Контроллер заряда для солнечной батареи: правила выбора, схема для сборки своими руками. Контроллер заряда аккумулятора для солнечной панели

07.09.2019 Интернет

Контроллер очень прост и состоит всего из четырех деталей.

Это мощный транзистор (я использую IRFZ44N выдерживает ток до 49Ампер).

Автомобильное реле-регулятор с управлением по плюсу (ВАЗ "классика").

Резистор120кОм.

Диод по мощнее, чтобы держал ток отдаваемый солнечной панелью (к примеру из автомобильного диодного моста).

Принцип работы тоже очень простой. Пишу для совсем не понимающих в электронике людей, так-как сам в ней ничего не понимаю.

Реле регулятор подключается к АКБ, минус на алюминиевую основу (31к), плюс на (15к), с контакта (68к) провод через резистор подсоединяется к затвору транзистора. У транзистора три лапки, первая это затвор, вторая сток, третья исток. Минус солнечной панели подключается к истоку, а плюс к АКБ, со стока транзистора минус солнечной панели идет на АКБ.

Когда реле-регулятор подключен и работает, то плюсовой сигнал с (68к) отпирает затвор и ток с солнечной панели течет через исток-сток в АКБ, а когда напряжение на АКБ превысит 14 вольт, реле-регулятор отключает плюс и затвор транзистора разряжаясь через резистор на минус закрывается тем самым разрывает минусовой контакт солнечной панели, и она отключается. А когда напряжение немного упадет реле-регулятор снова подаст плюс на затвор, транзистор откроется и снова ток от панели потечет в аккумулятор. Диод на плюсовом проводе СБ нужен чтобы ночью аккумулятор не разряжался, так-как без света солнечная панель сама потребляет электроэнергию.

Ниже наглядный рисунок соединения элементов контроллера.

Я не силен в электронике и может в моей схеме есть какие-то недочеты, но она работает без всяких настроек и работает сразу, и делает то что делают заводские контроллеры для солнечных панелей, а себестоимость всего порядка 200 рублей и час работы.

Ниже не совсем понятная фотография этого контроллера, вот так грубо и неряшливо просто на корпусе ящика закреплены все детали контроллера. Транзистор немного греется и я его закрепил на маленький вентилятор. Параллельно резистору поставил маленький светодиод, который показывает работу контроллера. Когда горит СБ подключена, когда нет значит аккумулятор заряжен, а когда быстро мигает аккумулятор почти заряжен и просто подзаряжается.


Этот контроллер работает уже более полугода и за это время никаких проблем, подключил и все, теперь не слежу за АКБ, все само работает. Это мой второй контроллер, первый я собирал для ветрогенераторов как балластный регулятор, о нем смотрите в предыдущих статьях в разделе мои самоделки.

Внимание - контроллер оказывается не полностью рабочий. После некоторого времени работы вяснилось что транзистор в данной схеме не полностью закрывается, и в аккумулятор все равно продалжает течь ток даже при привышении 14 вольт

Извиняюсь за нерабочую схему, сам долго пользовался и думал что все работает, а оказывается нет, и даже после полной зарядки в аккумулятор все равно идет ток. Транзистор закрывается только на половину при достижении 14 вольт. Схему пока убирать не буду, как время и желание появятся доделаю я этот контроллер и выложу рабочую схему.

А сейчас у меня в качестве контроллера балластный регулятор стоит, который отлично работает уже продрлжительное время. Как только напряжение переваливает за 14 вольт транзистор открывается и включает лампочку, которая сжигает все излишки энергии. Одновременно сейчас две солнечные панели и ветрогенератор на этом балласте.

Альтернативная энергетика с каждым годом распространяется все шире. Соответственно растет спрос на солнечные батареи и контроллеры заряда для аккумуляторов. И это не удивительно, ведь одним из классических примеров свободной энергии является энергия солнца. Ее используют тремя основными способами:

  1. Гелиоколлектор.
  2. Солнечный концентратор.
  3. Солнечная батарея.

Если первые два метода заключаются в концентрировании и передачи тепла, то третий позволяет преобразовать солнечный свет в электроэнергию. Однако в альтернативной энергетике есть одна существенная проблема, чтобы в ней разобраться, нужно провести аналогию с классическими методами «добычи» электроэнергии.

Дело в том, что в привычных ТЭЦ и АЭС генератор приводит в движение паровая турбина, на ГЭС – течение воды. Это процесс беспрерывный. В случае альтернативной энергетики все немного иначе. Ни ветер, ни солнце не светит постоянно. Бывает штиль, облачность, ночь, в конце концов. А электроэнергия, в большей степени, требуется именно в темное время суток. Как же быть? Необходимо запасти ее в аккумуляторы.

