Эквивалентное напряжение цепи. Расчет электрических цепей

06.11.2021 Разное

05.12.2014

Урок 25 (9класс)

Тема. Расчет простых электрических цепей

Решение любой задачи по расчету электрической цепи следует начинать с выбора метода, которым будут произведены вычисления. Как правило, одна и таже задача может быть решена несколькими методами. Результат в любом случае будет одинаковым, а сложность вычислений может существенно отличаться. Для корректного выбора метода расчета следует сначала определиться к какому классу относится данная электрическая цепь: к простым электрическим цепям или к сложным.

К простым относят электрические цепи, которые содержат либо один источник электрической энергии, либо несколько находящихся в одной ветви электрической цепи. Ниже изображены две схемы простых электрических цепей. Первая схема содержит один источник напряжения, в таком случае электрическая цепь однозначно относится к простым цепям. Вторая содержит уже два источника, но они находятся в одной ветви, следовательно это также простая электрическая цепь.

Расчет простых электрических цепей обычно производят в такой последовательности:

1. Сначала упрощают схему последовательно преобразовав все пассивные элементы схемы в один эквивалентный резистор. Для этого необходимо выделять участки схемы, на которых резисторы соединены последовательно или параллельно, и по известным формулам заменять их эквивалентными резисторами (сопротивлениями). Цепь постепенно упрощают и приводят к наличию в цепи одного эквивалентного резистора.

2. Далее подобную процедуру проводят с активными элементами электрической цепи (если их количество более одного источника). По аналогии с предыдущим пунктом упрощаем схему до тех пор, пока не получим в схеме один эквивалентный источник напряжения.

3. В итоге мы приводим любую простую электрическую схему к следующему виду:
Теперь есть возможность применить закон Ома - соотношение (1.22) и фактически определить значение тока протекающего через источник электрической энергии.

сочетанДомашнее задание

1. Ф.Я.Божинова, Н.М.Кирюхин, Е.А.Кирюхина. Физика, 9 класс, «Ранок», Харьков, 2009. § 13-14 (с.71-84) повторить.

2. Упражнение 13 (задача 2, 5), упражнение 14(задача 3, 5, 6) решить.

3. Переписать в рабочую тетрадь задачи 1, 3, 4 (см. следующие страницу).

ии с составлением баланса

Пи постоянного тока. Примеры решенных задач

Введение

Решение задач - неотъемлемая часть обучения физике, поскольку в процессе решения задач происходит формирование и обогащение физических понятий, развивается физическое мышление учащихся и совершенствуется их навыки применения знаний на практике.

В ходе решения задач могут быть поставлены и успешно реализованы следующие дидактические цели:

  • Выдвижение проблемы и создание проблемной ситуации;
  • Обобщение новых сведений;
  • Формирование практических умений и навыков;
  • Проверка глубины и прочности знаний;
  • Закрепление, обобщение и повторение материала;
  • Реализация принципа политехнизма;
  • Развитие творческих способностей учащихся.

Наряду с этим при решении задач у школьников воспитываются трудолюбие, пытливость ума, смекалка, самостоятельность в суждениях, интерес к учению, воля и характер, упорство в достижении поставленной цели. Для реализации перечисленных целей особенно удобно использовать нетрадиционные задачи.

Задачи по расчету электрических цепей постоянного тока

По школьной программе на рассмотрение данной темы очень мало отводится времени, поэтому учащиеся более или менее успешно овладевают методами решения задач данного типа. Но часто такие типы задач встречаются олимпиадных заданиях, но базируются они на школьном курсе.

К таким, нестандартным задачам по расчету электрических цепей постоянного тока можно отнести задачи, схемы которых:

2) симметричны;

3) состоят из сложных смешанных соединений элементов.

В общем случае всякую цепь можно рассчитать, используя законы Кирхгофа. Однако эти законы не входят в школьную программу. К тому же, правильно решить систему из большого числа уравнений со многими неизвестными под силу не многим учащимся и этот путь не является лучшим способом тратить время. Поэтому нужно уметь пользоваться методами, позволяющими быстро найти сопротивления и емкости контуров.

Метод эквивалентных схем

Метод эквивалентных схем заключается в том, что исходную схему надо представить в виде последовательных участков, на каждом из которых соединение элементов схемы либо последовательно, либо параллельно. Для такого представления схему необходимо упростить. Под упрощением схемы будем понимать соединение или разъединение каких-либо узлов схемы, удаление или добавление резисторов, конденсаторов, добиваясь того, чтобы новая схема из последовательно и параллельно соединенных элементов была эквивалентна исходной.

