Что определяет интерфейс между уровнями модели osi. Эталонная сетевая модель OSI

25.09.2019 Ios

Разработка которого не была связана с моделью OSI.

Уровни модели OSI

Модель состоит из 7-ми уровней, расположенных друг над другом. Уровни взаимодействуют друг с другом (по «вертикали») посредством интерфейсов, и могут взаимодействовать с параллельным уровнем другой системы (по «горизонтали») с помощью протоколов. Каждый уровень может взаимодействовать только со своими соседями и выполнять отведённые только ему функции. Подробнее можно посмотреть на рисунке.

Модель OSI
Тип данных Уровень Функции
Данные 7. Прикладной уровень Доступ к сетевым службам
6. Уровень представления Представление и кодирование данных
5. Сеансовый уровень Управление сеансом связи
Сегменты 4. Транспортный Прямая связь между конечными пунктами и надежность
Пакеты 3. Сетевой Определение маршрута и логическая адресация
Кадры 2. Канальный Физическая адресация
Биты 1. Физический уровень Работа со средой передачи, сигналами и двоичными данными

Прикладной (Приложений) уровень (англ. Application layer )

Верхний уровень модели, обеспечивает взаимодействие пользовательских приложений с сетью. Этот уровень позволяет приложениям использовать сетевые службы, такие как удалённый доступ к файлам и базам данных, пересылка электронной почты. Также отвечает за передачу служебной информации, предоставляет приложениям информацию об ошибках и формирует запросы к уровню представления . Пример: HTTP , POP3 , SMTP , FTP , XMPP , OSCAR , BitTorrent , MODBUS, SIP

Представительский (Уровень представления) (англ. Presentation layer )

Этот уровень отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с прикладного уровня, он преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

Уровень 6 (представлений) эталонной модели OSI обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой. Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена информацией EBCDIC , например, это может быть мэйнфрейм компании IBM, а другая - американский стандартный код обмена информацией ASCII (его используют большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.

Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от приема несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных. На этом уровне существуют и другие подпрограммы, которые сжимают тексты и преобразовывают графические изображения в битовые потоки, так что они могут передаваться по сети.

Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT - формат изображений, применяемый для передачи графики QuickDraw между программами для компьютеров Macintosh и PowerPC. Другим форматом представлений является тэгированный формат файлов изображений TIFF , который обычно используется для растровых изображений с высоким разрешением. Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандарт, разработанный Объединенной экспертной группой по фотографии (Joint Photographic Expert Group); в повседневном пользовании этот стандарт называют просто JPEG .

Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов MIDI (Musical Instrument Digital Interface) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандарт MPEG , используемый для сжатия и кодирования видеороликов на компакт-дисках, хранения в оцифрованном виде и передачи со скоростями до 1,5 Мбит/с, и QuickTime - стандарт, описывающий звуковые и видео элементы для программ, выполняемых на компьютерах Macintosh и PowerPC.

Сеансовый уровень (англ. Session layer )

5-й уровень модели отвечает за поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений. Синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при нарушении взаимодействия.

Транспортный уровень (англ. Transport layer )

4-й уровень модели предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом не важно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Блоки данных он разделяет на фрагменты, размер которых зависит от протокола, короткие объединяет в один, а длинные разбивает. Пример: TCP , UDP .

Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных.

Некоторые протоколы сетевого уровня, называемые протоколами без установки соединения, не гарантируют, что данные доставляются по назначению в том порядке, в котором они были посланы устройством-источником. Некоторые транспортные уровни справляются с этим, собирая данные в нужной последовательности до передачи их на сеансовый уровень. Мультиплексирование (multiplexing) данных означает, что транспортный уровень способен одновременно обрабатывать несколько потоков данных (потоки могут поступать и от различных приложений) между двумя системами. Механизм управления потоком данных - это механизм, позволяющий регулировать количество данных, передаваемых от одной системы к другой. Протоколы транспортного уровня часто имеют функцию контроля доставки данных, заставляя принимающую данные систему отправлять подтверждения передающей стороне о приеме данных.

Описать работу протоколов с установкой соединения можно на примере работы обычного телефона. Протоколы этого класса начинают передачу данных с вызова или установки маршрута следования пакетов от источника к получателю. После чего начинают последовательную передачу данных и затем по окончании передачи разрывают связь.

Протоколы без установки соединения, которые посылают данные, содержащие полную адресную информацию в каждом пакете, работают аналогично почтовой системе. Каждое письмо или пакет содержит адрес отправителя и получателя. Далее каждый промежуточный почтамт или сетевое устройство считывает адресную информацию и принимает решение о маршрутизации данных. Письмо или пакет данных передается от одного промежуточного устройства к другому до тех пор, пока не будет доставлено получателю. Протоколы без установки соединения не гарантируют поступление информации получателю в том порядке, в котором она была отправлена. За установку данных в соответствующем порядке при использовании сетевых протоколов без установки соединения отвечают транспортные протоколы.

Сетевой уровень (англ. Network layer )

3-й уровень сетевой модели OSI предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор .

Протоколы сетевого уровня маршрутизируют данные от источника к получателю.

Канальный уровень (англ. Data Link layer )

Этот уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные он упаковывает во фреймы , проверяет на целостность, если нужно исправляет ошибки (посылает повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием. Спецификация IEEE 802 разделяет этот уровень на 2 подуровня - MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня.

В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI , NDIS

Физический уровень (англ. Physical layer )

Самый нижний уровень модели предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов . Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством.

Протоколы: IRDA , USB , EIA RS-232 , EIA-422 , EIA-423 , RS-449 , RS-485 , Ethernet (включая 10BASE-T , 10BASE2 ,

Основная недоработка OSI - непродуманный транспортный уровень. На нём OSI позволяет осуществлять обмен данными между приложениями (вводя понятие порта - идентификатора приложения), однако, возможность обмена простыми датаграммами (по типу UDP) в OSI не предусмотрена - транспортный уровень должен образовывать соединения, обеспечивать доставку, управлять потоком и т. п. (по типу TCP). Реальные же протоколы реализуют такую возможность.

Семейство TCP/IP

Семейство TCP/IP имеет три транспортных протокола: TCP, полностью соответствующий OSI, обеспечивающий проверку получения данных, UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмен датаграммами между приложениями, не гарантирующий получения данных и SCTP , разработанный для устранения некоторых недостатков TCP и в который добавлены некоторые новшества. (В семействе TCP/IP есть ещё около двухсот протоколов, самым известным из которых является служебный протокол ICMP , используемый для внутренних нужд обеспечения работы; остальные также не являются транспортными протоколами.)

Семейство IPX/SPX

В семействе IPX/SPX порты (называемые «сокеты» или «гнёзда») появляются в протоколе сетевого уровня IPX, обеспечивая обмен датаграммами между приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с OSI.

