» биометрических систем - это большая и отдельная тема, и в рамках этой статьи мы не будем ее затрагивать, да и создать имитатор биологического признака человека - непростая задача.

Особенно отрадно отметить активное развитие данного направления охранной техники в России. Например, «Русское общество содействия развитию биометрических технологий, систем и коммуникаций» существует с 2002 года.

Существует и технический комитет по стандартизации ТК 098 «Биометрия и биомониторинг», который работает достаточно плодотворно (выпущено более 30 ГОСТ, см.: http://www.rusbiometrics.com/), но нас, как пользователей, больше всего интересует ГОСТ Р ИСО/МЭК19795-1-2007 «Автоматическая идентификация. Идентификация биометрическая. Эксплуатационные испытания и протоколы испытаний в биометрии. Часть 1. Принципы и структура».

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Для того чтобы понимать, о чем пишут в нормативных документах, необходимо определиться в терминах и определениях. Чаще всего по своему физическому принципу пишут об одном и том же, но называют совершенно иначе. Итак, о наиболее значимых параметрах в биометрии:

VERIFICATION (верификация) - процесс, при котором происходит сравнение представленного пользователем образца с шаблоном, зарегистрированным в базе данных (ГОСТ Р ИСО/МЭК19795-1-2007). Здесь принципиальным является, что один образец сравнивается с одним шаблоном (сравнение один к одному с биометрическим шаблоном), поэтому любая биометрическая система будет иметь лучшие показатели для верификации по сравнению с идентификацией.

IDENTIFICATION (идентификация) - процесс, при котором осуществляется поиск в регистрационной базе данных и предоставляется список кандидатов, содержащих от нуля до одного или более идентификаторов (ГОСТ Р ИСО/МЭК19795-1-2007). Здесь принципиальным является, что один образец сравнивается со многими шаблонами (сравнение один ко многим), и ошибка системы многократно возрастает. Идентификация становится наиболее критичным параметром для систем биометрии, основанной на распознавании характерных черт лица человека. Для машины лица людей практически идентичны.

FAR (False Acceptance Rate) - вероятность несанкционированного допуска (ошибка первого рода), выраженное в процентах число допусков системой неавторизованных лиц (имеется в виду верификация). Вероятностные параметры выражаются или в абсолютных величинах (10-5), для параметра FAR это означает, что 1 человек из 100 тыс. будет несанкционированно допущен, в процентах данное значение будет (0,001%).

ВЛД - вероятность ложного допуска (FAR), (ГОСТ Р ИСО/МЭК19795-1-2007).

FRR (False Rejection Rate) - вероятность ложного задержания (ошибка второго рода), выраженное в процентах число отказов в допуске системой авторизованных лиц (имеется в виду верификация).

ВЛНД - вероятность ложного недопуска (FRR), (ГОСТ Р ИСО/МЭК19795-1-2007).

FMR (False Match Rate) - вероятность ложного совпадения параметров. Где-то мы это уже читали, см. FAR, но в данном случае один образец сравнивается со многими шаблонами, заложенными в базу данных, т.е. происходит идентификация.

ВЛС - вероятность ложного совпадения (FMR), (ГОСТ Р ИСО/МЭК19795-1-2007).

FNMR (False Non-Match Rate) - вероятность ложного несовпадения параметров, в данном случае один образец сравнивается со многими шаблонами, заложенными в базу данных, т.е. происходит идентификация.

ВЛНС - вероятность ложного несовпадения (FNMR), (ГОСТ Р ИСО/МЭК19795-1-2007).

Параметры (как и остальные перечисленные выше) взаимосвязаны (рис. 1). Меняя порог FAR и FRR - «чувствительности» биометрической системы, мы одновременно изменяем их, выбирая требуемое соотношение. Действительно, можно так настроить биометрическую систему, что она с большой долей вероятности будет пропускать зарегистрированных пользователей, но и с достаточной долей вероятности будет пропускать и незарегистрированных пользователей. Поэтому данные параметры должны быть указаны одновременно для биометрической системы.

Рис. 1. Графики FAR и FRR

Если указывается только один параметр, то вас, как пользователя, это должно насторожить, поскольку таким образом очень легко завысить параметры в сравнении с конкурентом. Утрируя, можно сказать, что самый низкий коэффициент FAR будет иметь неработающая система, уж точно она никого несанкционированно не допустит.

Более или менее объективным параметром биометрической системы является коэффициент EER.