Для чего нужен контроллер заряда для солнечной батареи?

Контроллер для солнечных батарей
Аккумуляторы были изобретены для того, чтобы в них запасать энергию. Поэтому они нашли широчайшее применение в альтернативной энергетике, в установках малых и крупных масштабов. Но есть ряд проблем:

  1. Солнечный свет в течение светлого времени суток имеет разную интенсивность.
  2. В зависимости от схемы соединений вашей СЭС на выходных клеммах панелей может быть разная величина напряжений.

Контроллер заряда солнечной батареи как раз и нужен для того, чтобы преобразовать энергию, которую отдают устройства в правильный для аккумулятора «вид». С его помощью потоки энергии распределяются таким образом, чтобы обеспечить зарядку приборов в правильном режиме.

Устройство не только помогает зарядить аккумулятор, но и благодаря тому, что этот процесс становится достаточно оптимизированным – срок ее жизни значительно продлевается.

Виды контроллеров для солнечной батареи


Виды контроллеров заряда солнечной батареи

В современном мире выделяют три типа контроллеров:

— MPPT-контроллер;

On-Off – это простейшее решение для заряда, такой контроллер напрямую подключает солнечные батареи к аккумулятору, когда его напряжение достигнет 14,5 вольта. Однако такое напряжение не свидетельствует о полном заряде аккумулятора. Для этого нужно какое-то время поддерживать ток, чтобы АКБ набрала необходимую для полного заряда энергию. В результате вы получаете хронический недозаряд аккумуляторов и сокращение их срока службы.

ШИМ-контроллеры поддерживают нужное напряжение для зарядки аккумулятора просто «срезая» лишнее. Таким образом, зарядка прибора происходит вне зависимости от напряжения, выдаваемого солнечной батареей. Главное условие, чтобы оно было выше, чем необходимое для заряда. Для аккумуляторов на 12 В, напряжение в полностью заряженном состоянии находится на уровне 14.5 В, а в разряженном около 11. Этот тип контроллеров является более простым, чем MPPT, однако, обладает меньшим КПД. Они позволяют наполнить АКБ на 100% от емкости, что дает значительное преимущество перед системами типа «On-Off».

MPPT-контроллер – имеет более сложное устройство, способное анализировать режим . Его название в полном виде звучит, как «Maximum power point tracking», что на русском языке значит – «Отслеживание точки максимальной мощности». Мощность, которую выдает панель, очень зависит от количества света, который на нее падает.

Дело в том, что ШИМ-контроллер никак не анализирует состояние панелей, а лишь формирует необходимые напряжения для зарядки АКБ. MPPT отслеживает его, а также токи, выдаваемые солнечной панелью, и формирует выходные параметры оптимальные для заряда накопительных элементов питания. Таким образом, снижается ток во входной цепи: от солнечной панели до контроллера, и рациональнее используется энергия.


Виды контроллеров солнечных панелей

Что такое Точка Максимальной Мощности?

ВАХ элементов солнечной панели не линейна. Она способна выдавать номинальные токи до определенного выходного напряжения. При достижении нужных параметров ток, отдаваемый батареей, снижается. Точкой Максимальной Мощности называется состояние, когда панель дает максимальные напряжение и ток, после этой точки при повышении выходного напряжения падает и ток. MPPT-контроллер стремится использовать именно тот режим солнечной батареи, при котором созданы условия для достижения ТММ. Исходя из этого, следует, что мощность, отдаваемая такими приборами, будет выше.

Однако существует один нюанс, о котором внимательные читатели уже могли догадаться. Если ШИМ-контроллер независимо ни от чего выдает свои Вольты и Амперы, аккумуляторы будут заряжаться даже при минимальном освещении панели, когда ее выходные параметры малы. Тогда как MTTP контроллер может просто не отреагировать на это. Также существуют отдельные модели с возможностью настройки и адаптации под разные условия окружающей среды.

Внимание! Использование этого типа контроллеров может дать прирост эффективности установки (КПД) до 30%.

Можно ли обойтись без контроллера?