В качестве адреса хоста IPX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

Модель DOD

Стек протоколов TCP/IP, использующий упрощённую четырёхуровневую модель OSI.

Адресация в IPv6

Адреса назначения и источника в IPv6 имеют длину 128 бит или 16 байт. Версия 6 обобщает специальные типы адресов версии 4 в следующих типах адресов:

  • Unicast – индивидуальный адрес. Определяет отдельный узел – компьютер или порт маршрутизатора. Пакет должен быть доставлен узлу по кратчайшему маршруту.
  • Cluster – адрес кластера. Обозначает группу узлов, которые имеют общий адресный префикс (например, присоединенных к одной физической сети). Пакет должен быть маршрутизирован группе узлов по кратчайшему пути, а затем доставлен только одному из членов группы (например, ближайшему узлу).
  • Multicast – адрес набора узлов, возможно в различных физических сетях. Копии пакета должны быть доставлены каждому узлу набора, используя аппаратные возможности групповой или широковещательной доставки, если это возможно.

Как и в версии IPv4, адреса в версии IPv6 делятся на классы, в зависимости от значения нескольких старших бит адреса.

Большая часть классов зарезервирована для будущего применения. Наиболее интересным для практического использования является класс, предназначенный для провайдеров услуг Internet, названный Provider-Assigned Unicast .

Адрес этого класса имеет следующую структуру:

Каждому провайдеру услуг Internet назначается уникальный идентификатор, которым помечаются все поддерживаемые им сети. Далее провайдер назначает своим абонентам уникальные идентификаторы, и использует оба идентификатора при назначении блока адресов абонента. Абонент сам назначает уникальные идентификаторы своим подсетям и узлам этих сетей.

Абонент может использовать технику подсетей, применяемую в версии IPv4, для дальнейшего деления поля идентификатора подсети на более мелкие поля.

Описанная схема приближает схему адресации IPv6 к схемам, используемым в территориальных сетях, таких как телефонные сети или сети Х.25. Иерархия адресных полей позволит магистральным маршрутизаторам работать только со старшими частями адреса, оставляя обработку менее значимых полей маршрутизаторам абонентов.

Под поле идентификатора узла требуется выделения не менее 6 байт, для того чтобы можно было использовать в IP-адресах МАС-адреса локальных сетей непосредственно.

Для обеспечения совместимости со схемой адресации версии IPv4, в версии IPv6 имеется класс адресов, имеющих 0000 0000 в старших битах адреса. Младшие 4 байта адреса этого класса должны содержать адрес IPv4. Маршрутизаторы, поддерживающие обе версии адресов, должны обеспечивать трансляцию при передаче пакета из сети, поддерживающей адресацию IPv4, в сеть, поддерживающую адресацию IPv6, и наоборот.

Критика

Семиуровневая модель OSI критиковалась некоторыми специалистами. В частности в классической книге «UNIX. Руководство системного администратора» Эви Немет и другие пишут:

… Пока комитеты ISO спорили о своих стандартах, за их спиной менялась вся концепция организации сетей и по всему миру внедрялся протокол TCP/IP. …

И вот, когда протоколы ISO были наконец реализованы,выявился целый ряд проблем:
Эти протоколы основывались на концепциях, не имеющих в современных сетях никакого смысла.
Их спецификации были в некоторых случаях неполными.
По своим функциональным возможностям они уступали другим протоколам.
Наличие многочисленных уровней сделало эти протоколы медлительными и трудными для реализации.

… Сейчас даже самые рьяные сторонники этих протоколов признают, что OSI постепенно движется к тому, чтобы стать маленькой сноской на страницах истории компьютеров.

Начну с определения, как это принято. Модель OSI - это теоретическая идеальная модель передачи данных по сети. Это означает, что на практике вы никогда не встретите точного совпадения с этой моделью, это эталон, которого придерживаются разработчики сетевых программ и производители сетевого оборудования с целью поддержки совместимости своих продуктов. Можно сравнить это с представлениями людей об идеальном человеке - нигде не встретишь, но все знают, к чему нужно стремиться.


Сразу хочу обозначить один ньюанс - то, что передаётся по сети в пределах модели OSI, я буду называть данными, что не совсем корректно, но чтобы не путать начинающего читателя терминами, я пошёл на компромис с совестью.


Ниже представлена наиболее известная и наиболее понятная схема модели OSI. В статье будут ещё рисунки, но первый предлагаю считать основным:



Таблица состоит из двух колонок, на первоначальном этапе нас интересует лишь правая. Читать таблицу будем снизу вверх (а как иначе:)). На самом деле это не моя прихоть, а делаю так для удобства усвоения информации - от простого к сложному. Поехали!


В правой части вышеозначенной таблицы снизу вверх показн путь данных, передаваемых по сети (например, от вашего домашнего роутера до вашего комьютера). Уточнение - уровни OSI снизу вверх, то это будет путь данных на принимающей стороне, если сверху вниз, то наоборот - отправляющей. Надеюсь, пока понятно. Чтобы развеять окончательно сомнения, вот вам ещё схемка для наглядности:



Чтобы проследить путь данных и происходящие с ними изменения по уровням, достаточно представить, как они движутся вдоль синей линии на схеме, сначала продвигаясь сверху вниз по уровням OSI от первого компьютера, затем снизу вверх ко второму. Теперь более детально разберём каждый из уровней.


1) Физический (phisical) - к нему относится так называемая "среда передачи данных", т.е. провода, оптический кабель, радиоволна (в случае безпроводных соединений) и подобные. Например, если ваш компьютер подключен к интернету по кабелю, то за качество передачи данных на первом, физическом уровне, отвечают провода, контакты на конце провода, контакты разъёма сетевой карты вашего компьютера, а также внутренние электрические схемы на платах компьютера. У сетевых инженеров есть понятие "проблема с физикой" - это означает, что специалист усмотрел виновником "непередачи" данных устройство физического уровня, например где-то оборван сетевой кабель, или низкий уровень сигнала.


2) Канальный (datalink) - тут уже намного интереснее. Для понимания канального уровня нам придётся сначала усвоить понятие MAC-адреса, поскольку именно он будет главным действующим лицом в этой главе:). MAC-адрес ещё называют "физическим адресом", "аппаратным адресом". Представляет он собой набор из 12-и символов в шестнадцатиричной системе исчисления, разделённые на 6 октетов тире или двоеточием, например 08:00:27:b4:88:c1. Нужен он для однозначной идентификации сетевого устройства в сети. Теоритически, MAC-адрес является глобально уникальным, т.е. нигде в мире такого адреса быть не может и он "зашивается" в сетевое устройство на стадии производства. Однако, есть несложные способы его сменить на произвольный, да к тому же некоторые недобросовестные и малоизвестные производители не гнушаются тем, что клепают например, партию из 5000 сетевых карт с ровно одним и тем же MAC`ом. Соответственно, если как минимум два таких "брата-акробата" появятся в одной локальной сети, начнутся конфликты и проблемы.


