От чего зависит максимальная мощность передаваемая трансформатором. Простейший расчет силовых трансформаторов и автотрансформаторов

09.08.2019 Мониторы

Наиболее распространены магнитопроводы следующих типов:

  1. Кольцевой ленточный (тороидальный) магнитопровод;
  2. Ш- (или ШЛ-) образный ленточный магнитопровод;
  3. П- (или О-) образный ленточный магнитопровод;
  4. Ш- (или ШЛ-) образный пластинчатый магнитопровод (устарел).

Внешний вид и основные размерности сердечников представлены на рисунке:



Расчет Ш-образные пластинчатые сердечников аналогичен расчету Ш-образного ленточного.

Трансформатор на тороидальный магнитопроводе - самый компактный и эффективный, может использоваться при мощностях от 30 до 1000 Вт, а особенно - когда важно минимальное рассеяние магнитного потока или когда требование минимального объема является первостепенным.

Имея преимущества в объеме, массе и характеристиках перед другими типами конструкций трансформаторов, тороидальные трансформаторы вместе с тем являются и наименее технологичными в изготовлении.

Расчет трансформатора

Исходными начальными данными для упрощенного расчета являются:
  1. напряжение первичной обмотки U1
  2. напряжение вторичной обмотки U2
  3. ток вторичной обмотки I2

Расчет габаритной мощности трансформатора

При выборе железа для трансформатора надо учитывать, чтобы габаритная мощность трансформатора была строго больше расчетной электрической мощности вторичных обмоток.

Мощность вторичной обмотки

Р2 = I2 * U2 = Рвых


Если обмоток много, то мощность, отдаваемая трансформатором, определяется суммой всех мощностей вторичных обмоток (Рвых).
Другими словами - габаритная мощность трансформатора - это мощность которую способно "вынести" железо.

Прежде чем перейти к формуле, сделаем несколько оговорок:

  1. Главный качественный показатель силового трансформатора для радиоаппаратуры - его надежность. Следствие надежности - это минимальный нагрев трансформатора при работе (иными словами он должен быть всегда холодным!) и минимальная просадка выходных напряжений под нагрузкой (иными словами, трансформатор должен быть "жестким");
  2. В расчетах примем КПД трансформатора 0.95;
  3. Так как речь в статье пойдет об обычном сетевом трансформаторе, примем рабочую частоту равной 50Гц;
  4. Учитывая то, что нам нужен надежный трансформатор, и учитывая то, что напряжение в сети может иметь отклонения от 220 вольт до 10%, принимаем В=1.2 Тл.;
  5. Плотность тока в обмотках принимаем 3.5 А/мм2;
  6. Коэффициент заполнения сердечника сталью принимаем 0.95;
  7. Коэффициент заполнения окна принимаем 0.45;
Исходя из принятых допущений, формула для расчета габаритной мощности у нас примет вид:

Р = 1.9 * Sc * So


Где:
Sc и So - площади поперечного сечения сердечника и окна [кв. см];

Определение количества витков в обмотках.

Прежде всего рассчитываем количество витков в первичной обмотке.
Упрощенная формула будет иметь вид:

Р = 40 * U / Sc

Где:
Sc - площадь поперечного сечения сердечника [кв. см];
U - напряжение первичной обмотки [В];

Количество витков во вторичной обмотке можно расчитать по этой же формуле, увеличив число витков примерно на 5% (КПД трансформатора), но можно поступить проще: после того как намотана первичка - наматываем поверх нее 10 витков и измеряем напряжение. Зная какое напряжение требуется получить на выходе трансформатора и зная какое напряжение приходится на 10 витков - определяем необходимое число витков.

Иногда приходится самостоятельно изготовлять силовой трансформатор для выпрямителя. В этом случае простейший расчет силовых трансформаторов мощностью до 100-200 Вт проводится следующим образом.

Зная напряжение и наибольший ток, который должна давать вторичная обмотка (U2 и I2), находим мощность вторичной цепи: При наличии нескольких вторичных обмоток мощность подсчитывают путем сложения мощностей отдельных обмоток.

Мощность передается из первичной обмотки во вторичную через магнитный поток в сердечнике. Поэтому от значения мощности Р1 зависит площадь поперечного сечения сердечника S, которая возрастает при увеличении мощности. Для сердечника из нормальной трансформаторной стали можно рассчитать S по формуле:

где s - в квадратных сантиметрах, а Р1 - в ваттах.

По значению S определяется число витков w" на один вольт. При использовании трансформаторной стали

Если приходится делать сердечник из стали худшего качества, например из жести, кровельного железа, стальной или железной проволоки (их надо предварительно отжечь, чтобы они стали мягкими), то следует увеличить S и w" на 20-30 %.

и т.д.