Эквивалентная схема – это такая схема, что при подаче одинаковых напряжений на исходную и преобразованную схемы, ток в обеих цепях будет одинаков на соответствующих участках. В этом случае все расчеты производятся с преобразованной схемой.

Чтобы начертить эквивалентную схему для цепи со сложным смешанным соединением резисторов можно воспользоваться несколькими приемами. Мы ограничимся рассмотрением в подробностях лишь одного из них – способа эквипотенциальных узлов.

Этот способ заключается в том, что в симметричных схемах отыскиваются точки с равными потенциалами. Эти узлы соединяются между собой, причем, если между этими точками был включен какой-то участок схемы, то его отбрасывают, так как из-за равенства потенциалов на концах ток по нему не течет и этот участок никак не влияет на общее сопротивление схемы.

Таким образом, замена нескольких узлов равных потенциалов приводит к более простой эквивалентной схеме. Но иногда бывает целесообразнее обратная замена одного узла

несколькими узлами с равными потенциалами, что не нарушает электрических условий в остальной части.

Рассмотрим примеры решения задач эти методом.

З а д а ч а №1

Решение:

В силу симметричности ветвей цепи точки С И Д являются эквипотенциальными. Поэтому резистор между ними мы можем исключить. Эквипотенциальные точки С и Д соединяем в один узел. Получаем очень простую эквивалентную схему:

Сопротивление которой равно:

RАВ=Rac+Rcd=r*r/r*r+r*r/r+r=r.

З а д а ч а № 2

Решение :

В точках F и F` потенциалы равны, значит сопротивление между ними можно отбросить. Эквивалентная схема выглядит так:

Сопротивления участков DNB;F`C`D`; D`, N`, B`; FCD равны между собой и равны R1:

1/R1=1/2r+1/r=3/2r

С учетом этого получается новая эквивалентная схема:

Ее сопротивление и сопротивление исходной цепи RАВ равно:

1/RАВ=1/r+R1+R1+1/r+R1+R1=6/7r

З а д а ч а № 3 .

Решение:

Точки С и Д имеют равные потенциалы. Исключением сопротивление между ними. Получаем эквивалентную схему:

Искомое сопротивление RАВ равно:

1/RАВ=1/2r+1/2r+1/r=2/r

З а д а ч а № 4.

Решение:

Как видно из схемы узлы 1,2,3 имеют равные потенциалы. Соединим их в узел 1. Узлы 4,5,6 имеют тоже равные потенциалы- соединим их в узел 2. Получим такую эквивалентную схему:

Сопротивление на участке А-1, R 1-равно сопротивлению на участке 2-В,R3 и равно:

Сопротивление на участке 1-2 равно: R2=r/6.

Теперь получается эквивалентная схема:

Общее сопротивление RАВ равно:

RАВ= R1+ R2+ R3=(5/6)*r.

З а д а ч а № 5.

Решение:

Точки C и F-эквивалентные. Соединим их в один узел. Тогда эквивалентная схема будет иметь следующий вид:

Сопротивление на участке АС:

Сопротивление на участке FN:

Сопротивление на участке DB:

Получается эквивалентная схема:

Искомое общее сопротивление равно:

Задача №6


Решение:

Заменим общий узел О тремя узлами с равными потенциалами О, О 1 , О 2 . Получим эквивалентную систему:

Сопротивление на участке ABCD:

Сопротивление на участке A`B`C`D`:

Сопротивление на участке ACВ

Получаем эквивалентную схему:

Искомое общее сопротивление цепи R AB равно:

R AB = (8/10)*r.

Задача №7.

Решение :

“Разделим” узел О на два эквипотенциальных угла О 1 и О 2 . Теперь схему можно представить, как параллельные соединение двух одинаковых цепей. Поэтому достаточно подробно рассмотреть одну из них:

Сопротивление этой схемы R 1 равно:

Тогда сопротивление всей цепи будет равно:

З а д а ч а №8

Решение:

Узлы 1 и 2 – эквипотенциальные, поэтому соединим их в один узел I. Узлы 3 и 4 также эквипотенциальные – соединимих в другой узел II. Эквивалентная схема имеет вид:

Сопротивление на участке A- I равно сопротивлению на участке B- II и равно:

Сопротивление участка I-5-6- II равно:

Cопротивление участка I- II равно.