Итак, на канальном уровне данные обрабатываются сетевым устройством, которое интересует лишь одно - наш пресловутый MAC-адрес, т.е. его интересует адресат доставки. К устройствам канального уровня относятся например, свитчи (они же коммутаторы) - они держат в своей памяти MAC-адреса сетевых устройств, с которыми у них есть непосредственная, прямая связь и при получении данных на свой принимающий порт сверяют MAC-адреса в данных с MAC-адресами, имеющимися в памяти. Если есть совпадения, то данные передаются адресату, остальные попросту игнорируются.


3) Сетевой (network) - "священный" уровень, понимание принципа функционирования которого большей частью и делает сетевого инженера таковым. Здесь уже железной рукой правит "IP-адрес", здесь он - основа основ. Благодаря ниличию IP-адреса становится возможным передача данных между компьютерами, не входящими в одну локальную сеть. Передача данных между разными локальными сетями называется маршрутизацией, а устройства, позволяющие это делать - маршрутизаторами (они же роутеры, хотя в последние годы понятие роутера сильно извратилось).


Итак, IP-адрес - если не вдаваться в детали, то это некий набор 12 цифр в десятеричной ("обычной") системе исчисления, разделённые на 4 октета, разделённых точкой, который присваиватеся сетевому устройству при подключении к сети. Тут нужно немного углубиться: например, многим известен адрес из ряда 192.168.1.23. Вполне очевидно, что тут никак не 12 цифр. Однако, если написать адрес в полном формате, всё становится на свои места - 192.168.001.023. Ещё глубже копать не будем на данном этапе, поскольку IP-адресация - это отдельная тема для рассказа и показа.


4) Транспортный уровень (transport) - как следует из названия, нужен именно для доставки и отправки данных до адресата. Проведя аналогию с нашей многострадальной почтой, то IP-адрес это собственно адрес доставки или получения, а транспортный протокол - это почтальон, который умеет читать и знает, как доставить письмо. Протоколы бывают разные, для разных целей, но смысл у них один - доставка.


Транспортный уровень последний, который по большому счёту интересует сетевых инженеров, системных администраторов. Если все 4 нижних уровня отработали как надо, но данные не дошли до пункта назначения, значит проблему нужно искать уже в программном обеспечении конкретного компьютера. Протоколы так называемых верхних уровней сильно волнуют программистов и иногда всё же системных администраторов (если он занимается обслуживанием серверов, например) . Поэтому дальше я опишу назначение этих уровней вскользь. К тому же, если посмотреть на ситуацию объективно, чаще всего на практике функции сразу нескольких верхних уровней модели OSI берёт на себя одно приложение или служба, и невозможно однозначно сказать, куда её отнести.


5) Сеансовый (session) - управляет открытием, закрытием сеанса передачи данных, проверяет права доступа, контролиует синхронизацию начала и окончания передачи. Например, если вы качаете какой-нибудь файл из интернета, то ваш браузер (или через что вы там скачиваете) отправляет запрос серверу, на котором находится файл. На этом моменте включаются сеансовые протоколы, которые и обеспечивают успешное скачивание файла, после чего по идее автоматически выключаютя, хотя есть варианты.


6) Представительский (presentation) - подготавливает данные к обработке конечным приложением. Например, если это текстовый файл, то нужно проверить кодировку (чтобы не получилось "крякозябров"), возможно распаковать из архива.... но тут как-раз явно прослеживается то, о чём я писал ранее - очень тяжело отделить, где заканчивается представительский уровень, а где начинается следующий:


7) Прикладной (Приложения (application)) - как видно из названия, уровень приложений, которые пользуются полученными данными и мы видим результат трудов всех уровней модели OSI. Например, вы читаете этот текст, потому что его открыл в верной кодировке, нужным шрифтом и т.д. ваш браузер.


И вот теперь, когда у нас есть хотя бы общее понимание технологии процесса, считаю необходимым поведать о том, биты, кадры, пакеты, блоки и данные. Если помните, в начале статьи я просил вас не обращать внимание на левую колонку в основной таблице. Итак, настало её время! Сейчас мы пробежимся снова по всем уровням модели OSI и узрим, как простые биты (нули и единицы) превращаются в данные. Идти будем так же снизу вверх, дабы не нарушать последовательности усвоения материала.


На физическом уровне мы имеем сигнал. Он может быть электрическим, оптическим, радиоволновым и т.п. Пока что это даже не биты, но сетевое устройство анализирует получаемый сигнал и преобразует его в нули е единицы. Этот процесс называется "аппаратное преобразование". Дальше, уже внутри сетевого устройства, биты объединяются в (в одном байте восемь бит), обрабатываются и передаются на канальный уровень.


На канальном уровне мы имеем так называемый кадр. Если грубо, то это пачка байт, от 64 до 1518-и в одной пачке, из которых коммутатор читатет заголовок, в котором записаны MAC-адреса получателя и отправителя, а также техническая информация. Увидев совпадения MAC-адреса в заголовке и в своей таблице коммутации (памяти), коммутатор передаёт кадры с такими совпадениями устройству назначения


На сетевом уровне ко всему этому добру ещё добавляются IP-адреса получателя и отправителя, которые извлекаются всё из того же заголовка и называется это пакет .


На транпортном уровне пакет адресуется соответствующему протоколу, код которому указан в служебной информации заголовка и отдаётся на обслуживание протоколам верхних уровней, для которых уже это и есть полноценные данные, т.е. информация в удобоваримой, пригодной для использования приложениями форме.


На схеме ниже это будет видно более наглядно:


Модель состоит из 7-ми уровней, расположенных друг над другом. Уровни взаимодействуют друг с другом (по «вертикали») посредством интерфейсов, и могут взаимодействовать с параллельным уровнем другой системы (по «горизонтали») с помощью протоколов. Каждый уровень может взаимодействовать только со своими соседями и выполнять отведённые только ему функции. Подробнее можно посмотреть на рисунке.

Прикладной (Приложений) уровень (англ. Application layer )

Верхний (7-й) уровень модели, обеспечивает взаимодействие сети и пользователя. Уровень разрешает приложениям пользователя иметь доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты. Также отвечает за передачу служебной информации, предоставляет приложениям информацию об ошибках и формирует запросы к уровню представления . Пример: POP3, FTP.

Представительский (Уровень представления) (англ. Presentation layer )

Этот уровень отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с уровня приложений, он преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

Уровень 6 (представлений) эталонной модели OSI обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой. Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена иформацией ASCII (его используют большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.

Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от приема несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных. На этом уровне существуют и другие подпрограммы, которые сжимают тексты и преобразовывают графические изображения в битовые потоки, так что они могут передаваться по сети.

Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT - формат изображений, применяемый для передачи графики QuickDraw между программами для компьютеров Macintosh и PowerPC. Другим форматом представлений является тэгированный формат файлов изображений JPEG.

Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов MPEG, используемый для сжатия и кодирования видеороликов на компакт-дисках, хранения в оцифрованном виде и передачи со скоростями до 1,5 Мбит/с, и Session layer )

5-й уровень модели отвечает за поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений. Синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при нарушении взаимодействия.

Транспортный уровень (англ. Transport layer )

4-й уровень модели предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом не важно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Блоки данных он разделяет на фрагменты, размер которых зависит от протокола, короткие объединяет в один, а длинные разбивает. Протоколы этого уровня предназначены для взаимодействия типа точка-точка. Пример: UDP.

Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных.

Некоторые протоколы сетевого уровня, называемые протоколами без установки соединения, не гарантируют, что данные доставляются по назначению в том порядке, в котором они были посланы устройством-источником. Некоторые транспортные уровни справляются с этим, собирая данные в нужной последовательности до передачи их на сеансовый уровень. Мультиплексирование (multiplexing) данных означает, что транспортный уровень способен одновременно обрабатывать несколько потоков данных (потоки могут поступать и от различных приложений) между двумя системами. Механизм управления потоком данных - это механизм, позволяющий регулировать количество данных, передаваемых от одной системы к другой. Протоколы транспортного уровня часто имеют функцию контроля доставки данных, заставляя принимающую данные систему отправлять подтверждения передающей стороне о приеме данных.

Сетевой уровень (англ. Network layer )

3-й уровень сетевой модели OSI предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор .

Протоколы сетевого уровня маршрутизируют данные от источника к получателю и могут быть разделены на два класса: протоколы с установкой соединения и без него.

Описать работу протоколов с установкой соединения можно на примере работы обычного телефона. Протоколы этого класса начинают передачу данных с вызова или установки маршрута следования пакетов от источника к получателю. После чего начинают последовательную передачу данных и затем по окончании передачи разрывают связь.

Протоколы без установки соединения, которые посылают данные, содержащие полную адресную информацию в каждом пакете, работают аналогично почтовой системе. Каждое письмо или пакет содержит адрес отправителя и получателя. Далее каждый промежуточный почтамт или сетевое устройство считывает адресную информацию и принимает решение о маршрутизации данных. Письмо или пакет данных передается от одного промежуточного устройства к другому до тех пор, пока не будет доставлено получателю. Протоколы без установки соединения не гарантируют поступление информации получателю в том порядке, в котором она была отправлена. За установку данных в соответствующем порядке при использовании сетевых протоколов без установки соединения отвечают транспортные протоколы.

Канальный уровень (англ. Data Link layer )

Этот уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные он упаковывает во фреймы , проверяет на целостность, если нужно исправляет ошибки (посылает повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием. Спецификация IEEE 802 разделяет этот уровень на 2 подуровня - MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня.

В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI,

Физический уровень (англ. Physical layer )

Самый нижний уровень модели предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов . Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством.

Источники

  • Александр Филимонов Построение мультисервисных сетей Ethernet, bhv, 2007 ISBN 978-5-9775-0007-4
  • Руководство по технологиям объединенных сетей //cisco systems , 4-е издание, Вильямс 2005 ISBN 584590787X

Wikimedia Foundation . 2010 .

Смотреть что такое "Модель OSI" в других словарях:

    Сетевая модель OSI (базовая эталонная модель взаимодействия открытых систем, англ. Open Systems Interconnection Basic Reference Model) абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов. Представляет уровневый подход к… … Википедия

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

    Open Systems Interconnection Basic Reference Model базовая эталонная модель взаимодействия открытых систем абстрактная сетевая модель для коммуникаций и разработки сетевых протоколов. Представляет уровневый подход к сети. Каждый уровень… … Словарь бизнес-терминов

    - (Модель TCP/IP) (англ. Department of Defense Министерство обороны США) модель сетевого взаимодействия, разработанная Министерством обороны США, практической реализацией которой является стек протоколов TCP/IP. Содержание 1 Уровни … Википедия

    ATP Название: Apple Talk Protocol Уровень (по модели OSI): Транспортный Семейство: TCP/IP Создан в: 2002 г. Порт/ID: 33/IP Назначение протокола: Аналог UDP с контролем плотности трафика Спецификация: RFC 4340 Основные реализац … Википедия

Понятие “открытая система” и проблемы стандартизации

Универсальный тезис о пользе стандартизации, справедливый для всех отраслей, в компьютерных сетях приобретает особое значение. Суть сети - это соединение разного оборудования, а значит, проблема совместимости является одной из наи­более острых. Без принятия всеми производителями общепринятых правил пост­роения оборудования прогресс в деле “строительства” сетей был бы невозможен. Поэтому все развитие компьютерной отрасли в конечном счете отражено в стан­дартах - любая новая технология только тогда приобретает “законный” статус, когда ее содержание закрепляется в соответствующем стандарте.

В компьютерных сетях идеологической основой стандартизации является мно­гоуровневый подход к разработке средств сетевого взаимодействия. Именно на основе этого подхода была разработана стандартная семиуровневая модель взаи­модействия открытых систем, ставшая своего рода универсальным языком сетевых специалистов.

Многоуровневый подход. Протокол. Интерфейс. Стек протоколов

Организация взаимодействия между устройствами в сети является сложной зада­чей. Как известно, для решения сложных задач используется универсальный при­ем - декомпозиция, то есть разбиение одной сложной задачи на несколько более простых задач-модулей (рис. 1.20). Процедура декомпозиции включает в себя четкое определение функций каждого модуля, решающего отдельную задачу, и интер­фейсов между ними. В результате достигается логическое упрощение задачи, а кроме того, появляется возможность модификации отдельных модулей без изменения остальной части системы.

При декомпозиции часто используют многоуровневый подход. Он заключается в следующем. Все множество модулей разбивают на уровни. Уровни образуют иерар­хию, то есть имеются вышележащие и нижележащие уровни (рис. 1.21). Множе­ство модулей, составляющих каждый уровень, сформировано таким образом, что для выполнения своих задач они обращаются с запросами только к модулям не­посредственно примыкающего нижележащего уровня. С другой стороны, результа­ты работы всех модулей, принадлежащих некоторому уровню,могут быть переданы только модулям соседнего вышележащего уровня. Такая иерархическая деком­позиция задачи предполагает четкое определение функции каждого уровня и интерфейсов между уровнями. Интерфейс определяет набор функций, которые нижележащий уровень предоставляет вышележащему. В результате иерархической декомпозиции достигается относительная независимость уровней, а значит, и воз­можность их легкой замены.