В режиме нагрузки может быть заметная потеря части напряжения на сопротивлении вторичных обмоток. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного.

Ток первичной обмотки

Диаметры проводов обмоток определяются по значениям токов и исходя из допустимой плотности тока, которая для трансформаторов принимается в среднем 2 А/мм2. При такой плотности тока диаметр провода без изоляции любой обмотки в миллиметрах определяется по табл. 1 или вычисляется по формуле:

Когда нет провода нужного диаметра, то можно взять несколько соединенных параллельно более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу. Площадь поперечного сечения провода определяется по табл. 1 или рассчитывается по формуле:

Для обмоток низкого напряжения, имеющих небольшое число витков толстого провода и расположенных поверх других обмоток, плотность тока можно увеличить до 2,5 и даже 3 А/мм2, так как эти обмотки имеют лучшее охлаждение. Тогда в формуле для диаметра провода постоянный коэффициент вместо 0,8 должен быть соответственно 0,7 или 0,65.

В заключение следует проверить размещение обмоток в окне сердечника. Общая площадь сечения витков каждой обмотки находится (умножением числа витков w на площадь сечения провода, равную 0,8d2из, где dиз - диаметр провода в изоляции. Его можно определить по табл. 1, в которой также указана масса провода. Площади сечения всех обмоток складываются. Чтобы учесть ориентировочно неплотность намотки, влияние каркаса изоляционных прокладок между обмотками и их слоями, нужно найденную площадь увеличить в 2-3 раза. Площадь окна сердечника не должна быть меньше значения, полученного из расчета.

Таблица 1

В качестве примера рассчитаем силовой трансформатор для выпрямителя, питающего некоторое устройство с электронными лампами. Пусть трансформатор должен иметь обмотку высокого напряжения, рассчитанную на напряжение 600 В и ток 50 мА, а также обмотку для накала ламп, имеющую U = 6,3 В и I = 3 А. Сетевое напряжение 220 В.

Определяем общую мощность вторичных обмоток:

Мощность первичной цепи

Находим площадь сечения сердечника из трансформаторной стали:

Число витков на один вольт

Ток первичной обмотки

Число витков и диаметр проводов обмоток равны:

Для первичной обмотки

Для повышающей обмотки

Для обмотки накала ламп

Предположим, что окно сердечника имеет площадь сечения 5x3 = 15 см2 или 1500 мм2, а у выбранных проводов диаметры с изоляцией следующие: d1из = 0,44 мм; d2из = 0,2 мм; d3из = 1,2 мм.

Проверим размещение обмоток в окне сердечника. Находим площади сечения обмоток:

Для первичной обмотки

Для повышающей обмотки

Для обмотки накала ламп

Общая площадь сечения обмоток составляет примерно 430 мм2.

Как видно, она в три с лишним раза меньше площади окна и, следовательно, обмотки разместятся.

Расчет автотрансформатора имеет некоторые особенности. Его сердечник надо рассчитывать не на полную вторичную мощность Р2, а только на ту ее часть, которая передается магнитным потоком и может быть названа трансформируемой мощностью Рт.

Эта мощность определяется по формулам:

- для повышающего автотрансформатора

- для понижающего автотрансформатора, причем

Если автотрансформатор имеет отводы и будет работать при различных значениях n, то в расчете надо брать значение п, наиболее отличающееся от единицы, так как в этом случае значение Рт будет наибольшее и надо, чтобы сердечник мог передать такую мощность.

Затем определяется расчетная мощность Р, которая может быть принята равной 1,15 Рт. Множитель 1,15 здесь учитывает КПД автотрансформатора, который обычно несколько выше, чем у трансформатора. Д

алее применяются формулы расчета площади сечения сердечника (по мощности Р), числа витков на вольт, диаметров проводов, указанные выше для трансформатора. При этом надо иметь в виду, что в части обмотки, являющейся общей для первичной и вторичной цепей, ток равен I1 - I2, если автотрансформатор повышающий, и I2 - I1 если он понижающий.

В быту и технике широко применяется низковольтная аппаратура. Этот факт требует использования устройств, понижающих стандартное напряжение до необходимого уровня. Нужно создать прибор, который соответствует предъявляемым нормам. Перед электриком встаёт задача, как определить мощность трансформатора. Знание элементарных физических законов помогает решить проблему.

Теория и история

Латинское слово transformare переводится на русский язык как «превращение». Трансформатор предназначен для изменения уровня входного напряжения на определённую величину. Устройство состоит из одной или нескольких обмоток на замкнутом магнитопроводе. Катушки наматываются из алюминиевого или медного провода. Сердечник набирается из пластин с повышенными ферромагнитными свойствами.

Первичная обмотка присоединяется к электрической сети переменного тока. Во вторичную обмотку включается устройство, которому требуется напряжение другой величины.