Коэффициент EER (равный уровень ошибок) - это коэффициент, при котором обе ошибки (ошибка приема и ошибка отклонения) эквивалентны. Чем ниже коэффициент EER, тем выше точность биометрической системы.

Для параметров FMR и FNMR строят аналогичный график (рис. 2). Обратите внимание, что этот график всегда должен иметь привязку к объему базы данных (обычно числа выбирают с шагом 100, 1000, 10000 шаблонов и т.д.).

Рис. 2. Графики FMR и FNMR

КОО - кривая компромиссного определения ошибки (англ. DET - detection error trade-off curve; DET curve). Модифицированная кривая рабочей характеристики, по осям которой отложены вероятности ошибки (ложноположительная - по оси X и ложноотрицательная - по оси У), (ГОСТ Р ИСО/МЭК19795-1-2007).

Кривую КОО (DET) используют для построения графика вероятностей ошибок сравнения (ВЛНС (FNMR) в зависимости от ВЛС (FMR)), вероятностей ошибок принятия решения (ВЛНД (FRR) в зависимости от ВЛД (FAR)) (рис. 3-4) и вероятностей идентификации на открытом множестве (ВЛОИ в зависимости от ВЛПИ), (ГОСТ Р ИСО/МЭК19795-1-2007).

Рис. 3. График DET

Рис. 4. Пример кривых КОО (ГОСТ Р ИСО/МЭК19795-1-2007)

Графики, отображающие качество работы биометрических систем, достаточно многочисленны, иногда создается впечатление, что их назначение - запутать доверчивого пользователя. Существуют еще РХ -кривая рабочей характеристики (англ. ROC - receiver operating characteristic curve) (рис. 5-6), и, конечно, вы понимаете, что это далеко не последние кривые и зависимости, которые существуют в биометрии, но для ясности вопроса не будем на них останавливаться.

Рис. 5. Пример набора кривых РХ (ГОСТ Р ИСО/МЭК19795-1-2007)

Рис. 6. Пример ROC-кривой

Кривые РХ (ROC) не зависят от порога, что позволяет проводить сравнение эксплуатационных характеристик различных биометрических систем, используемых в аналогичных условиях, или одной биометрической системы, используемой в различных условиях окружающей среды.

Кривые РХ (ROC) используют для изображения эксплуатационных характеристик алгоритма сравнения (1 - ВЛНС в зависимости от ВЛС), (1 - FNMR в зависимости от FMR), эксплуатационных характеристик биометрических систем верификации (1 - ВЛНД в зависимости от ВЛД), (1 - FRR в зависимости от FAR), а также эксплуатационных характеристик биометрических систем идентификации на открытом множестве (вероятность идентификации в зависимости от ВЛПИ).

Примечание: ВЛПИ - вероятность ложноположительной идентификации (англ. FPIR - false-positive identification-error rate), т.е. доля транзакций идентификации незарегистрированных в системе пользователей, в результате которых возвращается идентификатор (ГОСТ Р ИСО/МЭК19795-1-2007).

1) Параметры FAR (ВЛД), FRR (ВЛНД) и FMR (ВЛС) FNMR (ВЛРС) имеет смысл рассматривать только в совокупности.

2) Чем ниже коэффициент EER, тем выше точность биометрической системы.

3) Хорошим тоном для биометрической системы является наличие графиков DET (КОО) и ROC (РХ).

ГРАНИЦЫ ПАРАМЕТРОВ FAR И FRR БИОМЕТРИЧЕСКИХ СИСТЕМ

Теперь давайте прикинем, какие параметры FAR и FRR должны быть у биометрических систем. Обратимся за аналогией к требованиям для цифрового кодонаборни-ка. Согласно ГОСТ число значимых десятичных цифр должно быть не менее 6, т.е. диапазон 0-999999, или 107 вариантов кода. Тогда вероятность FAR - 10-7, а вероятность FRR определяется работоспособностью системы, т.е. стремится к нулю.

В банкоматах используется 4-разрядный десятичный код (что не соответствует ГОСТ), и тогда FAR будет составлять 10-5. Возьмем FAR= 10-5 за определяющий параметр. Какое значение можно взять за приемлемое для FRR? Это зависит от задач биометрической системы, но нижняя граница должна находиться в диапазоне 10-2, т.е. вас, как легального пользователя, система не допустит только один раз из ста попыток. Для систем с большой пропускной способностью, например, проходная завода, это значение должно быть 10-3, иначе не понятно назначение биометрии, если мы не избавились от «человеческого» фактора.