При этом модули нижне­го уровня могут, например, решать все вопросы, связанные с надежной передачей электрических сигналов между двумя соседними узлами. Модули более высокого уровня организуют транспортировку сообщений в пределах всей сети, пользуясь для этого средствами упомянутого нижележащего уровня. А на верхнем уровне работают модули, предоставляющие пользователям доступ к различным службам - файловой, печати и т. п. Конечно, это только один из множествавозможных вариантов деления общей задачи организации сетевого взаимодействия на частные под­задачи.

Многоуровневый подход к описанию и реализации функций системы применя­ется не только в отношении сетевых средств. Такая модель функционирования используется, например, в локальных файловых системах, когда поступивший за­прос на доступ к файлу последовательно обрабатывается несколькими программ­ными уровнями (рис. 1.22). Запрос вначале анализируется верхним уровнем, на котором осуществляется последовательный разбор составного символьного имени файла и определение уникального идентификатора файла. Следующий уровень находит по уникальному имени все основные характеристики файла: адрес, атри­буты доступа и т. п. Затем на более низком уровне осуществляется проверка прав доступа к этому файлу, а далее, после расчета координат области файла, содержа­щей требуемые данные, выполняется физический обмен с внешним устройством с помощью драйвера диска.

Многоуровневое представление средств сетевого взаимодействия имеет свою специфику, связанную с тем, что в процессе обмена сообщениями участвуют две машины, то есть в данном случае необходимо организовать согласованную работу двух “иерархий”. При передаче сообщений оба участника сетевого обмена должны принять множество соглашений. Например, они должны согласовать уровни и форму электрических сигналов, способ определения длины сообщений, договориться о методах контроля достоверности и т. п. Другими словами, соглашения должны быть приняты для всех уровней, начиная от самого низкого - уровня передачи битов - до самого высокого, реализующего сервис для пользователей сети.

На рис. 1.23 показана модель взаимодействия двух узлов. С каждой стороны средства взаимодействия представлены четырьмя уровнями. Процедура взаимо­действия этих двух узлов может быть описана в виде набора правил взаимодей­ствия каждой пары соответствующих уровней обеих участвующих сторон.

Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

Модули, реализующие протоколы соседних уровней и находящиеся в одном узле, также взаимодействуют друг с другом в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет набор сервисов, предо­ставляемый данным уровнем соседнему уровню.

В сущности, протокол и интер­фейс выражают одно и то же понятие, но традиционно в сетях за ними закрепили разные области действия: протоколы определяют правила взаимодействия моду­лей одного уровня в разных узлах, а интерфейсы - модулей соседних уровней в одном узле.

Средства каждого уровня должны отрабатывать, во-первых, свой собственный протокол, а во-вторых, интерфейсы с соседними уровнями.

Иерархически организованный набор протоколов, достаточный для организа­ции взаимодействия узлов в сети, называется стеком коммуникационных прото­колов.

Коммуникационные протоколы могут быть реализованы как программно, так и аппаратно. Протоколы нижних уровней часто реализуются комбинацией программ­ных и аппаратных средств, а протоколы верхних уровней - как правило, чисто программными средствами.

Программный модуль, реализующий некоторый протокол, часто для краткости также называют “протоколом”.При этом соотношение между протоколом - фор­мально определенной процедурой и протоколом - программным модулем, реали­зующим эту процедуру, аналогично соотношению между алгоритмом решения некоторой задачи и программой, решающей эту задачу.

Понятно, что один и тот же алгоритм может быть запрограммирован с разной степенью эффективности. Точно так же и протокол может иметь несколько про­граммных реализации. Именно поэтому при сравнении протоколов следует учиты­вать не только логику их работы, но и качество программных решений. Более того, на эффективность взаимодействия устройств в сети влияет качество всей совокуп­ности протоколов, составляющих стек, в частности, насколько рационально рас­пределены функции между протоколами разных уровней и насколько хорошо определены интерфейсы междуними.

Модель OSI

Из того, что протокол является соглашением, принятым двумя взаимодействую­щими объектами, в данном случае двумя работающими в сети компьютерами, со­всем не следует, что он обязательно является стандартным. Но на практике при реализации сетей стремятся использовать стандартные протоколы. Это могут быть фирменные, национальные или международные стандарты.

В начале 80-х годов ряд международных организаций по стандартизации - ISO, ITU-T и некоторые другие, разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection , OSI ) или моделью OSI. Модель OSI определя­ет различные уровни взаимодействия систем, дает им стандартные имена и указы­вает, какие функции должен выполнять каждый уровень. Модель OSI была разработана на основании большого опыта, полученного при создании компьютер­ных сетей, в основном глобальных, в 70-е годы. Полное описание этой модели занимает более 1000 страниц текста.

В модели OSI (рис. 1.25) средства взаимодействия делятся на семь уровней:

    Прикладной

    Представительный

    Сеансовый

    Транспортный

    Сетевой

    Канальный

    Физический.

Каждый уровень имеет дело с одним определенным аспектом взаимо­действия сетевых устройств.

Модель OSI описывает только системные средства взаимодействия, реализуе­мые операционной системой, системными утилитами, системными аппаратными средствами. Модель не включает средства взаимодействия приложений конечных пользователей. Свои собственные протоколы взаимодействия приложения реали­зуют, обращаясь к системным средствам. Поэтому необходимо различать уровень взаимодействия приложений и прикладной уровень.

Следует также иметь в виду, что приложение может взять на себя функции некоторых верхних уровней модели OSI. Например, некоторые СУБД имеют встро­енные средства удаленного доступа к файлам. В этом случае приложение, выпол­няя доступ к удаленным ресурсам, не использует системную файловую службу: оно обходит верхние уровни модели OSI и обращается напрямую к системным средствам, ответственным за транспортировку сообщений по сети, которые распо­лагаются на нижних уровнях модели OSI.

Итак, пусть приложение обращается с запросом к прикладному уровню, напри­мер к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Обычное сооб­щение состоит из заголовка и поля данных. Заголовок содержит служебную информацию, которую необходимо передать через сеть прикладному уровню ма­шины-адресата, чтобы сообщить ему, какую работу надо выполнить. В нашем слу­чае заголовок, очевидно, должен содержать информацию о месте нахождения файла и о типе операции, которую необходимо над ним выполнить. Поле данных сообще­ния может быть пустым или содержать какие-либо данные, например те, которые необходимо записать в удаленный файл. Но для того чтобы доставить эту ин­формацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни.

После формирования сообщения прикладной уровень направляет его вниз по стеку представительному уровню. Протокол представительного уровня на основа­нии информации, полученной из заголовка прикладного уровня, выполняет требу­емые действия и добавляет к сообщению собственную служебную информацию - заголовок представительного уровня, в котором содержатся указания для протоко­ла представительного уровня машины-адресата. Полученное в результате сообще­ние передается вниз сеансовому уровню, который в свою очередь добавляет свой заголовок, и т. д. (Некоторые реализации протоколов помещают служебную ин­формацию не только в начале сообщения в виде заголовка, но и в конце, в виде так называемого “концевика”-.) Наконец, сообщение достигает нижнего, физического уровня, который собственно и передает его по линиям связи машине-адресату. К этому моменту сообщение “обрастает” заголовками всех уровней (рис. 1.26).

