Программируем Arduino на чистом Си. Arduino — основы программирования

08.09.2019 Мониторы

Первое, с чего следует начать работу по освоению Arduino – это приобрести отладочную плату (хорошо бы сразу приобрести монтажную плату и т.п.). Уже описывал, какие виды плат Arduino представлены на рынке. Кто еще не читал статью советую ознакомиться. Для изучения основ выбираем стандартную плату Arduino Uno (оригинал или хорошую китайскую копию — решать вам). При первом подключении оригинальной платы проблем возникнуть не должно, а вот с «китайцем» нужно будет немного поковыряться (не переживайте – всё покажу и расскажу).

Подключаем Arduino к компьютеру USB кабелем. На плате должен засветиться светодиод «ON «. В диспетчере устройств появится новое устройство «Неизвестное устройство «. Необходимо установить драйвер. Тут внесу небольшую неясность (кот отвлек – я не запомнил, какой из драйверов решил «проблему неизвестного устройства ».

Предварительно скачал и распаковал программную средy Arduino (arduino-1.6.6-windows ). Затем скачал этот . Он самораспаковывающейся. Запустил файл CH341SER.EXE . Выбрал установку (INSTALL) . После установки появилось сообщение, нажал «Ок » (прочитать не успел).

После перешёл в свойства все еще «неизвестного устройства» и выбрал кнопку «Update Driver». Выбрал вариант «Установка из указанного места» – указал папку с разархивированной программной средой Arduino. И о чудо – всё удачно заработало…

Запускаем программу Arduino (в моём случае 1.6.6) и разрешаем доступ.

Все проекты (программы) для Arduino состоят из двух частей: void setup и void loop . void setup выполняется всего один раз, а void loop выполняется снова и снова.

Прежде чем продолжим, необходимо выполнить две обязательные операции:

— указать в программной среде Arduino, какую плату вы используете. Tool->board-> Arduino Uno. Если отметка уже стоит на нужной вам плате – это хорошо, если нет – ставим отметку.

— указать в программной среде какой последовательный порт вы используете для связи с платой. Tool->port-> COM3. Если отметка уже стоит на порте – это хорошо, если нет – ставим отметку. Если у вас в разделе порты представлен больше, чем один порт, как же узнать, какой именно используется для соединения с платой? Берём плату и отсоединяем от неё провод. Снова заходим в порты и смотрим, какой из них исчез. В моём случае вкладка «порты» вообще стала не активной.

Снова подключаем провод USB.

Для первой программы никаких дополнительных модулей не нужно. Будем включать светодиод, который уже смонтирован на плате (на 13 выводе микроконтроллера).

Для начала сконфигурим 13 вывод (на вход или на выход).

Для этого вводим в блок «void setup » команду pinMode , в скобках указываем параметры (13, OUTPUT ) (Какой вывод задействован, Режим работы ). Программная среда выделяет слова/команды соответствующим цветом шрифта.

Переходим в блок «void loop » и вводим команду digitalWrite с параметрами (13, HIGH) .


Первая программа готова, теперь осталось загрузить её в микроконтроллер. Нажимаем кнопку UPLOAD.

Светодиод засветился. Но не стоит так скептически относиться к простоте первой программы. Вы только, что освоили первую управляющую команду. Вместо светодиода ведь можно подключить любую нагрузку (будь-то освещение в комнате или сервопривод, перекрывающий подачу воды), но об этом всём поговорим позже…

Светодиод мы включили, он немного посветил, пора его выключать. Для этого видоизменим написанную нами программу. Вместо «HIGH » напишем «LOW ».


Нажимаем кнопку UPLOAD. Светодиод погас.

Мы уже познакомились с понятием « », пора им воспользоваться. Дальнейшие программы будут становится все объёмнее и сложнее, а работы по их изменению будут занимать все больше и больше времени, если мы оставим подобный стиль написания кода.

Смотрим на программу (снова включим светодиод). Зададим номер вывода микроконтроллера не числом 13 , а переменной, которой будет присвоено значение соответствующего вывода (в нашем случае 13). В дальнейшем будет очень удобно изменять значения переменных в начале программы, вместо того, чтобы шарится по коду в поисках тех мест, где необходимо произвести замены значений.