Грамотно выбранный контроллер снижает дальнейшие вложения на обслуживания вашей системы альтернативного электроснабжения. Неправильные процессы заряда аккумулятора ведут к снижению его ресурса. Что будет если не использовать контроллеров вообще? В случае, когда солнечная батарея подключается напрямую к АКБ, ток заряда не будет контролированным. Дело в том, что напряжение в точке максимальной мощности для 12-ти вольтных моделей солнечных панелей достигает значений выше 15,5 вольт. Большой ток заряда вызовет закипание ячеек в аккумуляторах, что повлечет за собой выделение тепла и повреждение целостности батарей.

Правильный режим заряда сохранит ресурс устройства, и вам не нужно будет проводить неплановую замену.

На что смотреть при выборе?

При покупке контроллера заряда нужно учитывать:

  • Мощность установки.
  • Количество батарей.
  • Напряжение системы (12, 24 вольта, или иные, в зависимости от конструкции и соединения панелей).
  • Ток заряда.

Некоторые батареи продаются с возможностью использования в цепях 12 и 24 вольта, например, BlueSolar MPPT.

Ток заряда – характеризует скорость зарядки ваших АКБ. Обычно его выбирают по формуле «Емкость/10», т.е. для аккумулятора емкостью в 50 А/ч достаточно тока в 5 А. Однако, если у вас стоит целая батарея аккумуляторов, общей емкостью в 200 А/ч, тогда понадобится контроллер способный выдать ток до 20 А, это минимум.

Если вы задумывались над альтернативным способом получения энергии и решили устанавливать солнечные батареи, то наверняка хотите сэкономить. Одной из возможностей экономии — сделать контроллер заряда своими руками . При установке солнечных генераторов — панелей, требуется много дополнительного оборудования: контроллеры заряда, аккумуляторы, для перевода тока под технические стандарты.

Рассмотрим изготовление контроллера заряда солнечной батареи своими руками .

Это устройство контролирующее уровень зарядки свинцовых аккумуляторов, не допускающее их полной разрядки и перезарядки. Если аккумулятор начнет разряжаться в аварийном режиме, аппарат снизит нагрузку и не допустит полной разрядки.

Стоит отметить, что самостоятельно изготовленный контроллер не сравниться по качеству и функционалу с промышленным, но он будет вполне достаточен для работы элетросети. В продаже попадаются изделия, изготовленные в подвальных условиях, которые имеют очень низкий уровень надежности. Если у вас не хватает средств на дорогостоящий агрегат, лучше собрать его самостоятельно.

Контроллер заряда акб от солнечных батарей изготовленный самостоятельно

Даже самодельный продукт должен соответствовать следующим условиям:

  • 1,2P< U x I , где P – общая мощность всех используемых источников напряжения, I – ток прибора на выходе, U – вольтаж системы при разряженных батареях
  • Максимально разрешенное входное напряжение должно равняться общему напряжению всех батарей без нагрузки.

На изображении ниже вы увидите схему такого электрооборудования. Для того чтобы собрать его потребуются небольшие познания в электроники и немного терпения. Конструкция немного доработана и теперь вместо диода установлен полевой транзистор, регулирующийся компаратором.
Такой контролер заряда будет достаточен для использования в сетях не высокой мощности, с использованием только . Отличается простотой изготовления и дешевизной материалов.

Контроллер заряда для солнечных батарей работает по простому принципу: когда напряжение на накопителе достигает указанного значения, он прекращает зарядку, дальше идет только капельный заряд. В случае падения напряжения показателя ниже установленного порога подача тока на аккумулятор возобновляется. Использование аккумуляторов отключается контролером когда в них заряд менее 11 V. Благодаря работе такого регулятора акб самопроизвольно не разрядится во время отсутствия солнца.



Основные характеристики схемы контролера заряда :

  • Напряжение заряда V=13,8V (настраивается), измеряется при наличии тока заряда;
  • Отключение нагрузки происходит когда Vbat мене 11V (настраивается);
  • Включение нагрузки когда Vbat=12,5V;
  • Температурная компенсация режима заряда;
  • Экономичный компаратор TLC339 можно заменить на более распространенный TL393 или TL339;
  • Падение напряжения на ключах менее 20mV при заряде током 0,5А.

Усовершенствованный контроллер заряда солнечной батареи

Если вы уверены в своих познаниях электронного оборудования, можно попробовать собрать более сложную схему контроллера заряда. Она более надежна и способна работать как от солнечных батарей, так и от ветрогенератора, который поможет вам получать свет по вечерам.

Выше представлена усовершенствованная схема котроллера заряда своими руками. Для изменения пороговых значений применяются подстроечные резисторы, с помощью которых вы будете регулировать параметры работы. Ток, поступающий от источника коммутируется реле. Само реле управляется ключом полевых транзисторов.