Когда сообщение по сети поступает на машину-адресат, оно принимается ее физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатываетзаголовок своего уровня, выполняя соответствующие данному уровню функции, а затем удаляет этот заголовок и пе­редает сообщение вышележащему уровню.

Наряду с термином сообщение (message ) существуют и другие термины, приме­няемые сетевыми специалистами для обозначения единиц данных в процедурах обмена. В стандартах ISO для обозначения единиц данных, с которымиимеют дело протоколы разных уровней, используется общее название протокольный блок данных ( Protocol Data Unit , PDU ). Для обозначения блоков данных определенныхуровней- часто используются специальные названия: кадр (frame), пакет (packet), дейта­грамма (datagram), сегмент (segment).

В модели OSI различаются два основных типа протоколов.В протоколах с установлением соединения (connection - oriented ) перед обменом данными отправитель и получатель должны сначала установить соединение и, возможно, выбрать неко­торые параметры протокола, которые они будут использовать приобмене данны­ми.После завершения диалога они должны разорвать этосоединение. Телефон - это примервзаимодействия, основанного на установлениисоединения.

Вторая группа протоколов - протоколы без предварительного установления со­единения (connectionless ). Такие протоколы называются также дейтаграммнылш про­токолами. Отправитель просто передает сообщение, когда оно готово. Опускание письма в почтовый ящик - это пример связи без предварительного установления соединения. При взаимодействии компьютеров используются протоколы обоих типов.

Уровни модели OSI

Физический уровень

физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, например, как коаксиальный кабель, витая пара, оптоволо­конный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, передающих диск­ретную информацию, например, крутизна фронтов импульсов, уровни напряже­ния или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта.

Функции физического уровня реализуются во всех устройствах, подключен­ных к сети. Со стороны компьютера функции физического уровнявыполняютсясетевым адаптером или последовательным портом.

Примером протокола физического уровняможет служить спецификация1OBase- Tтехнологии Ethernet, которая определяет в качестве используемого кабеля неэкра­нированную витую пару категории 3 с волновым сопротивлением100 Ом, разъемRJ-45, максимальную длину физического сегмента 100 метров,манчестерский код для представления данных в кабеле, а также некоторые другие характеристики среды и электрических сигналов.

Канальный уровень

На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются (разделяются) поперемен­но несколькими парами взаимодействующих компьютеров, физическая среда пе­редачи может быть занята. Поэтому одной из задач канального уровня (Data Link layer) является проверка доступности среды передачи. Другой задачей канальногоуровня является реализация механизмов обнаружения и коррекции ошибок.Дляэтого на канальном уровне биты группируются в наборы, называемые кадрами (frames ). Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая всебайтыкадра определенным способом и добавлял контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпада­ют, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровеньможет не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок не является обя­зательной для канального уровня, поэтому в некоторых протоколах этого уровня она отсутствует, например, в Ethernet и frame relay.

В протоколах канального уровня, используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации. Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологи­ей связей, именно той топологией, для которой он был разработан. К таким типо­вым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся общая шина, кольцо и звезда, а также структуры, полученные из них с помощью мостов и коммутаторов. Примерами протоколов канального уров­ня являются протоколы Ethernet, Token Ring, FDDI, lOOVG-AnyLAN.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канально­го уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

В глобальных сетях, которые редко обладают регулярной топологией, каналь­ный уровень часто обеспечивает обмен сообщениями только между двумя соседни­ми компьютерами, соединенными индивидуальной линией связи. Примерами протоколов “точка-точка” (как часто называют такие протоколы) могут служить широко распространенные протоколы РРР и LAP-B. В таких случаях для достав­ки сообщений между конечными узлами через всю сеть используются средства сетевого уровня. Именно так организованы сети Х.25. Иногда в глобальных сетях функции канального уровня в чистом виде выделить трудно, так как в одном и том же протоколе они объединяются с функциями сетевого уровня. Примерами такого подхода могут служить протоколы технологий АТМ и frame relay.

В целом канальный уровень представляет собой весьма мощный и законченный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами и могут допускать работу поверх них непосредственно протоколов при­кладного уровня или приложений, без привлечения средств сетевого и транспорт­ного уровней. Например, существует реализация протокола управления сетью SNMP непосредственно поверх Ethernet, хотя стандартно этот протокол работает поверх сетевого протокола IP и транспортного протокола UDP. Естественно, что примене­ние такой реализации будет ограниченным - она не подходит для составных сетей разных технологий, например Ethernet и Х.25, и даже для такой сети, в которой во всех сегментах применяется Ethernet, но между сегментами существуют петлевид-ные связи. А вот в двухсегментной сети Ethernet, объединенной мостом, реализа­ция SNMP над канальным уровнем будет вполне работоспособна.

Тем не менее, для обеспечения качественной транспортировки сообщений в се­тях любых топологий и технологий функций канального уровня оказывается недо­статочно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня - сетевой и транспортный.

Сетевой уровень

Сетевой уровень (Network layer) служит для образования единой транспортной системы, объединяющей несколько сетей, причемэти сети могут использовать совершенно различные принципы передачи сообщений между конечными узлами и обладать произвольной структурой связей. Функции сетевого уровня достаточно разнообразны. Начнем их рассмотрение на примере объединения локальных сетей.

Протоколы канального уровня локальных сетей обеспечивают доставку данных между любыми узлами только в сети с соответствующей типовой топологией, на­пример топологией иерархической звезды. Это очень жесткое ограничение, кото­рое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами. Можно было бы усложнять прото­колы канального уровня для поддержания петлевидных избыточных связей, но принцип разделения обязанностей между уровнями приводит к другому решению. Чтобы с одной стороны сохранить простоту процедур передачи данных для типо­вых топологии, а с другой допустить использование произвольных топологий, вво­дится дополнительный сетевой уровень.

На сетевом уровне сам термин сеть наделяют специфическим значением. В дан­ном случае под сетью понимается совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии.

Внутри сети доставка данных обеспечивается соответствующим канальным уров­нем, а вот доставкой данных между сетями занимается сетевой уровень, который и поддерживает возможность правильного выбора маршрута передачи сообщения даже в том случае, когда структура связей между составляющими сетями имеет характер, отличный от принятого в протоколах канального уровня.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор - это устройство, которое собирает инфор­мацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно со­вершить некоторое количество транзитных передач между сетями, или хопов (от hop - прыжок), каждый раз, выбирая подходящий маршрут. Таким образом, марш­рут представляет собой последовательность маршрутизаторов, через которые про­ходит пакет.