Многие биометрические системы заявляют похожие и даже на порядок лучшие характеристики, но поскольку наши величины являются вероятностными, то необходимо указывать доверительный интервал этой величины. С этого момента производители биометрии предпочитают не вдаваться в подробности и не указывать данный параметр.

Если методика расчета, схема эксперимента и доверительный интервал не указаны, то по умолчанию подразумевается действие правила «тридцати», которое выдвинул J. F. Poter в работе «On the 30 error criterion)) (1997).

Об этом же говорит и ГОСТ Р ИСО/ МЭК19795-1-2007. В правиле «тридцати» утверждается, что для того, чтобы с доверительной вероятностью 90% истинная вероятность ошибки находилась в диапазоне ±30% от установленной вероятности ошибки, должно быть зарегистрировано не менее 30 ошибок. Например, если получены 30 ошибок ложного несоответствия в 3000 независимых испытаниях, можно с доверительной вероятностью 90% утверждать, что истинная вероятность ошибки находится в диапазоне от 0,7% до 1,3%. Правило следует непосредственно из биноминального распределения при независимых испытаниях и может применяться с учетом ожидаемых эксплуатационных характеристик для выполнения оценки.

После этого следует логичный вывод: чтобы получить величину ложного доступа в 10-5, нужно провести 3х106 опытов, что практически невозможно осуществить физически при реальном тестировании биометрической системы. Вот тут нас начинают мучить смутные сомнения.

Остается надеяться, что такое тестирование было проведено в лаборатории путем сравнения шаблонов вводимых биометрических признаков с шаблонами базы данных системы. Лабораторные испытания позволяют достаточно корректно оценить надежность заложенных алгоритмов обработки данных, но не реальную работу системы. Лабораторные испытания исключают такие воздействия на биометрическую систему, как электромагнитные наводки (актуально для всех систем биометрии), за-пыление или загрязнение контактных или дистанционных устройств считывания биометрического параметра, реальное поведение человека при взаимодействии с устройствами биометрии, недостаток или избыток освещения, периодическое изменение освещенности и т.д., да мало ли, что еще может повлиять на такую сложную систему, как система биометрии. Если бы человек мог заранее предугадать все негативно-действующие факторы, то можно было бы и не проводить натурные испытания.

Из опыта работы с другими охранными системами можем утверждать, что даже эксплуатация охранной системы в течение 45 суток не выявляет большинство скрытых проблем, и только опытная эксплуатация в течение 1-1,5 лет позволяет их устранить. У разработчиков существует даже термин - «детские болезни». Любая система должна ими переболеть.

Таким образом, кроме лабораторных испытаний необходимо проводить и натурные испытания, естественно, что оценки доверительных интервалов при меньшем количестве опытов должны оцениваться по другим методикам.

Обратимся к учебнику Е.С. Вентцель «Теория вероятностей» (М.: «Наука», 1969. С. 334), который утверждает, если вероятность Р очень велика или очень мала (что несомненно соответствует реальным результатам измерения вероятностей для биометрических систем), доверительный интервал строят, исходя не из приближенного, а из точного закона распределения частоты. Нетрудно убедиться, что это есть биномиальное распределение. Действительно, число появлений события А в n-опытах распределено по биномиальному закону: вероятность того, что событие А появится ровно m раз, равна

а частота р* есть не что иное, как число появлений события, деленное на число опытов.

В данном труде приводится графическая зависимость доверительного интервала от количества проведенных опытов (рис. 7) для доверительной вероятности b = 0,9.

Рис. 7. Графическая зависимость доверительного интервала от количества проведенных опытов

Рассмотрим пример. Мы провели 100 натурных опытов, из которых получили вероятность события равную 0,7. Тогда по оси абсцисс откладываем значение частоты р* = 0,7, проводим через эту точку прямую, параллельную оси ординат, и отмечаем точки пересечения прямой с парой кривых, соответствующих данному числу опытов n = 100; проекции этих точек на ось ординат и дадут границы р1 = 0,63, р2 = 0,77 доверительного интервала.