В электротехнике принято считать, что простая цепь – это цепь, которая сводится к цепи с одним источником и одним эквивалентным сопротивлением. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. Расчет цепей постоянного тока производится с помощью закона Ома и Кирхгофа.

Пример 1

Два резистора подключены к источнику постоянного напряжения 50 В, с внутренним сопротивлением r = 0,5 Ом. Сопротивления резисторов R 1 = 20 и R 2 = 32 Ом. Определить ток в цепи и напряжения на резисторах.

Так как резисторы подключены последовательно, эквивалентное сопротивление будет равно их сумме. Зная его, воспользуемся законом Ома для полной цепи, чтобы найти ток в цепи.

Теперь зная ток в цепи, можно определить падения напряжений на каждом из резисторов.

Проверить правильность решения можно несколькими способами. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем.

Но с помощью закона Кирхгофа удобно проверять простые цепи, имеющие один контур. Более удобным способом проверки является баланс мощностей .

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками.

Мощность источника определяется как произведение ЭДС на ток, а мощность полученная приемником как произведение падения напряжения на ток.


Преимущество проверки балансом мощностей в том, что не нужно составлять сложных громоздких уравнений на основании законов Кирхгофа, достаточно знать ЭДС, напряжения и токи в цепи.

Пример 2

Общий ток цепи, содержащей два соединенных параллельно резистора R 1 =70 Ом и R 2 =90 Ом, равен 500 мА. Определить токи в каждом из резисторов.

Два последовательно соединенных резистора ничто иное, как делитель тока . Определить токи, протекающие через каждый резистор можно с помощью формулы делителя, при этом напряжение в цепи нам не нужно знать, потребуется лишь общий ток и сопротивления резисторов.

Токи в резисторах

В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Для того чтобы его найти, нужно сначала рассчитать сопротивление цепи

А затем напряжение

Зная напряжения, найдем токи, протекающие через резисторы

Как видите, токи получились теми же.

Пример 3

В электрической цепи, изображенной на схеме R 1 =50 Ом, R 2 =180 Ом, R 3 =220 Ом. Найти мощность, выделяемую на резисторе R 1 , ток через резистор R 2 , напряжение на резисторе R 3 , если известно, что напряжение на зажимах цепи 100 В.



Чтобы рассчитать мощность постоянного тока, выделяемую на резисторе R 1 , необходимо определить ток I 1 , который является общим для всей цепи. Зная напряжение на зажимах и эквивалентное сопротивление цепи, можно его найти.

Эквивалентное сопротивление и ток в цепи



Отсюда мощность, выделяемая на R 1

Электрические цепи постоянного тока и методы их расчета

1.1. Электрическая цепь и ее элементы

В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы.

Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении.

Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 1.1.

Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:

1) Источники электрической энергии (питания).

Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).

2) Потребители электрической энергии.

Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой.

3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.

Все элементы цепи охвачены одним электромагнитным процессом.

В электрической схеме на рис. 1.1 электрическая энергия от источника ЭДС E, обладающего внутренним сопротивлением r 0 , с помощью вспомогательных элементов цепи передаются через регулировочный реостат R к потребителям (нагрузке): электрическим лампочкам EL 1 и EL 2 .

1.2. Основные понятия и определения для электрической цепи

Для расчета и анализа реальная электрическая цепь представляется графически в виде расчетной электрической схемы (схемы замещения). В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают. Источник питания показывается как источник ЭДС E с внутренним сопротивлением r 0 , реальные потребители электрической энергии постоянного тока заменяются их электрическими параметрами: активными сопротивлениями R 1 , R 2 , …, R n . С помощью сопротивления R учитывают способность реального элемента цепи необратимо преобразовывать электроэнергию в другие виды, например, тепловую или лучистую.

При этих условиях схема на рис. 1.1 может быть представлена в виде расчетной электрической схемы (рис. 1.2), в которой есть источник питания с ЭДС E и внутренним сопротивлением r 0 , а потребители электрической энергии: регулировочный реостат R, электрические лампочки EL 1 и EL 2 заменены активными сопротивлениями R, R 1 и R 2 .

Источник ЭДС на электрической схеме (рис. 1.2) может быть заменен источником напряжения U, причем условное положительное направление напряжения U источника задается противоположным направлению ЭДС.

При расчете в схеме электрической цепи выделяют несколько основных элементов.

Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Схема на рис. 1.2 имеет три ветви: ветвь bma, в которую включены элементы r 0 , E, R и в которой возникает ток I; ветвь ab с элементом R 1 и током I 1 ; ветвь anb с элементом R 2 и током I 2 .