На рис. 1.27 показаны четыре сети, связанные тремя маршрутизаторами. Меж­ду узлами А и В данной сети пролегают два маршрута: первый через маршрутиза­торы 1 и 3, а второй через маршрутизаторы 1,2 и 3.

Проблема выбора наилучшего пути называется маршрутизацией, и ее решение является одной из главных задач сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности графика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осу­ществляться и по другим критериям, например надежности передачи.

В общем случае функции сетевого уровня шире, чем функции передачи сооб­щений по связям с нестандартной структурой, которые мы сейчас рассмотрели на примере объединения нескольких локальных сетей. Сетевой уровень решает также задачи согласования разных технологии, упрощения адресации в крупных сетях и создания надежных и гибких барьеров на пути нежелательного трафика между сетями.

Сообщения сетевого уровня принято называть пакетами (packets ). При органи­зации доставки пакетов на сетевом уровне используется понятие “номер сети”. В этом случае адрес получателя состоит из старшей части - номера сети и млад­шей - номера узла в этой сети. Все узлы одной сети должны иметь одну и ту же старшую часть адреса, поэтому термину “сеть” на сетевом уровне можно дать и другое, более формальное определение: сеть - это совокупность узлов, сетевой ад­рес которых содержит один и тот же номер сети.

На сетевом уровне определяются два вида протоколов. Первый вид - сетевые протоколы (routedprotocols ) - реализуют продвижение пакетов через сеть. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией или просто протоколами маршру­тизации (routing protocols ). С помощью этих протоколов маршрутизаторы собира­ют информацию о топологии межсетевых соединений. Протоколы сетевого уровня реализуются программными модулями операционной системы, а также" программ­ными и аппаратными средствами маршрутизаторов.

На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов - Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют их сути.

Примерами протоколов сетевого уровня являются протокол межсетевого взаи­модействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека Novell.

Транспортный уровень

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие,которые предпочитают сразу иметь дело с надежнымсоедине­нием. Транспортный уровень (Transport layer) обеспечивает приложениям или верх­нимуровням стека - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между раз­личными прикладными протоколами через общий транспортный протокол, а глав­ное - способностью к обнаружению и исправлению ошибок передачи,таких как искажение, потеря и дублирование пакетов.

Выбор класса сервиса транспортного уровня определяется, с одной стороны, тем, в какой степени задача обеспечения надежности решается самими прило­жениями и протоколами более высоких, чем транспортный, уровней, а с другой стороны, этот выбор зависит от того, насколько надежной является система транспортировки данных в сети, обеспечиваемая уровнями, расположенными ниже транспортного - сетевым, канальным и физическим. Так, например, если качество каналов передачи связи очень высокое и вероятность возникновения ошибок, не обнаруженных протоколами более низких уровней, невелика, то разумно воспользоваться одним из облегченных сервисов транспортного уров­ня, не обремененных многочисленными проверками, квитированием и другими приемами повышения надежности. Если же транспортные средства нижних уровней изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного уровня, который работает, используя макси­мум средств, для обнаружения и устранения ошибок, - с помощью предвари­тельного установления логического соединения, контроля доставки сообщений по контрольным суммам и циклической нумерации пакетов, установления тайм-аутов доставки и т. п.

Как правило, все протоколы, начиная с транспортного уровня и выше, реализу­ются программными средствами конечных узлов сети - компонентами их сетевых операционных систем. В качестве примера транспортных протоколов можно при­вести протоколы TCP и UDP стека TCP/IP и протокол SPX стека Novell.

Протоколы нижних четырех уровней обобщенно называют сетевым транспор­том или транспортной подсистемой, так как они полностью решают задачу транс­портировки сообщений с заданным уровнем качества в составных сетях с произвольной топологией и различными технологиями. Остальные три верхних уровня решают задачи предоставления прикладных сервисов на основании имею­щейся транспортной подсистемы.

Сеансовый уровень

Сеансовыйуровень (Session layer) обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней конт­рольной точке, а не начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоко­лов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.

Представительный уровень

Представительный уровень (Presentation layer) имеет дело с формой представле­ния передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной си­стемы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например кодов ASCII и EBCDIC. На этом уровне может выполняться шифрование и де­шифрование данных, благодаря которому секретность обмена данными обеспечи­вается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сооб­щениями для протоколов прикладного уровня стека TCP/IP.

Прикладной уровень

Прикладной уровень (Application layer) - это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают до­ступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помо­щью протокола электронной почты. Единица данных, которой оперирует приклад­ной уровень, обычно называется сообщением (message ).

Существует очень большое разнообразие служб прикладного уровня. Приведем в качестве примера хотя бы несколько наиболее распространенных реализации файловых служб: NCP в операционной системе Novell NetWare, SMB в Microsoft Windows NT, NFS, FTP и TFTP, входящие в стек TCP/IP.

Сетезависимые и сетенезависимые уровни

Функции всех уровней модели OSI могут быть отнесены к одной из двух групп:

либо к функциям, зависящим от конкретной технической реализации сети, либо к функциям, ориентированным на работу с приложениями.

Три нижних уровня - физический, канальный и сетевой - являются сетезависимыми, то есть протоколы этих уровней тесно связаны с технической реализаци­ей сети и используемым коммуникационным оборудованием. Например, переход на оборудование FDDI означает полную смену протоколов физического и каналь­ного уровней во всех узлах сети.

Три верхних уровня - прикладной, представительный и сеансовый - ориенти­рованы на приложения и мало зависят от технических особенностей построения сети. На протоколы этих уровней не влияют какие бы то ни было изменения в топологии сети, замена оборудования или переход на другую сетевую технологию. Так, переход от Ethernet на высокоскоростную технологию lOOVG-AnyLAN не по­требует никаких изменений в программных средствах, реализующих функции при­кладного, представительного и сеансового уровней.

Транспортный уровень является промежуточным, он скрывает все детали функ­ционирования нижних уровней от верхних. Это позволяет разрабатывать прило­жения, не зависящие от технических средств непосредственной транспортировки сообщений.

На рис. 1.28 показаны уровни моделиOSI, на которых работают различные элементы сети. Компьютер с установленной на нем сетевой ОС взаимодейству­ет с другим компьютером с помощью протоколов всех семи уровней.Этовзаимодействие компьютеры осуществляют опосредовано через различные коммуникационные устройства: концентраторы, модемы, мосты, коммутаторы, маршрутизаторы, мультиплексоры. В зависимости от типа коммуникационное устройство может работать либо только на физическом уровне (повторитель), либо на физическом и канальном (мост), либо на физическом, канальном и сетевом, иногда захватывая и транспортный уровень (маршрутизатор).

На рис. 1.29 показано соответствие функций различных коммуникационных устройств уровням модели OSI.

Модель OSI представляет хотя и очень важную, но только одну из многих мо­делей коммуникаций. Эти модели и связанные с ними стеки протоколов могут отличаться количеством уровней, их функциями, форматами сообщений, службами, поддерживаемыми на верхних уровнях, и прочими параметрами.