После подключения к трансформатору питания в магнитопроводе появляется замкнутый магнитный поток, который индуцирует в каждой катушке переменную электродвижущую силу. Закон Фарадея гласит, что ЭДС равна скорости изменения магнитного потока, который проходит через электромагнитный контур. Знак «минус» указывает на противоположность направлений магнитного поля и ЭДС.

Формула e = − n (∆Ф ∕ ∆ t) объединяет следующие понятия:

  • Электродвижущая сила e, исчисляемая в вольтах.
  • Количество витков n в индукторе.
  • Магнитный поток Ф, единица измерения которого называется вебером.
  • Время t, необходимое для одной фазы изменения магнитного поля.

Учитывая незначительность потерь в катушке индуктивности, ЭДС приравнивается к напряжению в обмотке. Отношение напряжений в первичной и вторичной обмотке равно отношению количества витков в двух катушках. Отсюда выводится формула трансформатора:

K ≈ U ₁ ∕ U ₂ ≈ n ₁ ∕ n ₂.

Коэффициент K всегда больше единицы. В трансформаторе изменяется только напряжение и сила тока. Умноженные друг на друга, они определяют мощность прибора, постоянную величину для конкретного устройства. Соотношение тока и напряжения в обмотках раскрывает формула:

K = n₁ ∕ n₂ = I ₂ ∕ I₁ = U₁ ∕ U₂.

Иначе говоря, во сколько раз уменьшено напряжение во вторичной обмотке в сравнении с напряжением в первичной катушке, во столько раз сила тока во вторичной катушке больше тока в первичной обмотке. Различное напряжение устанавливается количеством витков в каждом индукторе. Формула, описывающая коэффициент K, объясняет, как рассчитать трансформатор.

Трансформатор предназначен для работы в цепи переменного напряжения. Постоянный ток не индуцирует ЭДС в магнитопроводе, и электрическая энергия не передаётся в другую обмотку.

Ещё в 1822 году Фарадей озаботился мыслью, как превратить магнетизм в электрический ток. Многолетние исследования приводят к созданию цикла статей, в которых описывалось физическое явление электромагнитной индукции. Фундаментальный труд публиковался в научном журнале английского Королевского общества.

Суть опытов состояла в том, что исследователь намотал два куска медной проволоки на кольцо из железа. К одной из катушек подключался постоянный ток. Гальванометр, соединённый с контактами другой обмотки, фиксировал кратковременное появление напряжения. Чтобы восстановить индукцию, экспериментатор отключал источник питания, а затем вновь замыкал контакты на батарею.

Работу Майкла Фарадея высоко оценило научное сообщество Великобритании. В 1832 году физик удостоился престижной награды. За выдающиеся работы в области электромагнетизма учёный награждён медалью Копли.

Однако устройство, собранное Фарадеем, ещё трудно назвать трансформатором. Аппарат, который действительно преобразовывал напряжение и ток, запатентован в Париже 30 ноября 1876 года. В 80-х годах позапрошлого столетия автор изобретения и конструктор трансформатора П. Н. Яблочков жил во Франции. В это же время выдающийся русский электротехник представил миру и прообраз прожектора - «свечу Яблочкова».

Расчёт параметров прибора

Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.

Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.

Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.

Определение мощности

Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:

P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50

Округление осуществляется в бо́льшую сторону. Результат 50 Вт.

Вычисление сечения сердечника

От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.

S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49

Поперечное сечение сердечника должно иметь площадь не менее 8‚49 см².

Расчёт количества витков

Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:

n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.

Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.

Токи в обмотках

Следующий этап - нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.

В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.

Диаметр провода

Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:

d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.

Для намотки выходной обмотки потребуется провод с диаметром:

d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.

Размеры определены в миллиметрах. После округления получается, что первичная катушка наматывается проволокой толщиной 0‚5 мм, а на вторичную обмотку подойдёт провод в 1 мм.

Виды и применение трансформаторов

Области использования трансформаторов разнообразны. Устройства, повышающие напряжение, эксплуатируются в промышленных целях для транспортировки электроэнергии на значительные расстояния. Понижающие трансформаторы используются в радиоэлектронике и для подсоединения бытовой техники.

Некоторые народные умельцы, недовольные пониженным напряжением в сети, рискуют включать бытовые приборы через повышающий трансформатор. Спонтанный скачок напряжения может привести к тому, что яркий комнатный свет заменит очень яркое пламя пожара.

По задачам, которые решает трансформатор, приборы делятся на основные виды:

Любое изменение параметров электричества в цепи связано с трансформатором. Специалисту, проектирующему электронные схемы, необходимо знание природы электромагнетизма. Технология расчёта обмоток трансформатора основана на базовых формулах физики.