Узел электрической цепи (схемы) – место соединения трех и более ветвей. В схеме на рис. 1.2 – два узла a и b. Ветви, присоединенные к одной паре узлов, называют параллельными. Сопротивления R 1 и R 2 (рис. 1.2) находятся в параллельных ветвях.

Контур – любой замкнутый путь, проходящий по нескольким ветвям. В схеме на рис. 1.2 можно выделить три контура: I – bmab; II – anba; III – manbm, на схеме стрелкой показывают направление обхода контура.

Условные положительные направления ЭДС источников питания, токов во всех ветвях, напряжений между узлами и на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На схеме (рис. 1.2) стрелками укажем положительные направления ЭДС, напряжений и токов:

а) для ЭДС источников – произвольно, но при этом следует учитывать, что полюс (зажим источника), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу;

б) для токов в ветвях, содержащих источники ЭДС – совпадающими с направлением ЭДС; во всех других ветвях произвольно;

в) для напряжений – совпадающими с направлением тока в ветви или элемента цепи.

Все электрические цепи делятся на линейные и нелинейные.

Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, например электропечь.

Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.

Следовательно, в линейной электрической цепи все элементы – линейные, а нелинейной называют электрическую цепь, содержащую хотя бы один нелинейный элемент.

1.3. Основные законы цепей постоянного тока

Расчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи.

Закон Ома для участка цепи

Соотношение между током I, напряжением UR и сопротивлением R участка аb электрической цепи (рис. 1.3) выражается законом Ома


Рис. 1.3В этом случае закон Ома для участка цепи запишется в виде:

Закон Ома для всей цепи

Этот закон определяет зависимость между ЭДС Е источника питания с внутренним сопротивлением r 0 (рис. 1.3), током I электрической цепи и общим эквивалентным сопротивлением R Э = r 0 + R всей цепи:

.

Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии.

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

,

где m – число ветвей подключенных к узлу.

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус». Например, для узла а (см. рис. 1.2) I - I 1 - I 2 = 0.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

,

где n – число источников ЭДС в контуре;
m – число элементов с сопротивлением R к в контуре;
U к = R к I к – напряжение или падение напряжения на к-м элементе контура.

Для схемы (рис. 1.2) запишем уравнение по второму закону Кирхгофа:

Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю

.

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.

Решение любой задачи по расчету электрической цепи следует начинать с выбора метода, которым будут произведены вычисления. Как правило, одна и таже задача может быть решена несколькими методами. Результат в любом случае будет одинаковым, а сложность вычислений может существенно отличаться. Для корректного выбора метода расчета следует сначала определится к какому классу относится данная электрическая цепь: к простым электрическим цепям или к сложным.

К простым относят электрические цепи, которые содержат либо один источник электрической энергии, либо несколько находящихся в одной ветви электрической цепи. Ниже изображены две схемы простых электрических цепей. Первая схема содержит один источник напряжения, в таком случае электрическая цепь однозначно относится к простым цепям. Вторая содержит уже два источника, но они находятся в одной ветви, следовательно это также простая электрическая цепь.

Расчет простых электрических цепей обычно производят в такой последовательности:


Описанная методика применима для расчета любых простых электрических цепей, типовые примеры приведены в примере №4 и в примере №5. Иногда расчеты подобным методом могут оказатся довольно объемыми и длительными. Поэтому после нахождения решения будет нелишним провести проверку правильности ручных расчетов с применением специализированных программ или составлением баланса мощностей. Расчет простой электрической цепи в сочетании с составлением баланса мощностей приведен в примере №6.



Сложные электрические цепи

К сложным электрическим цепям относят цепи, содержащие несколько источников электрической энергии, включенных в разные ветви. Ниже на рисунке изображены примеры таких цепей.


Для сложных электрических цепей неприменима методика расчета простых электрических цепей. Упрощение схем невозможно, т.к. нельзя выделить на схеме участок цепи с последовательным или параллельным соединением однотипных элементов. Иногда, преобразование схемы с ее последующим расчетом все-таки возможно, но это скорее исключение из общего правила.