Для тех случаев, когда точность построения графического метода недостаточна, можно воспользоваться достаточно детальными табличными зависимостями (рис. 8) доверительного интервала, приведенными в труде И.В. Дунина-Барковского и Н.В. Смирнова «Теория вероятностей и математическая статистика в технике» (М.: Государственное издательство технико-теоретической литературы, 1955). В данной таблице х-числитель, n-знаменатель частости. Вероятности умножены на 1000.

Рассмотрим пример. Мы провели 204 натурных опытов, из которых событие произошло 4 раза. Вероятность Р = 4/204 = 0,0196, границы доверительного интервала р1 = 0,049, р2= 0,005.

Теоретически подразумевается, что заявленные в документации параметры должны быть подтверждены сертификатами. Однако в России почти во всех областях жизни действует институт добровольной сертификации, поэтому сертифицируют на те требования, на которые хотят или могут получать сертификат.

Берем первый попавшийся сертификат на биометрическую систему, и видим 6 наименований ГОСТ, из которых ни один не содержит перечисленные выше параметры. Слава богу, что они хоть относятся к охранной технике и нормам безопасности. Это еще не самый худший вариант, приходилось встречать приемники и передатчики радиосистем передачи данных (РСПИ), сертифицированные как электрические машины.

Рис. 8. Фрагмент табличной зависимости доверительного интервала от количества проведенных опытов для доверительной вероятности b = 0,95

САМОЕ ГЛАВНОЕ ИЗ ПЕРЕЧИСЛЕННОГО

1) Параметры FAR (ВЛД) должны быть не ниже 10-5, а FRR (ВЛНД) должны находиться в диапазоне 10"2-10"3.

2) Не стоит безоговорочно доверять указанным в документации вероятностным параметрам, их можно воспринимать только как ориентир.

3) Кроме лабораторных испытаний необходимо проводить и натурные испытания биометрических систем.

4) Необходимо попытаться получить от разработчика, производителя, продавца как можно больше информации о реальных биометрических параметрах системы и методике их получения.

5) Не ленитесь расшифровывать, на какие ГОСТ(ы) и пункты ГОСТ(ов) сертифицирована биометрическая система.

В продолжение начатой темы о реальных системах биометрической идентификации предлагаем поговорить в статье «Основные биометрические системы».

ЛИТЕРАТУРА

  1. http://www.1zagran.ru
  2. http://fingerprint.com.ua/
  3. http://habrahabr.ru/post/174397/
  4. http://sonda.ru/
  5. http://eyelock.com/index.php/ products/hbox
  6. http://www.bmk.spb.ru/
  7. http://www.avtelcom.ru/
  8. http://www.nec.com/en/global/ solutions/security/products/ hybrid_finger.html
  9. http://www.ria-stk.ru/mi «Мир измерений» 3/2014
  10. http://www.biometria.sk/ru/ principles-of-biometrics.html
  11. http://www.biometrics.ru
  12. http://www.guardinfo.ru/«Система физической защиты (СФЗ) ядерных материалов и ядерно-опасных объектов»
  13. http://cbsrus.ru/
  14. http: www.speechpro.ru
  15. Poter J F. On the 30 error criterion. 1997.
  16. ГОСТ Р ИСО/МЭК19795-1-2007. Автоматическая идентификация. Идентификация биометрическая. Эксплуатационные испытания и протоколы испытаний в биометрии. Часть 1. Принципы и структура.
  17. Болл Р.М., Коннел Дж. Х., Ратха Н.К., Сеньор Э.У. Руководство по биометрии. М.: ЗАО «РИЦ Техносфера», 2006.
  18. Симончик К.К., Белевитин Д.О., Матвеев Ю.Н., Дырмовский Д.В. Доступ к интернет-банкингу на основе бимодальной биометрии // Мир измерений. 2014. № 3.
  19. 19. Дунин-Барковский И.В., Смирнов Н.В. Теория вероятностей и математическая статистика в технике. М.: Государственное издательство технико-теоретической литературы, 1955.

Кражи идентификационных данных вызывают все большую обеспокоенность в обществе - по данным Федеральной комиссии по торговле США, жертвами хищения идентифицирующих сведений ежегодно становятся миллионы, а «кража личности» стала самой распространенной жалобой потребителей. В цифровую эпоху традиционных методов аутентификации - паролей и удостоверений личности - уже недостаточно для борьбы с хищением идентификационных сведений и обеспечения безопасности. «Суррогатные репрезентации» личности легко забыть где-либо, потерять, угадать, украсть или передать.