Электротехнику, занятому рутинным делом намотки трансформатора, стоит помянуть добрым словом дядюшку Фарадея, который открыл замечательный закон электромагнитной индукции. Глядя на готовое устройство, следует также вспомнить великого соотечественника, русского изобретателя Павла Николаевича Яблочкова.

Трансформаторы используются в блоках питания различной аппаратуры для преобразования переменного напряжения. Блоки питания, собранные по трансформаторной схеме, постепенно снижают распространенность благодаря тому, что современная схемотехника позволяет понизить напряжение без самого громоздкого и тяжелого элемента системы питания. Трансформаторы для блока питания актуальны в тех случаях, когда габариты и масса не критичны, а требования к безопасности велики. Обмотки (кроме автотрансформатора) осуществляют гальваническое разделение и изоляцию цепей первичного (или сетевого) и вторичного (выходного) напряжений.

Jpg?x15027" alt="Трансформатор" width="600" height="543">

Трансформатор

Принцип действия и разновидности трансформаторов

Работа устройства основана на всем известном явлении электромагнитной индукции. Переменный ток, проходящий через провод первичной обмотки, наводит переменный магнитный поток в стальном сердечнике, а он, в свою очередь, вызывает появление напряжения индукции в проводе вторичных обмоток.

Совершенствование трансформатора с момента его изобретения сводится к выбору материала и конструкции сердечника (магнитопровода).

Типы сердечников

Металл для магнитопровода должен иметь определенные технические характеристики, поэтому были разработаны специальные сплавы на основе железа и особая технология производства.

Для изготовления трансформаторов наибольшее распространение получили следующие типы магнитопроводов:

  • броневые;
  • стержневые;
  • кольцевые.

Силовой трансформатор низкой частоты, как понижающий, так и повышающий, имеет сердечник из отдельных пластин трансформаторного железа. Такая конструкция выбрана из соображения минимизации потерь из-за образования вихревых токов в сердечнике, которые нагревают его и снижают КПД трансформатора.

Броневые сердечники наиболее часто выполняются из Ш-образных пластин. Стержневые магнитопроводы могут изготавливаться из П-образных, Г-образных или прямых пластин.

Кольцевые магнитопроводы выполняются из тонкой ленты трансформаторной стали, намотанной на оправку и скрепленной клеящим составом.

Из ленты также могут выполняться броневые и стержневые сердечники, причем такая технология наиболее часто встречается у маломощных устройств.

Jpg?x15027" alt="Виды магнитопроводов" width="600" height="461">

Виды магнитопроводов

Ниже приведена методика расчета трансформатора, где показано:

  • как рассчитать мощность трансформатора;
  • как выбрать сердечник;
  • как определить количество витков и сечение (диаметр) проводов обмоток;
  • как собрать и проверить готовую конструкцию.

Исходные данные, необходимые для расчета

Расчет сетевого трансформатора начинается с определения его полной мощности. Поэтому, перед тем, как рассчитать трансформатор, нужно определиться с мощностью потребления всех, без исключения, вторичных обмоток. Согласно мощности выбирается сечение сердечника. Опять же, от мощности определенным образом зависит и КПД. Чем больше полная мощность, тем выше КПД. Принято в расчетах ориентироваться на такие значения:

  • до 50 Вт – КПД 0.6;
  • от 50 Вт до 100 Вт – КПД 0.7;
  • от 100 Вт до 150 Вт – КПД 0.8;
  • выше 150 Вт – КПД 0.85.

Количество витков сетевой и вторичной обмоток рассчитывается уже после выбора магнитопровода. Диаметр или поперечное сечение проводов каждой обмотки определяется на основании протекающих через них токов.

Выбор магнитопровода сердечника

Минимальное сечение сердечника в см2 определяется из габаритной мощности. Габаритная мощность трансформатора – это суммарная полная мощность всех вторичных обмоток с учетом КПД.

Итак, мощность трансформатора можно определить, это полная суммарная мощность всех вторичных обмоток:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/formula-1.jpg?x15027" alt="" width="300" height="49">

Умножая полученное значение на КПД, завершаем расчет габаритной мощности.

Определение площади стержня сердечника производится после того, как произведен расчет габаритной мощности трансформатора из такого выражения:

Зная площадь сечения центрального стержня магнитопровода, можно подбирать нужный из готовых вариантов.

Важно! Сердечник, на котором будут располагаться обмотки, должен иметь, по возможности, сечение, как можно более близкое к квадрату. Площадь сечения должна быть равной или несколько больше расчетного значения.

Качество работы и технологичность сборки также зависит от формы магнитопровода. Наилучшим качеством обладают конструкции, выполненные на кольцевом магнитопроводе (тороидальные). Их отличает максимальный КПД для заданной мощности, наименьший ток холостого хода и минимальный вес. Основная сложность заключается в выполнении обмоток, которые в домашних условиях приходится мотать исключительно вручную при помощи челнока.