Создаём глобальную переменную int LED_pin = 13; (тип переменной, имя переменной, присваиваемое ей значение ).


Нажимаем кнопку UPLOAD. Светодиод светится. Все работает отлично.

В этом уроке, кроме включения/выключения светодиода, мы еще научимся мигать им.

Для этого вводим вторую команду «digitalWrite » с параметрами (LED_pin, LOW ).


Нажимаем кнопку UPLOAD. И что мы видим? Светодиод светится «в пол наказа». Причина кроется в том, что время переключения двух состояний (HIGH и LOW ) ничтожно мало и человеческий глаз не может уловить эти переключения. Необходимо увеличить время нахождения светодиода в одном из состояний. Для этого пишем команду delay с параметром (1000 ) . Задержка в миллисекундах: 1000 миллисекунд – 1 секунда. Алгоритм программы следующий: включили светодиод – ждём 1 секунду, выключили светодиод – ждём 1 секунду и т.д.


Нажимаем кнопку UPLOAD. Светодиод начал мерцать. Все работает.

Доработаем программу создав переменную, которой будет присваиваться значение, отвечающее за длительность задержки.


Нажимаем кнопку UPLOAD. Светодиод мерцает, как и мерцал.

Доработаем написанную нами программу. Задачи следующие:

  • Светодиод включен 0,2 секунды и выключен 0,8 секунды;
  • Светодиод включен 0,7 секунды и выключен 0,3 секунды.

В программе созданы 2 переменные, что отвечают за временные задержки. Одна определяет время работы включенного светодиода, а вторая – время работы выключенного светодиода.

Спасибо за внимание. До скорой встречи!

Arduino — это готовая отладочная плата и очень простой язык для программирования, упрощающая начало работы с микроконтроллерами ценой размера и быстродействия программ. С недавних пор Atmel добавила поддержку бутлоадера Arduino в AVR Studio, то есть можно писать загружать без программатора программы написанные хоть на C, хоть на C++, хоть на Assembler. Более того — можно в AVR Studio писать код на языке Processing/Wiring.
Рекомендую начать чтение статьи с update’а в конце!
В этой статье мы предлагаем пошаговую инструкцию по установке ПО для программирования Arduino с использованием AVR Studio. За основу мы брали обзор расширений AVR Studio с сайта easyelectronics.ru . Все примеры мы будем запускать на нашей плате .

Установка Arduino IDE

Мы используем версию Arduino 1.5.2. Скачать ее можно на официальном сайте . Последняя версия (1.6.2-r2 на момент написания статьи) по каким-то причинам не работает с микроконтроллером Atmega8.
Вы скачаете zip-архив с уже развернутой средой. Останется только распаковать ее в директорию с программами.

Установка Atmel Studio

UPD

Я смотрю тема пользуется популярностью и я хочу прояснить несколько моментов.
Есть три способа, которые я пробовал, чтобы запрограммировать Arduino-совместимую плату на С:

  1. Писать прямо на в Arduino IDE на С. Надо понимать, что Processing/Wiring это не язык, а просто набор макросов и библиотек. Когда вы на нем пишите, то он смотрит в своих заголовочниках, преобразует ваш простой для человека код в С и затем компилирует стандартным компилятором AVR GCC. Если вы напишите код на С, то он не будет обращаться к своим либам и сразу все скомпилирует как надо, НО!… при этом линковщик добавит к вашему проекту все что ему заблагорассудится. Достоинства в том, что кроме Arduino IDE вам ничего не надо. Недостаток в магии, которая спрятана от разработчика. Этот метод часто используют в тех случаях, когда нужно реализовать функцию, которую наши итальянские друзья в своем языке не предусмотрели.
  2. Способ предложенный в этой статье (на самом деле самый странный, ибо совмещает все недостатки). Идеологически, этот extension нужен для того, чтобы программировать на Processing/Wiring и использовать в качестве интерфейса Atmel Studio. Еще есть платный функционал, позволяющий дебажить код, но его я не пробовал. Так вот, по сути при программировании происходит все то же самое, что и при первом варианте, но вы работаете в другой IDE. При этом с точки зрения результата получаете одно и то же. Если вы программировали Arduino, и решили сделать это на С — смело пишите прямо в Arduino IDE. Если не нравится интерфейс, то можно использовать нормальный редактор (рекомендую, Sublime Text). Если вы работаете в Atnel Studio и хотите прошивать вашу плату прямо из ее интерфейса или писать в нем на Processing/Wiring (вдруг!), то этот аддончик для вас. Кстати, студия работает только под виндой, то есть способ сразу не для всех. Эту статью я написал только потому, что нашел новый для себя способ, но он мне не нравится.
  3. Третий способ, как мне кажется, лучший для продвинутого пользователя. Сначала все происходит как обычно — пишешь код, компилируешь и получаешь hex-файл. Затем, помня что у тебя в руках обычная отладочная плата с бутлоадером, качаешь утилиту, которая к этому бутлоадеру мжет обратиться и передать в память ваш код. мы уже выкладывали пошаговую инструкцию. В этом случае разработчик получает максимальный контроль над всеми функциями, но могут возникнуть и проблемы из-за использования стороннего бутлоадера.