Биометрические системы распознают людей на основе их анатомических особенностей (отпечатков пальцев, образа лица, рисунка линий ладони, радужной оболочки, голоса) или поведенческих черт (подписи, походки). Поскольку эти черты физически связаны с пользователем, биометрическое распознавание надежно в роли механизма, следящего, чтобы только те, у кого есть необходимые полномочия, могли попасть в здание, получить доступ к компьютерной системе или пересечь границу государства. Биометрические системы также обладают уникальными преимуществами - они не позволяют отречься от совершенной транзакции и дают возможность определить, когда индивидуум пользуется несколькими удостоверениями (например, паспортами) на разные имена. Таким образом, при грамотной реализации в соответствующих приложениях биометрические системы обеспечивают высокий уровень защищенности.

Правоохранительные органы уже больше века в своих расследованиях пользуются биометрической аутентификацией по отпечаткам пальцев, а в последние десятилетия происходит быстрый рост внедрения систем биометрического распознавания в правительственных и коммерческих организациях во всем мире. На рис. 1 показаны некоторые примеры. Хотя многие из этих внедрений весьма успешны, существуют опасения по поводу незащищенности биометрических систем и потенциальных нарушений приватности из-за несанкционированной публикации хранимых биометрических данных пользователей. Как и любой другой аутентификационный механизм, биометрическую систему может обойти опытный мошенник, располагающий достаточным временем и ресурсами. Важно развеивать эти опасения, чтобы завоевать доверие общества к биометрическим технологиям.

Принцип действия биометрической системы

Биометрическая система на этапе регистрации записывает образец биометрической черты пользователя с помощью датчика - например, снимает лицо на камеру. Затем из биометрического образца извлекаются индивидуальные черты - например, минуции (мелкие подробности линий пальца) - с помощью программного алгоритма экстракции черт (feature extractor). Система сохраняет извлеченные черты в качестве шаблона в базе данных наряду с другими идентификаторами, такими как имя или идентификационный номер. Для аутентификации пользователь предъявляет датчику еще один биометрический образец. Черты, извлеченные из него, представляют собой запрос, который система сравнивает с шаблоном заявленной личности с помощью алгоритма сопоставления. Он возвращает рейтинг соответствия, отражающий степень схожести между шаблоном и запросом. Система принимает заявление, только если рейтинг соответствия превышает заранее заданный порог.

Уязвимости биометрических систем

Биометрическая система уязвима для двух видов ошибок (рис. 2). Когда система не распознает легитимного пользователя, происходит отказ в обслуживании, а когда самозванец неверно идентифицируется в качестве авторизованного пользователя, говорят о вторжении. Для таких сбоев существует масса возможных причин, их можно поделить на естественные ограничения и атаки злоумышленников.

Естественные ограничения

В отличие от систем аутентификации по паролю, которые требуют точного соответствия двух алфавитно-цифровых строк, биометрическая аутентификационная система полагается на степень схожести двух биометрических образцов, а поскольку индивидуальные биометрические образцы, полученные в ходе регистрации и аутентификации, редко идентичны, то, как показано на рис. 3, биометрическая система может делать ошибки аутентификации двух видов. Ложное несоответствие происходит, когда два образца от одного и того же индивидуума имеют низкую схожесть и система не может их сопоставить. Ложное соответствие происходит, когда два образца от разных индивидуумов имеют высокое подобие и система некорректно объявляет их совпадающими. Ложное несоответствие ведет к отказу в обслуживании легитимного пользователя, тогда как ложное соответствие может привести к вторжению самозванца. Поскольку ему не надо применять какие-то специальные меры для обмана системы, такое вторжение называют атакой нулевого усилия. Большая часть исследований в области биометрии за последние пятьдесят лет была сосредоточена на повышении точности аутентификации - на минимизации ложных несоответствий и соответствий.

Атаки злоумышленников

Биометрическая система также может дать сбой в результате злоумышленных манипуляций, которые могут проводиться через инсайдеров, например сисадминов, либо путем прямой атаки на системную инфраструктуру. Злоумышленник может обойти биометрическую систему, если вступит в сговор с инсайдерами (или принудит их), либо воспользуется их халатностью (например, невыходом из системы после завершения транзакции), либо выполнит мошеннические манипуляции с процедурами регистрации и обработки исключений, которые изначально были разработаны для помощи авторизованным пользователям. Внешние злоумышленники также могут вызвать сбой в биометрической системе посредством прямых атак на пользовательский интерфейс (датчик), модули экстракции черт или сопоставления либо на соединения между модулями или базу шаблонов.