Для полного расчета сложных электрических цепей обычно используют следующее методы:

  1. Применение законов Кирхгофа (универсальный метод, сложные расчеты системы линейных уравнений).
  2. Метод контурных токов (универсальный метод, расчеты немного проще чем в п.1)
  3. Метод узловых напряжений (универсальный метод, расчеты немного проще чем в п.1)
  4. Принцип наложения (универальный метод, несложные расчеты)
  5. Метод эквивалентного источника (удобен когда необходимо произвести не полный расчет электрической цепи, а найти ток в одной из ветвей).
  6. Метод эквивалентного преобразования схемы (применим довольно редко, простые расчеты).

Особенности применения каждого метода расчета сложных электрических цепей более подробно изложены в соответсвующих подразделах.

Методы расчета цепей постоянного тока

Цепь состоит из ветвей, имеет узлов и источников тока. Приводимые далее формулы пригодны для расчета цепей, содержащих и источники напряжения и источники тока. Они справедливы и для тех частных случаев: когда в цепи имеются только источники напряжения или только источники тока.Применение законов Кирхгофа. Обычно в цепи известны все источники ЭДС и источники токов и все сопротивления. В этом случае устанавливается число неизвестных токов, равное . Для каждой ветви задаются положительным направлением тока.
Число У взаимонезависимых уравнений, составляемых по первому закону Кирхгофа, равно числу узлов без единицы. Число взаимонезависимых уравнений, составляемых по второму закону Кирхгофа, При составлении уравнений по второму закону Кирхгофа следует выбирать независимые контуры, не содержащие источников тока. Общее число уравнений, составляемых по первому и по второму законам Кирхгофа, равно числу неизвестных токов.
Примеры приведены в задачах раздела .Метод контурных токов (Максвелла). Этот метод позволяет уменьшить количество уравнений системы до числа К, определяемого формулой (0.1.10). Он основан на том, что ток в любой ветви цепи можно представить в виде алгебраической суммы контурных токов, протекающих по этой ветви. При пользовании этим методом выбирают и обозначают контурные токи (по любой ветви должен проходить хотя бы один выбранный контурный ток). Из теории известно, что общее число контурных токов . Рекомендуется выбирать контурных токов так, чтобы каждый из них проходил через один источник тока (эти контурные токи можно считать совпадающими с соответствующими токами источников тока и они обычно являются заданными условиями задачи), а оставшиеся контурных токов выбирать проходящими по ветвям, не содержащим источников тока. Для определения последних контурных токов по второму закону Кирхгофа для этих контуров составляют К уравнений в таком виде:

где - собственное сопротивление контура n (сумма сопротивлений всех ветвей, входящих в контур n); - общее сопротивление контуров n и l, причем , если направления контурных токов в общей ветви для контуров n и l совпадают, то положительно , в противном случае отрицательно ; - алгебраическая сумма ЭДС, включенных в ветви, образующие контур n; - общее сопротивление ветви контура n с контуром, содержащим источник тока .
Примеры приведены в задачах раздела .Метод узловых напряжений. Этот метод позволяет уменьшить количество уравнений системы до числа У, равного количеству узлов без одного Сущность метода заключается в том, что вначале решением системы уравнений (0.1.13) определяют потенциалы всех узлов схемы, а токи ветвей, соединяющих узлы, находят с помощью закона Ома.
При составлении уравнений по методу узловых напряжений вначале полагают равным нулю потенциал какого-либо узла (его называют базисным). Для определения потенциалов оставшихся узлов составляется следующая система уравнений:
Здесь - сумма проводимостей ветвей, присоединенных к узлу s; - сумма проводимостей ветвей, непосредственно соединяющих узел s с узлом q; - алгебраическая сумма произведений ЭДС ветвей, примыкающих к узлу s, на их проводимости; при этом со знаком « + » берутся те ЭДС, которые действуют в направлении узла s, и со знаком «-» - в направлении от узла s; - алгебраическая сумма токов источников тока, присоединенных к узлу s; при этом со знаком « + » берутся те токи, которые направлены к узлу s, а со знаком « -» - в направлении от узла s.
Методом узловых напряжений рекомендуется пользоваться в тех случаях, когда число уравнений меньше числа уравнений, составленных по методу контурных токов.
Если в схеме некоторые узлы соединяются идеальными источниками ЭДС, то число У уравнений, составляемых по методу узловых напряжений, уменьшается: где - число ветвей, содержащих только идеальные источники ЭДС.
Примеры приведены в задачах раздела .
Частный случай-двухузловая схема. Для схем, имеющих два узла (для определенности узлы а и b), узловое напряжение где - алгебраическая сумма произведений ЭДС ветвей (ЭДС считаются положительными, если они направлены к узлу а, и отрицательными, если от узла а к узлу b) на проводимости этих ветвей; - токи источников тока (положительны, если они направлены к узлу а, и отрицательны, если направлены от узла а к узлу b); - сумма проводимостей всех ветвей, соединяющих узлы а и b.