Хочется раскрыть еще один момент, который происходит в Arduino. Чтобы вы не делали, Arduino IDE обязательно будет сама включать периферию. Например, запустит таймеры. И если вы захотите с ними поработать на С, то можете обнаружить, что работают они не так, как вы ожидали. И это может стать настоящей проблемой. И таких примеров много, то есть много и потенциальных граблей, костылей и багов.
Если вы просто заливаете hex-файл, то проблемы могут возникнуть только из-за бутлоадера. Пока я нашел только одну — после завершения работы бутлоадера остается включен UART. Если вы пишете через Arduino IDE, то она в ваш код вставит его отключение и кто знает что еще. Если вы просто хотите запустить свой hex, то контроль за ногами UART’а вы не получите. Придется руками в свой проект добавить отключение UART. Подробно этот артефакт и примеры кода описаны в .
Ну, и в заключение. На большинстве Arduino-совместимых плат есть разъем для ISP-программатора. Если купить этот программатор у китайцев за 3-4 доллара вы быстро забудете про все эти проблемы.

Мы будем очень рады, если вы поддержите наш ресурс и посетите магазин наших товаров .

Этот симулятор лучше всего работает в браузере Chrome
Давайте рассмотрим Arduino по внимательней.

Arduino это не большой компьютер, к которому могут подключаться внешние цепи. В Arduino Uno используется Atmega 328P
Это самый большой чип на плате. Этот чип выполняет программы, которые хранятся в его памяти. Вы можете загрузить программу через usb с помощью Arduino IDE. Usb порт также обеспечивает питание arduino.

Есть отдельный разъём питания. На плате есть два вывода обозначенные 5v и 3.3v, которые нужны для того, чтобы запитывать различные устройства. Так же вы найдете контакты, помеченные как GND, это выводы земли (земля это 0В). Платформа Arduino, так же, имеет 14 цифровых выводов (пинов), помеченных цифрами от 0 до 13, которые подключаются к внешним узлам и имеют два состояния высокое или низкое (включено или выключено). Эти контакты могут работать как выходы или как входы, т.е. они могут либо передавать какие-то данные и управлять внешними устройствами, либо получать данные с устройств. Следующие выводы на плате обозначены А0-А5. Это аналоговые входы, которые могут принимать данные с различных датчиков. Это особенно удобно, когда вам надо измерить некий диапазон, например температуру. У аналоговых входов есть дополнительные функции, которые можно задействовать отдельно.

Как использовать макетную плату.

Макетная плата нужна для того чтобы временно соединить детали, проверить, как работает устройство, до того как вы спаяете все вместе.
Все нижеследующие примеры собраны на макетной плате, чтобы можно было быстро вносить изменения в схему и повторно использовать детали не заморачиваясь с пайкой.

В макетной плате есть ряды отверстий, в которые вы можете вставлять детали и провода. Некоторые из этих отверстий электрически соединены друг с другом.