доступ к сетевой среде. В то же время, канальный уровень управляет процессом размещения передаваемых данных в физической среде. Поэтому канальный уровень разделен на 2 подуровня ( рис. 5.1): верхний подуровень управления логическим каналом передачи данных ( Logical Link Control - LLC ), являющийся общим для всех технологий, и нижний подуровень управления доступом к среде ( Media Access Control - MAC ). Кроме того, средства канального уровня позволяют обнаруживать ошибки в передаваемых данных.


Рис. 5.1.

Взаимодействие узлов локальных сетей происходит на основе протоколов канального уровня. Передача данных в локальных сетях происходит на сравнительно короткие расстояния (внутри зданий или между близко расположенными зданиями), но с высокой скоростью (10 Мбит/с - 100 Гбит/с). Расстояние и скорость передачи данных определяется аппаратурой соответствующих стандартов.

Международным институтом инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronics Engineers - IEEE ) было разработано семейство стандартов 802.х, которое регламентирует функционирование канального и физического уровней семиуровневой модели ISO/OSI . Ряд этих протоколов являются общими для всех технологий, например стандарт 802.2, другие протоколы (например, 802.3, 802.3u, 802.5) определяют особенности технологий локальных сетей.

Подуровень LLC реализуется программными средствами . На подуровне LLC существует несколько процедур, которые позволяют устанавливать или не устанавливать связь перед передачей кадров, содержащих данные, восстанавливать или не восстанавливать кадры при их потере или обнаружении ошибок. Подуровень LLC реализует связь с протоколами сетевого уровня , обычно с протоколом IP . Связь с сетевым уровнем и определение логических процедур передачи кадров по сети реализует протокол 802.2. Протокол 802.1 дает общие определения локальных вычислительных сетей, связь с моделью ISO/OSI . Существуют также модификации этого протокола.

Подуровень МАС определяет особенности доступа к физической среде при использовании различных технологий локальных сетей. Каждой технологии МАС-уровня (каждому протоколу: 802.3, 802.3u, 802.3zи др.) соответствует несколько вариантов спецификаций (протоколов) физического уровня ( рис. 5.1). Спецификация технологии МАС-уровня - определяет среду физического уровня и основные параметры передачи данных ( скорость передачи , вид среды, узкополосная или широкополосная).

На канальном уровне передающей стороны формируется кадр , в который инкапсулируется пакет . В процессе инкапсуляции к пакету сетевого протокола, например IP , добавляется заголовок и концевик (трейлер) кадра. Таким образом, кадр любой сетевой технологии состоит из трех частей:

  • заголовка ,
  • поля данных , где размещен пакет,
  • концевика .

На приемной стороне реализуется обратный процесс декапсуляции, когда из кадра извлекается пакет.

Заголовок включает разделители кадров, поля адресов и управления. Разделители кадров позволяют определить начало кадра и обеспечить синхронизацию между передатчиком и приемником. Адреса канального уровня являются физическими адресами. При использовании Ethernet -совместимых технологий адресацию данных в локальных сетях осуществляют МАС-адреса, которые обеспечивают доставку кадра узлу назначения.

Концевик содержит поле контрольной суммы ( Frame Check Sequence - FCS ), которая вычисляется при передаче кадра с использованием циклического кода CRC . На приемной стороне контрольная сумма кадра вычисляется вновь и сравнивается с принятой. Если они совпадают, то считают, что кадр передан без ошибок. При расхождении значений FCS кадр отбрасывается и требуется его повторная передача.

При передаче по сети кадр последовательно проходит целый ряд соединений, характеризующихся разной физической средой. Например, при передаче данных с Узла А на Узел В ( рис. 5.2) данные последовательно проходят через: соединение Ethernet между Узлом А и маршрутизатором А (медь, неэкранированная витая пара ), соединение между маршрутизаторами А и В (волоконно-оптический кабель ), медный кабель последовательного соединения " точка-точка " между маршрутизатором В и беспроводной точкой доступа WAP , беспроводное соединение ( радиоканал ) между WAP и конечным Узлом В. Поэтому для каждого соединения формируется свой кадр специфического формата.


Рис. 5.2.

Пакет, подготовленный Узлом А, инкапсулируется в кадр локальной сети, который передается в маршрутизатор А. Маршрутизатор декапсулирует пакет из принятого кадра, определяет на какой выходной интерфейс передать пакет, затем формирует новый кадр для передачи по оптической среде. Маршрутизатор В декапсулирует пакет из принятого кадра, определяет на какой выходной интерфейс передать пакет, затем формирует новый кадр для передачи по медной среде последовательного соединения " точка-точка ". Беспроводная точка доступа WAP , в свою очередь , формирует свой кадр для передачи данных по радиоканалу на конечный Узел В.

При создании сетей используются различные логические топологии, которые определяют, как узлы общаются через среду, как обеспечивается управление доступом к среде. Наиболее известные логические топологии: " точка-точка " ( point-to-point ), множественного доступа (multiaccess), широковещательная ( broadcast ) и маркерная ( token passing ).

Совместное использование среды несколькими устройствами реализуется на основе двух основных методов:

  • метод конкурентного (недетерминированого) доступа (Contention-based Access), когда все узлы сети равноправны, очередность передачи данных не организована. Для передачи данный узел должен прослушать среду, если она свободна, то можно передать информацию. При этом могут возникнуть конфликты (коллизии ), когда два (или более) узла одновременно начинают передачу данных;
  • метод контролируемого (детерминированного) доступа (Controlled Access), который обеспечивает узлам очередность доступа к среде для передачи данных.

На ранних этапах создания Ethernet -сетей использовалась топология " шина ", разделяемая среда передачи данных являлась общей для всех пользователей. При этом реализовался метод множественного доступа к общей среде передачи (протокол 802.3). При этом требовался контроль несущей, наличие которой говорило о том, что какой-то узел уже передает данные по общей среде. Поэтому узел, желающий передать данные, должен был дождаться окончания передачи и при освобождении среды попытаться передать данные.

Переданную в сеть информацию может получить любой компьютер , у которого адрес сетевого адаптера NIC совпадает с МАС-адресом назначения передаваемого кадра, или все компьютеры сети при широковещательной передаче. Однако передавать информацию в любой момент времени может только один узел. Прежде чем начать передачу, узел должен убедиться, что общая шина свободна, для чего узел прослушивает среду.

При одновременной передаче данных двумя или более компьютерами возникает конфликт (коллизия ), когда данные передающих узлов накладываются друг на друга, происходит искажение и потеря информации . Поэтому требуется обработка коллизии и повторная передача участвовавших в коллизии кадров.

Подобный метод недетерминированного (ассоциативного) доступа к среде получил название множественного доступа к среде с контролем несущей и обнаружением коллизий ( Carrier Sence Multiply Access