Примеры атак, направленных на системные модули и их межсоединения: трояны, «человек посередине» и атаки воспроизведения. Поскольку большинство видов таких атак также применимы к системам аутентификации по паролю, существует ряд контрмер наподобие криптографии, отметок времени и взаимной аутентификации, которые позволяют предотвратить или минимизировать эффект таких вторжений.

Две серьезные уязвимости, которые заслуживают отдельного внимания в контексте биометрической аутентификации: атаки подделки на пользовательский интерфейс и утечка из базы шаблонов. Эти две атаки имеют серьезное негативное влияние на защищенность биометрической системы.

Атака подделки состоит в предоставлении поддельной биометрической черты, не полученной от живого человека: пластилиновый палец, снимок или маска лица, реальный отрезанный палец легитимного пользователя.

Фундаментальный принцип биометрической аутентификации состоит в том, что, хотя сами биометрические признаки не являются секретом (можно тайно получить фото лица человека или отпечаток его пальца с предмета или поверхности), система тем не менее защищена, так как признак физически привязан к живому пользователю. Успешные атаки подделки нарушают это базовое предположение, тем самым серьезно подрывая защищенность системы.

Исследователи предложили немало методов определения живого состояния. Например, путем верификации физиологических характеристик пальцев или наблюдения за непроизвольными факторами, такими как моргание, можно удостовериться в том, что биометрическая особенность, зарегистрированная датчиком, действительно принадлежит живому человеку.

Утечка из базы шаблонов - это ситуация, когда информация о шаблоне легитимного пользователя становится доступной злоумышленнику. При этом повышается опасность подделки, так как злоумышленнику становится проще восстановить биометрический рисунок путем простого обратного инжиниринга шаблона (рис. 4). В отличие от паролей и физических удостоверений личности, краденый шаблон нельзя просто заменить новым, так как биометрические признаки существуют в единственном экземпляре. Краденые биометрические шаблоны также можно использовать для посторонних целей - например, для тайной слежки за человеком в различных системах или для получения приватной информации о его здоровье.

Защищенность биометрического шаблона

Важнейший фактор минимизации рисков безопасности и нарушения приватности, связанных с биометрическими системами, - защита биометрических шаблонов, хранящихся в базе данных системы. Хотя эти риски можно до некоторой степени уменьшить за счет децентрализованного хранения шаблонов, например на смарткарте, которую носит с собой пользователь, подобные решения нецелесообразны в системах типа US-VISIT и Aadhaar, которым нужны средства дедупликации.

Сегодня существует немало методов защиты паролей (в их числе шифрование, хэширование и генерация ключей), однако базируются они на предположении, что пароли, которые пользователь вводит на этапе регистрации и аутентификации, идентичны.

Требования к защищенности шаблона

Основная трудность при разработке схем защиты биометрического шаблона состоит в том, чтобы достигнуть приемлемого компромисса между тремя требованиями.

Необратимость. Злоумышленнику должно быть затруднительно вычислительным путем восстановить биометрические черты из сохраненного шаблона либо создать физические подделки биометрического признака.

Различимость. Схема защиты шаблона не должна ухудшать точность аутентификации биометрической системой.

Отменяемость. Должна быть возможность из одних и тех же биометрических данных создать несколько защищенных шаблонов, которые нельзя будет связать с этими данными. Это свойство не только позволяет биометрической системе отзывать и выдавать новые биометрические шаблоны в случае компрометации базы данных, но и предотвращает перекрестное сопоставление между базами данных, за счет чего сохраняется приватность данных о пользователе.

Методы защиты шаблонов

Имеется два общих принципа защиты биометрических шаблонов: трансформация биометрических черт и биометрические криптосистемы.

В случае трансформации биометрических черт (рис. 5, а ) защищенный шаблон получен за счет применения необратимой функции трансформации к оригиналу шаблона. Такая трансформация обычно основана на индивидуальных характеристиках пользователя. В процессе аутентификации система применяет ту же функцию трансформации к запросу, и сопоставление происходит уже для трансформированного образца.

Биометрические криптосистемы (рис. 5, б ) хранят только часть информации, полученной из биометрического шаблона, - эта часть называется защищенным эскизом (secure sketch). Хотя его самого недостаточно для восстановления оригинального шаблона, он все же содержит необходимое количество данных для восстановления шаблона при наличии другого биометрического образца, похожего на полученный при регистрации.