Проще всего делать трансформаторы на разрезных ленточных магнитопроводах типа ШЛ (Ш-образный) или ПЛ (П-образный). Как пример, можно привести мощный трансформатор блока питания старого цветного телевизора.

Jpg?x15027" alt="Трансформатор телевизора УЛПЦТИ" width="600" height="538">

Трансформатор телевизора УЛПЦТИ

Трансформаторы старого времени выпуска или современные дешевые выполнены с использованием отдельных Ш,- или П-образных пластин. Технологичность выполнения обмоток у них такая же, как у ленточных разрезных, но трудность состоит в сборке магнитопровода. Такие устройства практически всегда будут иметь повышенный ток холостого хода, особенно, если используемое железо низкого качества.

Расчет количества витков и диаметра проводов

Расчет трансформатора начинается с определения необходимого количества витков обмоток на 1 В напряжения. Найденное значение будет одинаковым для любых обмоток. Для собственных целей можно применить упрощенный метод расчета. Посчитать, сколько надо витков на 1 В можно, подставив площадь сечения стержня магнитопровода в см2 в формулу:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/formula-2.jpg?x15027" alt="" width="100" height="79">

где k – коэффициент, зависящий от формы магнитопровода и его материала.

На практике с достаточной точностью приняты следующие значения коэффициента:

Большие значения связаны с невозможностью плотного заполнения сердечника отдельными металлическими пластинами. Как видно, наименьшее количество витков будет иметь тороидальный трансформатор, отсюда и выигрыш в массе изделия.

Зная, сколько витков нужно на 1 В, можно легко узнать количество витков каждой из обмоток:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/formula-3.jpg?x15027" alt="" width="150" height="44">где U – значение напряжения холостого хода на обмотке.

У маломощных трансформаторов (до 50 Вт) нужно получившееся количество витков первичной обмотки увеличить на 5%. Таким образом, компенсируется падение напряжения, которое возникает на обмотке под нагрузкой (в понижающих трансформаторах первичная обмотка всегда имеет большее количество витков, чем вторичные).

Диаметр провода рассчитываем с учетом минимизации нагрева вследствие протекания тока. Ориентировочным значением считается плотность тока в обмотках 3-7 А на каждый мм2 провода. На практике расчет диаметра проводов обмоток можно упростить, используя простые формулы, что дает допустимые значения в большинстве случаев:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/formula-4.jpg?x15027" alt="Трансформатор телевизора УЛПЦТИ" width="150" height="33">

Меньшее значение применяется для расчета диаметров проводов вторичных обмоток, поскольку у понижающего трансформатора они располагаются ближе к поверхности и имеют лучшее охлаждение.

Зная расчетное значение диаметра обмоточных проводов, нужно выбрать из имеющихся такие, диаметр которых наиболее близок к расчетному, но не менее.

После определения количества витков во всех обмотках, расчет обмоток трансформатора не лишним будет дополнить проверкой, поместятся ли обмотки в окно магнитопровода. Для этого подсчитайте коэффициент заполнения окна:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/formula-5.jpg?x15027" alt="" width="200" height="47">

Для тороидальных сердечников c внутренним диаметром D формула имеет вид:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/formula-6.jpg?x15027" alt="" width="300" height="63">

Для Ш,- и П-образных магнитопроводов коэффициент не должен превышать 0.3. Если это значение больше, то разместить обмотку не получится.

Jpg?.jpg 489w, https://elquanta.ru/wp-content/uploads/2017/10/4-toroidalnyj-transformator.jpg 600w" sizes="(max-width: 489px) 100vw, 489px">

Тороидальный трансформатор

Выходом из ситуации будет выбор сердечника с большим сечением, но это если позволяют габариты конструкции. В крайнем случае, можно уменьшить количество витков одновременно во всех обмотках, но не более чем на 5%. Несколько возрастет ток холостого хода, и не избежать повышенного нагрева обмоток, но в большинстве случаев это не критично. Также можно немного уменьшить провода по сечению, увеличив тем самым плотность тока в обмотках.

Важно! Увлекаться увеличением плотности тока нельзя, поскольку это вызовет сильный рост нагрева и, как следствие, нарушение изоляции и перегорание обмоток.

Изготовление обмоток

Намотка провода обмотки трансформатора производится на каркас, изготовленный из плотного картона или текстолита, за исключением тороидальных сердечников, в которых обмотка ведется непосредственно на магнитопровод, который перед намоткой нужно тщательно заизолировать. Можно использовать готовый пластиковый, который продается вместе с магнитопроводом.