Два верхних и нижних ряда соединены по - рядно вдоль всей платы. Эти ряды используются, чтобы подавать питание на схему. Это может быть 5в или 3.3в, но в любом случае, первое, что вам надо сделать - это подключить 5в и GND на макетную плату, как показано на рисунке. Иногда эти соединения рядов могут прерываться посередине платы, тогда, если вам понадобится, вы можете их соединить, как показано на рисунке.








Остальные отверстия, расположенные в середине платы, группируются по пять отверстий. Они используется для соединения деталей схемы.


Первое, что мы подключим к нашему микроконтроллеру, это светодиод. Схема электрических соединений показана на картинке.

Для чего нужен резистор в схеме? В данном случае он ограничивает ток, который проходит через светодиод. Каждый светодиод рассчитан на определённый ток, и если этот ток будет больше, то светодиод выйдет из строя. Узнать, какого номинала должен быть резистор можно с помощью закона ома. Для тех кто не знает или забыл, закон ома говорит, что существует линейная зависимость тока от напряжения. Т.е, чем больше мы приложим напряжение к резистору, тем больше потечет через него ток.
V=I*R
Где V -напряжение на резистор
I - ток через резистор
R - сопротивление, которое надо найти.
Во-первых, мы должны узнать напряжение на резистор. Большинство светодиодов 3мм или 5мм, которые вы будете использовать, имеют рабочее напряжение 3в. Значит, на резисторе нам надо погасить 5-3=2в.

Затем мы вычислим ток, проходящий через резистор.
Большинство 3 и 5мм светодиодов светятся полной яркостью при токе 20мА. Ток больше этого может вывести их из строя, а ток меньшей силы снизит их яркость, не причинив никакого вреда.

Итак, мы хотим включить светодиод в цепь 5в,чтобы на нем был ток 20мА. Так как все детали включены в одну цепь на резистор тоже будет ток 20мА.
Мы получаем
2В = 20 мА * R
2В = 0.02A * R
R = 100 Ом

100 Ом это минимальное сопротивление, лучше использовать немного больше, потому, что светодиоды имеют некоторый разброс характеристик.
В данном примере используется резистор 220 Ом. Только потому, что у автора их очень много:wink: .

Вставьте светодиод в отверстия посередине платы таким образом, чтобы его длинный вывод был соединён с одним из выводов резистора. Второй конец резистора соедините с 5V, а второй вывод светодиода соедините с GND. Светодиод должен загореться.

Обратите внимание, что есть разница, как соединять светодиод. Ток течёт от более длинного вывода к более короткому. На схеме это можно представить, что ток течёт в ту сторону, куда направлен треугольник. Попробуйте перевернуть светодиод и вы увидите, что он не будет светиться.

А вот как вы будете соединять резистор, разницы совсем нет. Можете его перевернуть или попробовать подсоединить к другому выводу светодиода, это не повлияет на работу схемы. Он все так же будет ограничивать ток через светодиод.

Анатомия Arduino Sketch.

Программы для Arduino называют sketch. Они состоят из двух основных функций. Функция setup и функция loop
внутри этой функции вы будете задавать все основные настройки. Какие выводы будут работать на вход или выход, какие библиотеки подключать, инициализировать переменные. Функция Setup() запускается только один раз в течение скетча, когда стартует выполнение программы.
это основная функция, которая выполняется после setup() . Фактически это сама программа. Это функция будет выполняться бесконечно, пока вы не выключите питание.

Arduino мигает светодиодом



В этом примере мы соединим схему со светодиодом к одному из цифровых выводов Arduino и будем включать и выключать его с помощью программы, а так же вы узнаете несколько полезных функций.

Эта функция используется в setup () части программы и служит для инициализации выводов, которые вы будете использовать, как вход (INPUT) или выход (OUTPUT) . Вы не сможете считать или записать данные с пина, пока не установите его соответственно в pinMode . Эта функция имеет два аргумента: pinNumber - это номер пина, который вы будете использовать.

Mode -задает, как пин будет работать. На вход (INPUT) или выход (OUTPUT) . Чтобы зажечь светодиод мы должны подать сигнал ИЗ Arduino. Для этого мы настраиваем пин на выход.
- эта функция служит для того, чтобы задать состояние (state) пина (pinNumber) . Есть два основных состояния (вообще их 3), одно это HIGH , на пине будет 5в, другое это Low и на пине будет 0в. Значит, чтобы зажечь светодиод нам надо на пине, соединенном со светодиодом выставить высокий уровень HIGH .