Защищенный эскиз обычно получают путем связывания биометрического шаблона с криптографическим ключом, однако защищенный эскиз - это не то же самое, что биометрический шаблон, зашифрованный с помощью стандартных методов. При обычной криптографии зашифрованный шаблон и ключ расшифровки - это две разные единицы, и шаблон защищен, только если защищен и ключ. В защищенном шаблоне же инкапсулируются одновременно и биометрический шаблон, и криптографический ключ. Ни ключ, ни шаблон нельзя восстановить, имея только защищенный эскиз. Когда системе предоставляют биометрический запрос, достаточно похожий на шаблон, она может восстановить и оригинальный шаблон, и криптоключ с помощью стандартных методов распознавания ошибок.

Исследователи предложили два основных метода генерации защищенного эскиза: нечеткое обязательство (fuzzy commitment) и нечеткий сейф (fuzzy vault). Первый можно использовать для защиты биометрических шаблонов, представленных в виде двоичных строк фиксированной длины. Второй полезен для защиты шаблонов, представленных в виде наборов точек.

За и против

Трансформация биометрических черт и биометрические криптосистемы имеют свои «за» и «против».

Сопоставление в схеме с трансформацией черт часто происходит напрямую, и возможна даже разработка функций трансформации, не меняющих характеристик исходного пространства признаков. Однако бывает сложно создать удачную функцию трансформации, необратимую и терпимую к неизбежному изменению биометрических черт пользователя со временем.

Хотя для биометрических систем существуют методы генерации защищенного эскиза, основанные на принципах теории информации, трудность состоит в том, чтобы представить эти биометрические черты в стандартизованных форматах данных наподобие двоичных строк и наборов точек. Поэтому одна из актуальных тем исследований - разработка алгоритмов, преобразующих оригинальный биометрический шаблон в такие форматы без потерь значащей информации.

Методы fuzzy commitment и fuzzy vault имеют и другие ограничения, в том числе неспособность генерировать много несвязанных шаблонов из одного и того же набора биометрических данных. Один из возможных способов преодоления этой проблемы - применение функции трансформации черт к биометрическому шаблону до того, как она будет защищена с помощью биометрической криптосистемы. Биометрические криптосистемы, которые объединяют трансформацию с генерацией защищенного эскиза, называют гибридными.

Головоломка приватности

Нерасторжимая связь между пользователями и их биометрическими чертами порождает обоснованные опасения по поводу возможности раскрытия персональных данных. В частности, знание информации о хранимых в базе биометрических шаблонах можно использовать для компрометации приватных сведений о пользователе. Схемы защиты шаблонов до некоторой степени могут снизить эту угрозу, однако многие сложные вопросы приватности лежат за рамками биометрических технологий. Кто владеет данными - индивидуум или провайдеры сервиса? Сообразно ли применение биометрии потребностям в безопасности в каждом конкретном случае? Например, следует ли требовать отпечаток пальца при покупке гамбургера в фастфуде или при доступе к коммерческому Web-сайту? Каков оптимальный компромисс между безопасностью приложения и приватностью? Например, следует ли разрешать правительствам, предприятиям и другим лицам пользоваться камерами наблюдения в публичных местах, чтобы тайно следить за законной деятельностью пользователей?

На сегодня удачных практических решений для подобных вопросов нет.

Биометрическое распознавание обеспечивает более надежную аутентификацию пользователей, чем пароли и удостоверяющие личность документы, и является единственным способом обнаружения самозванцев. Хотя биометрические системы не являются абсолютно надежными, исследователи сделали значительные шаги вперед по пути идентификации уязвимостей и разработки мер противодействия им. Новые алгоритмы для защиты биометрических шаблонов частично устраняют опасения по поводу защищенности систем и приватности данных пользователя, но понадобятся дополнительные усовершенствования, прежде чем подобные методы будут готовы к применению в реальных условиях.

Анил Джейн ([email protected]) - профессор факультета компьютерных наук и инженерного проектирования Мичиганского университета, Картик Нандакумар ([email protected]) - научный сотрудник сингапурского Института инфокоммуникационных исследований.

Anil K. Jain, Kathik Nandakumar, Biometric Authentication: System Security and User Privacy. IEEE Computer, November 2012, IEEE Computer Society. All rights reserved. Reprinted with permission.