Jpg?x15027" alt="Сборный каркас обмотки" width="600" height="482">

Сборный каркас обмотки

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/6-plastikovyj-karkas-600x427.jpg?x15027" alt="Пластиковый каркас" width="600" height="427">

Пластиковый каркас

Между отдельными обмотками нужно прокладывать межобмоточную изоляцию. Важнее всего – хорошо заизолировать вторичную обмотку от первичной. В качестве изоляции можно использовать трансформаторную бумагу, лакоткань, фторопластовую ленту. Ленту из фторопласта нужно использовать с осторожностью. Несмотря на высочайшие электроизоляционные качества, тонкая лента фторопласта под действием натяжения или давления (особенно межу первичной и вторичной обмотками) способна «потечь» и обнажить отдельные витки обмотки. Особенно этим страдает лента для уплотнения сантехнических изделий.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2017/10/6-ftoroplastovaja-lenta-1-150x150.jpg 150w" sizes="(max-width: 600px) 100vw, 600px">

Фторопластовая лента

В отдельных, ответственных случаях, в процессе намотки можно пропитать первичную обмотку (если трансформатор понижающий) изоляционным лаком. Пропитка готового устройства в домашних условиях эффекта почти не даст, поскольку лак не попадет в глубину обмотки. Для этих целей на производствах существует аппаратура вакуумной пропитки.

Выводы обмоток делаются отрезками гибкого изолированного провода для проводов, диаметр которых менее 0.5 мм. Более толстый провод можно выводить напрямую. Места пайки гибкого и обмоточного проводов нужно дополнительно проложить несколькими слоями изоляции.

Обратите внимание! При пайке выводов нельзя оставлять на месте спайки острые концы проводов или застывшего припоя. Такие места нужно аккуратно обрезать бокорезами.

Сборка трансформатора

При сборке нужно учитывать следующие нюансы:

  1. Пакет сердечника должен собираться плотно, без щелей и зазоров;
  2. Отдельные части ленточного магнитопровода подогнаны друг к другу, поэтому менять местами их нельзя. Требуется аккуратность, поскольку при отслоении отдельных лент их невозможно будет установить на место;
  3. Деформированные пластины сборного сердечника нельзя выравнивать молотком – трансформаторная сталь теряет свои свойства при механических нагрузках;
  4. Пакет пластин сборного сердечника должен быть собран максимально плотно, поскольку при работе рыхлого сердечника будет издаваться сильный гул, увеличивающийся при нагрузке;
  5. Весь пакет сердечника любого типа нужно плотно стянуть по той же причине.

Обратите внимание! Качество сборки будет лучше, если торцы ленточного разрезного сердечника перед сборкой покрыть лаком. Также готовый собранный сердечник перед окончательной утяжкой можно покрыть лаком.

При этом можно добиться значительного понижения постороннего звука.

Проверка готового трансформатора заключается в измерении тока холостого хода и напряжения обмоток под номинальной нагрузкой и на нагрев при максимальной нагрузке. Все измерения рассчитанного и собранного трансформатора нужно проводить только после полной сборки, поскольку с незатянутым сердечником ток холостого хода может быть больше обычного в несколько раз.

Ток холостого хода сильно различается в трансформаторах различных типов и составляет от 10 мА для тороидальных трансформаторов, до 200 мА – с Ш-образным сердечником из низкокачественного трансформаторного железа.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2017/10/7-izmerenie-holostogo-toka-210x140.jpg 210w" sizes="(max-width: 600px) 100vw, 600px">

Измерение холостого тока

Приведен расчет трансформатора, который при наличии навыков можно произвести за пару десятков минут. Для тех, кто сомневается в своих силах или боится сделать ошибку, расчет силового трансформатора можно выполнить, используя калькулятор для расчета, который может работать как в off-line, так и в on-line режимах. Согласно данной методике возможна перемотка перегоревшего трансформатора. Для неисправного трансформатора расчет также ведется от имеющегося сердечника и значения напряжения вторичных обмоток.

Видео

В данной статье вы узнаете что такое трансформатор. Покажем конструкцию силового трансформатора.

Что такое трансформатор

Трансформатор — устройство, в котором переменный ток одного напряжения преобразовывается в переменный ток другого напряжения. При этом преобразовании напряжений одновременно всегда происходит также преобразование силы тока: если трансформатор повышает напряжение, то сила тока при этом уменьшается.

Трансформатор представляет собой стальной сердечник с двумя катушками, имеющими обмотки. Одна из обмоток называется первичной, другая – вторичной. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС во вторичной обмотке. Сила тока во вторичной обмотке, не присоединенной к цепи, потребляющей энергию, равна нулю. Если цепь подсоединена и происходит потребление электроэнергии, то в соответствии с законом сохранения энергии сила тока в первичной обмотке пропорционально возрастает. Таким образом, и происходит преобразование и распределение электрической энергии.

Схематическое устройство трансформатора показано на рисунке.