Задержка. Служит для задержки работы программы на заданный в мсек период.
Ниже приведен код, который заставляет мигать светодиод.
//LED Blink int ledPin = 7;//пин Arduino к которому подключен светодиод void setup() { pinMode(ledPin, OUTPUT);// установка пина как ВЫХОД } void loop() { digitalWrite(ledPin, HIGH);//зажечь светодиод delay(1000);// задержка 1000 мсек (1 сек) digitalWrite(ledPin, LOW);//Выключить светодиод delay(1000);//ждать 1 сек }

Небольшие пояснения по коду.
Строки, которые начинаются с "//" это комментарии Arduino их игнорирует.
Все команды заканчиваются точкой с запятой, если вы их забудете, то получите сообщение об ошибке.

ledPin - это переменная. Переменные используются в программах для хранения значений. В данном примере переменной ledPin присваивается значение 7, это номер пина Arduino. Когда Arduino в программе встретит строку с переменной ledPin , он будет использовать то значение, которое мы указали ранее.
Так запись pinMode(ledPin, OUTPUT) аналогична записи pinMode(7, OUTPUT) .
Но в первом случае вам достаточно поменять переменную и она поменяется в каждой строке, где используется, а во втором случае вам, чтобы поменять переменную, придётся ручками в каждой команде вносить изменения.

В первой строке указывает на тип переменной. При программировании Arduino важно всегда объявлять тип переменных. Пока вам достаточно знать, что INT объявляет отрицательные и положительные числа.
Ниже представлено моделирование скетча. Нажмите старт, чтобы посмотреть работу схемы.

Как и ожидалось, светодиод гаснет и загорается через одну секунду. Попробуйте поменять задержку, чтобы посмотреть, как она работает.

Управление несколькими светодиодами.

В этом примере вы узнаете, как управлять несколькими светодиодами. Для этого установите ещё 3 светодиода на плату и соедините их с резисторами и выводами Arduino, как показано ниже.

Для того, чтобы включать и выключать светодиоды по очереди надо написать программу подобную этой:
//Multi LED Blink int led1Pin = 4; int led2Pin = 5; int led3Pin = 6; int led4Pin = 7; void setup() { //установка пинов как ВЫХОД pinMode(led1Pin, OUTPUT); pinMode(led2Pin, OUTPUT); pinMode(led3Pin, OUTPUT); pinMode(led4Pin, OUTPUT); } void loop() { digitalWrite(led1Pin, HIGH);//зажечь светодиод delay(1000);//задержка 1 сек digitalWrite(led1Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек //do the same for the other 3 LEDs digitalWrite(led2Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led2Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек digitalWrite(led3Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led3Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек digitalWrite(led4Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led4Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек }

Эта программа будет отлично работать, но это не самое рациональное решение. Код надо изменить. Для того, чтобы программа работала раз за разом мы применим конструкцию, которая называется .
Циклы удобны, когда надо повторить одно и тоже действие несколько раз. В коде, проведенном выше мы повторяем строки

DigitalWrite (led4Pin, HIGH); delay (1000); digitalWrite (led4Pin, LOW); delay (1000);
полный код скетча во вложении (скачиваний: 1187)