Все схемы контроллера заряда проходили проверку на практике и отлично зарекомендовали себя на протяжении нескольких лет.

Для дачи и прочих объектов, где не требуется большое потребление ресурсов, нет смысла затрачиваться на дорогостоящие элементы. Если вы имеете необходимые знания, можно доработать предложенные конструкции или добавить необходимый функционал.

Так вы можете сделать своими руками контроллер заряда при использовании устройств альтернативной энергии. Не стоит отчаиваться если первый блин вышел комом. Ведь никто не застрахован от ошибок. Немного терпения, старания и экспериментов доведут дело до конца. Зато работающее электроснабжение будет отличным поводом для гордости.

Одним из важнейших компонентов домашней солнечной электростанции является контроллер заряда аккумуляторов. Именно это устройство следит за процессом заряда/разряда аккумуляторов, поддерживая оптимальный режим их работы. Существует множество схем контроллеров для солнечных батарей – от самых простых, выполненных порою кустарным способом, до очень сложных, с применением микропроцессоров. Причем контроллеры заряда для солнечных батарей, сделанные своими руками, частенько работают лучше аналогичных промышленных устройств такого же типа.

Для чего нужны контроллеры заряда аккумуляторов

Если аккумулятор подсоединить напрямую к клеммам солнечных батарей, то заряд его будет происходить непрерывно. В конечном итоге на уже полностью заряженный аккумулятор будет продолжать поступать ток, что вызовет повышение напряжения на несколько вольт. В результате происходит перезаряд АКБ, повышается температура электролита, причем эта температура достигает таких значений, что электролит закипает, происходит резкий выброс паров из банок аккумулятора. Как следствие, может произойти полное испарение электролита и высыхание банок. Естественно, это не добавляет «здоровья» аккумулятору и резко снижает ресурс его работоспособности.

Контроллер в системе солнечного заряда аккумуляторов

Вот, чтобы не допустить подобных явлений, чтобы оптимизировать процессы заряда/разряда, и нужны контроллеры.

Три принципа построения контроллеров заряда

По принципу действия различают три типа солнечных контроллеров.
Первый, самый простой тип – это устройство, выполненное по принципу «On/Off» («Вкл./Выкл.»). Схема такого аппарата представляет собой простейший компаратор, который включает или выключает цепь заряда в зависимости от значения напряжения на клеммах аккумулятора. Это самый простой и дешевый тип контроллеров, но и способ, которым он производит заряд, самый ненадежный. Дело в том, что контроллер отключает цепь заряда по достижении предельного значения напряжения на клеммах аккумуляторной батареи. Но при этом не происходит полного заряда банок. Максимально достигается не более 90% заряда от номинального значения. Вот такой постоянный недобор заряда значительно уменьшает работоспособность аккумулятора и срок его работы.


Вольт-амперная характеристика солнечного модуля

Второй тип контроллеров – это устройства, построенные по принципу ШИМ (широтно-импульсной модуляции). Это более сложные аппараты, в которых кроме дискретных компонентов схемы имеются уже и элементы микроэлектроники. Аппараты на базе ШИМ (англ. – PWM) осуществляют зарядку аккумуляторов ступенчато, выбирая оптимальные режимы заряда. Эта выборка производится автоматически и зависит от того, как глубоко разряжены АКБ. Контроллер повышает напряжение, одновременно понижая силу тока, обеспечивая тем самым полную зарядку аккумуляторной батареи. Большой недостаток ШИМ-контроллера – заметные потери в режиме зарядки аккумулятора – теряются до 40%.


Третий тип – это контроллеры MPPT , то есть работающие по принципу отыскания точки максимальной мощности солнечного модуля. В процессе работы устройства этого типа используют максимально доступную мощность для любого режима заряда. По сравнению с другими, аппараты этого типа отдают на заряд аккумуляторных батарей примерно на 25% - 30% больше энергии, чем другие аппараты.


Заряд АКБ производится меньшим напряжением, чем это делают контроллеры других типов, но большей силой тока. Коэффициент полезного действия аппаратов MPPT достигает 90% - 95%.

Простейший самодельный контроллер

При самостоятельном изготовлении любого контроллера необходимо обязательно соблюдать определенные условия. Во-первых, максимальное напряжение на входе должно быть равным напряжению АКБ без нагрузки. Во-вторых, должно быть выдержано соотношение: 1,2P


Этот аппарат предназначен для работы в составе солнечной электростанции малой мощности. Принцип работы контроллера предельно прост. Когда напряжение на клеммах аккумуляторов достигнет заданного значения, заряд прекращается. В дальнейшем производится только так называемый капельный заряд.