Принцип наложения. Если в электрической цепи заданными значениями являются ЭДС источников и токи источников тока, то расчет токов на основании принципа наложения состоит в следующем. Ток в любой ветви можно рассчитать как алгебраическую сумму токов, вызываемых в ней ЭДС каждого источника ЭДС отдельно и током, проходящим по этой же ветви от действия каждого источника тока. При этом надо иметь в виду, что когда ведется расчет токов, вызванных каким-либо одним источником ЭДС или тока, то остальные источники ЭДС в схеме заменяются короткозамкнутыми участками, а ветви с источниками тока остальных источников отключаются (ветви с источниками тока размыкаются).Эквивалентные преобразования схем. Во всех случаях преобразования замена одних схем другими, им эквивалентными, не должна привести к изменению токов или напряжений на участках цепи, не подвергшихся преобразованию.
Замена последовательно соединенных сопротивлений одним эквивалентным. Сопротивления соединены последовательно, если они обтекаются одним и тем же током (например, сопротивления соединены последовательно (см. рис. 0.1,3), также последовательны сопротивления ).
Эквивалентное сопротивление цепи, состоящей из n последовательно соединенных сопротивлений, равно сумме этих сопротивлений При последовательном соединении n сопротивлений напряжения на них распределяются прямо пропорционально этим сопротивлениям В частном случае двух последовательно соединенных сопротивлений где U - общее напряжение, действующее на участке цепи, содержащем два сопротивления (см. рис. 0.1.3).
Замена параллельно соединенных сопротивлений одним эквивалентным. Сопротивления соединены параллельно, если вес они присоединены к одной парс узлов, например, сопротивления (см. рис. 0.1.3).
Эквивалентное сопротивление цепи, состоящей из n параллельно соединенных сопротивлений (рис. 0.1.4),


В частном случае параллельного соединения двух сопротивлений эквивалентное сопротивление При параллельном соединении n сопротивлений (рис. 0.1.4, а) токи в них распределяются обратно пропорционально их сопротивлениям или прямо пропорционально их проводимостям Ток в каждой из них вычисляется через ток I в неразветвленной части цепи В частном случае двух параллельных ветвей (рис. 0.1.4, б) Замена смешанного соединения сопротивлений одним эквивалентным. Смешанное соединение это сочетание последовательного и параллельного соединений сопротивлений. Например, сопротивления (рис. 0.1.4, б) соединены смешанно. Их эквивалентное сопротивление Формулы преобразования треугольника сопротивлений (рис. 0.1.5, а) в эквивалентную звезду сопротивлений (рис. 0.1.5, б), и наоборот, имеют такой вид:

где G - проводимость соответствующей ветви.
Формулы (0.1.22) можно записать через сопротивления Пример приведен в разделе .

Метод эквивалентного источника (метол активного двухполюсника, или метод холостого хода и короткого замыкания). Применение метода целесообразно для определения тока в какой-либо одной ветви сложной электрической цепи. Рассмотрим два варианта: а) метод эквивалентного источника ЭДС и б) метод эквивалентного источника тока.
При методе эквивалентного источника ЭДС для нахождения тока I в произвольной ветви ab, сопротивление которой R (рис. 0.1.6, а, буква А означает активный двухполюсник), надо эту ветвь разомкнуть (рис. 0.1.6, б), а часть цепи, подключенную к этой ветви, заменить эквивалентным источником с ЭДС и внутренним сопротивлением (рис. 0.1.6, в).
ЭДС этого источника равняется напряжению на зажимах разомкнутой ветви (напряжение холостого хода): Расчет схем в режиме холостого хода (см. рис. 0.1.6, б) для определения проводится любым известным методом.
Внутреннее сопротивление эквивалентного источника ЭДС равняется входному сопротивлению пассивной цепи относительно зажимов а и b исходной схемы, из которой исключены все источники [источники ЭДС заменены короткозамкнутыми участками, а ветви с источниками тока отключены (рис. 0.1.6, г); буква П указывает на пассивный характер цепи], при разомкнутой ветви ab. Сопротивление можно вычислить непосредственно по схеме рис. 0.1.6, г.
Ток в искомой ветви схемы (рис. 0.1.6, д), имеющей сопротивление R, определяют по закону Ома.