На общем сердечнике (обычно из трансформаторной стали) расположены две обмотки. По одной из обмоток I, называемой первичной, под действием переменного напряжения U 1 проходит переменный ток I 1 . Этот ток создает в сердечнике переменный магнитный поток, изменяющийся по своей величине и направлению в соответствии с изменениями тока I 1 . Переменный магнитный поток пронизывает витки второй обмотки II, называемой вторичной обмоткой, и индуктирует в каждом из ее витков определенную переменную ЭДС. Так как все витки обмотки II соединены последовательно, то отдельные ЭДС каждого витка складываются, а на концах вторичной обмотки получается суммарная ЭДС, также переменная по величине и направлению.

Обычно трансформаторы конструируются так, что падение напряжения во вторичной обмотке невелико (порядка 2 — 5%); поэтому с известным допущением можно принять, что на концах вторичной обмотки напряжение U 2 равно её ЭДС. Это напряжение U 2 будет во столько раз больше (или меньше) напряжения первичной обмотки U 1 n 2 n 1 первичной.

Ток во вторичной обмотке I 2 наоборот, будет во столько раз меньше (или больше) тока первичной обмотки I 1 , во сколько раз число витков n 2 вторичной обмотки больше или меньше) числа витков n 1 первичной.

Отношение числа витков питаемой от сети обмотки к числу витков другой обмотки или одного напряжения (первичного) к другому (вторичному) называется коэффициентом трансформации и обозначается буквой К :

Часто коэффициент трансформации выражается соотношением двух чисел, например 1:55, показывающим, что число витков первичной обмотки в 55 раз меньше числа витков вторичной.

Конструкция силового трансформатора

Сердечники силовых трансформаторов бывают: Ш-образный (рис) у которого магнитный поток разветвляется на две ветви, и П-образный (рис) с неразветвленным магнитным потоком. Первый вид сердечников, называемый броневым, применяется более часто, чем второй — стержневой. Ещё бывает третий тип силового трансформатора – спиральный (или ленточный), который является разновидностью первых двух.

Для уменьшения потерь в сердечнике, последний делается не сплошным, а из отдельных тонких листов стали, оклеенных бумагой или покрытых изолирующим лаком. Толщина пластин составляет от 0,25 до 0,5 мм, чаще всего 0,3 — 0,35 мм.

В настоящее время пакеты пластин для трансформаторов малой и средней мощности (до 200 Ватт) собираются в основном из двух типов пластин (рис): Ш-образных и прямых (накладок). Применение прямых пластин (накладок) дает возможность делать у некоторых трансформаторов (например, у выходных) воздушный зазор в сердечнике.

Сборка пластин производится одним из двух способов. При одном способе — встык — собираются отдельно две части сердечника, которые затем прикладываются друг к другу (рис) и стягиваются болтами и накладками. При другом способе — вперекрышку — пластины накладываются друг на друга в порядке, указанном на рисунке.

Сердечник трансформатора должен быть крепко стянут, в противном случае при работе трансформатора сердечник будет гудеть. Хотя гудение и не оказывает существенного влияния на работу трансформатора, но оно неприятно действует на слух. Обмотки трансформатора располагаются на каркасе, который одевается на сердечник. Каркас, как правило изготавливается из картона, или прессшпана.

При использовании Ш-образного сердечника все обмотки трансформатора размещаются на одном каркасе, надеваемом на средний стержень сердечника. При П-образном сердечнике обмотка располагается или на одном или на двух каркасах, надеваемых соответственно на один или оба стержня сердечника.

В трансформаторах наиболее часто применяется цилиндрическая намотка: на каркас сперва наматывается первичная обмотка, на которую для изоляции укладывается несколько слоев бумаги, а затем поверх этой изоляции наматывается вторичная обмотка. Если таких вторичных обмоток будет несколько, то между каждыми двумя обмотками прокладывается изоляция из 2 — 3 слоев бумаги. При большом числе витков в обмотке, например при повышающей намотке, через каждые 2 — 3 слоя следует обязательно прокладывать бумажные изолирующие прокладки.

Расчёт силового трансформатора

Точный расчет трансформатора довольно сложен, но радиолюбитель может сконструировать силовой трансформатор, пользуясь для расчета упрощенными формулами, которые приводятся ниже.

Для расчета предварительно необходимо определить, исходя из заданных условий величины напряжений и сил токов для каждой из обмоток. Сначала подсчитывается мощность каждой из вторичных (повышающих, понижающих) обмоток:

где Р 2 , Р 3 , Р 4 — мощности (Вт), отдаваемые обмотками трансформатора;
I 2 , I 3 , I 4 — силы токов (А);
U 2 , U 3 , U 4 — напряжения (В) этих обмоток.
Для определения общей мощности Р трансформатора все мощности, полученные для отдельных обмоток, складываются и общая сумма умножается на коэффициент 1,25, учитывающий потери в трансформаторе:

где Р — общая мощность (Вт), потребляемая всем трансформатором.