Контроллер, смонтированный на печатной плате

При падении напряжения ниже установленного уровня подача энергии на аккумуляторы возобновляется. Если при работе на нагрузку в отсутствии заряда напряжение АКБ будет ниже 11 вольт, контроллер отключит нагрузку. Тем самым исключается разряд аккумуляторов в период отсутствия солнца.

Аналоговый контроллер для маломощных гелиевых систем

Аналоговые устройства используются, в основном, в гелиевых системах, имеющих небольшую мощность. В мощных системах целесообразно применять цифровые последовательные аппараты типа MPPT. Эти контроллеры прерывают зарядный ток, когда аккумулятор будет полностью заряжен. В предлагаемой схеме аналогового контролера используется параллельное подключение. При таком подключении солнечный модуль всегда соединен с аккумулятором через специальный диод. Когда напряжение на аккумуляторе достигнет заданного значения, контроллер параллельно солнечному модулю включает цепь нагрузочного сопротивления, которое принимает на себя избыток энергии от модуля.

Это устройство было разработано и собрано под конкретную систему, состоящую из солнечной панели с 36 ячейками, с выходным напряжением холостого хода 18 вольт и с током короткого замыкания до одного ампера. Емкость аккумулятора до 50 ампер-часов, при номинальном напряжении 12 вольт. Перед тем, как включить собранный аппарат в рабочую конфигурацию системы, необходимо произвести его настройку. Для быстрой настройки нужно взять предварительно заряженный аккумулятор. Солнечную батарею с соблюдением полярности нужно подключить к клеммам PV по схеме, а аккумулятор – к клеммам ВАТ. К клеммам аккумулятора необходимо также подключить цифровой вольтметр.


Теперь для получения максимальной отдачи от солнечной батареи, нужно сориентировать ее на солнце. После этого медленно поворачивать винт двадцатиоборотного переменного резистора номиналом в 100 кОм. Вращение винта производится до тех пор, пока светодиод не начнет мигать. После того, как начнется мигание, винт следует продолжать медленно поворачивать до тех пор, пока вольтметр не покажет значение напряжения на клеммах аккумулятора, равное желаемому. На этом настройка устройства завершена.

В процессе эксплуатации системы при достижении напряжением на клеммах аккумулятора предельного значения светодиод начинает выдавать краткие световые импульсы с длительными промежутками. При продолжении заряда аккумулятора длительность световых импульсов увеличивается, а интервал между ними, наоборот, сокращается.

Разумеется, при наличии определенных знаний и навыков можно собрать и более сложное устройство, например, MPPT, но если речь заходит о покупке дорогостоящего оборудования для домашней электростанции, то, вероятно, есть смысл все-таки купить промышленный аппарат, на который распространяется к тому же и гарантия изготовителя. И не подвергать аккумуляторные батареи риску повреждения.

Здравствуйте. Попробую я сегодня рассказать про достаточно маломощный (10А ток заряда и разряда) контроллер заряда аккумуляторной батареи от солнечных панелей.
В обзоре подробные фото контроллера внутри и снаружи, а также тестирование…
Итак, всем известно, что солнечные панели преобразовывают световое излучение в электрический ток, таким образом в дневное время можно получать электрическую энергию от Солнца. Для того, чтобы сохранить эту энергию для использования в тёмное время суток, солнечную силовую установку необходимо оборудовать аккумулятором, который в светлое время суток будет заряжаться, а в тёмное отдавать энергию потребителям.
Но для чего же нужен контроллер заряда? И действительно, достаточно просто соединить солнечную батарею с аккумулятором, и при наличии хоть какого-то света, а ещё лучше - Солнца, от солнечной батареи пойдет зарядный ток в аккумулятор и без использования контроллера. Однако у каждого аккумулятора есть предельное значение напряжения, превышение которого ведёт к перезаряду, кипению электролита и в конечном итоге к выходу из строя аккумулятора. То же самое можно сказать и о цикле разряда. Также нельзя разряжать аккумуляторы ниже определённого для каждого типа аккумулятора напряжения. Вот для этих целей и служит контроллер заряда, который следит за правильным зарядом и разрядом аккумулятора, а также имеет и некоторые дополнительные функции. Бывают контроллеры релейного типа, которые просто подключают и отключают солнечную панель от аккумулятора при достижении максимального напряжения, а также бывают контроллеры с ШИМ модуляцией, которые могут регулировать напряжение выдаваемое на аккумулятор. Вторые предпочтительнее, т.к. они более полно заряжают аккумулятор.
В данном случае расскажу о таком контроллере с ШИМ. В виду его небольшой мощности, основное его предназначение - управление автономным освещением. Но обо всём по порядку.
Комплект состоит из самого контроллера и инструкции на английском языке:








Могу сказать, что подобные инструкции читаю редко, но в эту заглянул.
Общий вид и размеры:






Размеры продублирую цифрами: 14х9х3 см (приблизительно);
Корпус сделан из пластика, с 4 «ушами» для крепления, на передней панели присутствуют:
1. Группа из 3 светодиодов (слева сверху). Левый зеленый показывает наличие тока от солнечной панели, средний 2-х цветный индицирует состояние заряда батареи (красный - батарея разряжена, зелёный - батарея заряжена) и правый жёлтый - активация нагрузки;
2. 7 сегментный с точкой индикатор красного цвета для индикации выбранного режима работы;
3. Кнопка под 7 сегментным индикатором для выбора нужного режима работы;
4. Винтовые клеммники для подключения солнечной панели, аккумуляторной батареи, нагрузки.
На обратной стороне корпуса присутствует металлическая пластина, крепящаяся к корпусу 4-мя саморезами, служащая радиатором для силовых транзисторов.
Заглянем внутрь:








Со схемотехнической точки зрения ничего говорить не буду, для интересующихся на фотографиях видны наименования микросхем. Отмечу лишь достаточно аккуратный монтаж и возможность увеличения мощности прибора путём добавления силовых транзисторов на отсутствующие места, естественно делать это нужно с умом.
Перейдём к тестированию, для этого дополнительно к обозреваемому контроллеру нам понадобятся элементы солнечной панели (о них расскажу как-нибудь в другой раз), кусок ламината для крепления этих элементов, 12 вольтовый свинцовый аккумулятор, провода, термоклей, припой, флюс, мультиметр, регулируемый источник питания постоянного тока, 12 вольтовая светодиодная лента играющая роль нагрузки:








Выходные напряжения каждого солнечного элемента используемых для тестирования, судя по ТХ производителя, около 6 вольт, поэтому нам необходимо соединить последовательно 3 таких элемента и закрепить эти элементы и провода с помощью термоклея на куске ламината.
Проверяем что получилось:




Напряжение 17 вольт, ток КЗ всего 7 мА, с напряжением всё нормально, но с током не густо, хотя отмечу, элементы в тени. Откроем шторы:




Напряжение 20 вольт, ток КЗ около 40 мА, уже что-то.
Собираем тестовый макет:


Светодиодная лента не светится, что соответствует выбранному 17 режиму (см.инструкцию), при котором нагрузка включается только при отсутствии тока от солнечной панели, что соответствует тёмному времени суток. Мультиметр показывает 27 мА зарядного тока.
На следующем видео демонстрация работы автоматического освещения при смене дня и ночи (как это так и следующее видео лучше смотреть на весь экран, чтобы подсказки корректно отображались):


Для дальнейших экспериментов подключим вместо аккумуляторной батареи регулируемый источник питания постоянного тока и первым экспериментом будет измерение тока покоя прибора. Т.е. какой ток потребляет контроллер заряда без солнечной панели и нагрузки:


Оказалось всего 5 мА, что сравнимо с током саморазряда аккумулятора.
На следующем видео я постарался продемонстрировать как ведёт себя контроллер заряда при изменении напряжения на аккумуляторе при затенённых солнечных элементах:


Немного слов о режимах работы:
0 - нагрузка включена постоянно (этот режим можно использовать для общего применения);
16 - включение/выключение нагрузки осуществляется кнопкой управления;
17 - нагрузка включена в темное время суток;
01...15 - включение нагрузки после заката на столько часов, какой режим выбран (1...15)
Что еще можно сказать? Контроллер вполне работоспособен в своей области применения. Одной цепочки солнечных элементов явно не достаточно, необходимо впаралель добавить еще несколько, но важно не забывать развязывать их диодами, лучше использовать диоды Шоттки (прямое падение напряжения меньше).
Вот вроде бы и всё, если будут вопросы, спрашивайте в комментариях, постараюсь ответить.

P.S. Да, чуть не забыл, товар предоставлен бесплатно для тестирования.

Планирую купить +51 Добавить в избранное Обзор понравился +26 +59