По мощности Р подсчитывается сечение сердечника (в кв.см):

После этого переходят к определению числа витков каждой из обмоток. Для первичной сетевой обмотки число витков, учитывая потери напряжения, будет равно:

Для остальных обмоток с учетом потерь напряжения числа витков равны:

Диаметр провода любой обмотки трансформатора можно определить по формуле:

где I - сила тока (A), проходящего через данную обмотку; d - диаметр провода (по меди) в мм.

Сила тока, проходящего через первичную (сетевую) обмотку, определяется из обшей мощности трансформатора Р :

Остается еще выбрать типоразмер пластин для сердечника. Для этого необходимо подсчитать площадь, которую занимает вся обмотка в окне сердечника трансформатора:

где S м — площадь (в кв. мм), занимаемая всеми обмотками в окне;
d 1 , d 2 , d 3 и d 4 — диаметры проводов обмоток (в мм);
n 1 , n 2 , n 3 и n 4 - числа витков этих обмоток.
Этой формулой учитывается толщина изоляции проводов, неравномерность намотки, а также место, занимаемое каркасом в окне сердечника.

По полученной величине S м выбирается типоразмер пластины с таким расчетом, чтобы обмотка свободно разместилась в окне выбранной пластины. Выбирать пластины с окном, значительно большим, чем это необходимо, не следует, так как при этом ухудшаются общие качества трансформатора.

Наконец определяют толщину набора сердечника — величину b , которую подсчитывают по формуле:

Здесь размер a – ширина среднего лепестка пластины (рис.3) и b в миллиметрах; Q — в кв. см.

Расчёт простой, самым сложным является поиск сердечника с необходимым типоразмером.

Быстрая переделка силового трансформатора лампового телевизора

Нынче полупроводниковые телевизоры с их импульсными блоками питания навсегда вытеснили тяжёлые и громоздкие ламповые телевизоры, однако у многих «Плюшкиных» они ещё в большом количестве пылятся в гаражах и сараях. Поэтому, нет никакой сложности, найти от такого телевизора силовой трансформатор. Переделка такого трансформатора под ваши потребности элементарна.

Мощности таких трансформаторов бывают от 80 до 350 Ватт, всё определялось телевизором. В чёрно-белом телевизоре трансформатор – слабее, а в цветном – мощнее. Конструкция трансформатора – двухкаркасная на О-образном спиральном сердечнике. Сердечник трансформатора состоит из двух подковообразных половин, входящих внутрь катушек трансформатора. На обеих катушках намотаны одинаковые обмотки, с одинаковым количеством витков. Как правило, на катушках имеется табличка, на которой расписаны сетевые и все выходные обмотки с номерами выводов, напряжений и токов.

Вы можете использовать уже имеющиеся обмотки, с подходящим для Вас напряжением, а можете смотать вторичные обмотки и намотать новые, тем самым использовать полную мощность трансформатора. Удобство заключается в лёгкой разборке-сборке, расчётах новых обмоток. На катушках сначала намотаны первичные обмотки, потом стоит экранирующая фольга, а потом намотаны вторичные обмотки. Поэтому, при сматывании не нужных обмоток, Вы не допустите ошибку, смотав первичную обмотку.

Разбирается трансформатор обыкновенным гаечным ключом на 10 или на 12. Для этого необходимо открутить всего две гайки стягивающие скобы трансформатора, после чего, половины сердечника свободно вынимаются из катушек.

Перед разборкой катушек, внимательно изучите табличку, найдите в ней обмотку на наименьшее напряжение, а при сматывании этой обмотки посчитайте количество витков. Поделив подсчитанное количество витков на напряжение, значащееся в табличке, Вы узнаете количество витков вторичной обмотки трансформатора, приходящееся на один вольт. Умножив это число на то напряжение, которое хотите получить на выходе трансформатора, Вы узнаете количество витков, которое необходимо будет намотать.

Мотать можете другим проводом, а можете и тем, который смотали с трансформатора. Мотать надо виток к витку. Для получения достаточного выходного тока, можно мотать обмотки проводом, сложенным вдвое, втрое и даже вчетверо, а можете намотать несколько обмоток с одинаковым количеством витков, а потом, после сборки трансформатора, спаять их параллельно.

Слои обмоток в трансформаторе проложены трансформаторной бумагой, пропитанной парафином, при сматывании витков, снимайте её аккуратно, не рвите. При намотке используйте эту бумагу снова.

Трансформаторы от ламповых телевизоров – это «сила», главное ума много не надо. С их использованием получаются отличные зарядные устройства, мощные блоки питания, как в составе конструируемых аппаратов, так и используемые самостоятельно.