Регулировка яркости светодиодов

Иногда вам надо будет менять яркость светодиодов в программе. Это можно сделать с помощью команды analogWrite() . Эта команда так быстро включает и выключает светодиод, что глаз не видит это мерцание. Если светодиод половину времени будет включён, а половину выключен, то визуально будет казаться, что он светится в половину своей яркости. Это называется широтно-импульсная модуляция (ШИМ или PWM по-английски). Шим применяется довольно часто, так как с ее помощью можно управлять "аналоговым" компонентом с помощью цифрового кода. Не все выводы Arduino подходят для этих целей. Только те выводы, около которых нарисовано такое обозначение "~ ". Вы увидите его рядом с выводами 3,5,6,9,10,11.
Соедините один из ваших светодиодов с одним из выводов ШИМ(у автора это вывод 9). Теперь запуститьскетч мигания светодиода, но прежде измените команду digitalWrite() на analogWrite() . analogWrite() имеет два аргумента: первый это номер вывода, а второй- значение ШИМ (0-255), применительно к светодиодам это будет их яркость свечения, а для электродвигателей скорость вращения. Ниже представлен код примера для разной яркости светодиода.
//Меняем яркость светодиода int ledPin = 9;//к этому выводу подсоединен светодиод void setup() { pinMode(ledPin, OUTPUT);// инициализация пина на вывод } void loop() { analogWrite(ledPin, 255);//полная яркость (255/255 = 1) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 191);//яркость на 3/4 (191/255 ~= 0.75) delay(1000);//пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 127);//половина яркости (127/255 ~= 0.5) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 63);//четверть яркости (63/255 ~= 0.25) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек }

Попробуйте поменять значение ШИМ в команде analogWrite () ,чтобы увидеть, как это влияет на яркость.
Далее вы узнаете, как регулировать яркость плавно от полной до нулевой. Можно,конечно, скопировать кусок кода 255 раз
analogWrite(ledPin, brightness); delay(5);//short delay brightness = brightness + 1;
Но, сами понимаете - это будет не практично. Для этого лучше всего использовать цикл FOR, который использовали ранее.
В следующем примере используются два цикла, один для уменьшения яркости от 255 до 0
for (int brightness=0;brightness=0;brightness--){ analogWrite(ledPin,brightness); delay(5); }
delay(5) используется, чтобы замедлить скорость нарастания и уменьшения яркости 5*256=1280 мсек= 1.28 сек.)
В первой строке используется "brightness- " ,для того чтобы значение яркости уменьшалось на 1, каждый раз, когда цикл повторяется. Обратите внимание, что цикл будет работать до тех пор, пока brightness >=0 .Заменив знак > на знак >= мы включили 0 в диапазон яркости. Ниже смоделирован этот скетч. //плавно меняем яркость int ledPin = 9;//к этому пину подключен светодиод void setup() { pinMode(ledPin, OUTPUT);// инициализация пина на выход } void loop() { //плавно увеличиваем яркость (0 to 255) for (int brightness=0;brightness=0;brightness--){ analogWrite(ledPin,brightness); delay(5); } delay(1000);//ждем 1 сек //плавно уменьшаем яркость (255 to 0) for (int brightness=255;brightness>=0;brightness--){ analogWrite(ledPin,brightness); delay(5); } delay(1000);//ждем 1 сек } }
Это видно не очень хорошо, но идея понятна.

RGB-светодиод и Arduino

RGB-светодиод на самом деле это три светодиода разного цвета в одном корпусе.

Включая разные светодиоды с различной яркостью можно комбинировать и получать разные цвета. Для Arduino, где количество градаций яркости равно 256 вы получите 256^3=16581375 возможных цветов. Реально их, конечно, будет меньше.
Светодиод, который мы будем использоваться общим катодом. Т.е. все три светодиода конструктивно соединены катодами к одному выводу. Этот вывод мы подсоединим к выводу GND. Остальные выводы, через ограничительные резисторы, надо подсоединить к выводам ШИМ. Автор использовал выводы 9-11.Таким образом можно будет управлять каждым светодиодом отдельно. В первом скетче показано, как включить каждый светодиод отдельно.



//RGB LED - test //pin connections int red = 9; int green = 10; int blue = 11; void setup(){ pinMode(red, OUTPUT); pinMode(blue, OUTPUT); pinMode(green, OUTPUT); } void loop(){ //включение/выключение красного светодиод digitalWrite(red, HIGH); delay(500); digitalWrite(red, LOW); delay(500); //включение/выключение зеленого светодиода digitalWrite(green, HIGH); delay(500); digitalWrite(green, LOW); delay(500); //включение/выключение синего светодиода digitalWrite(blue, HIGH); delay(500); digitalWrite(blue, LOW); delay(500); }

В следующем примере используются команды analogWrite() и , чтобы получать различные случайные значения яркости для светодиодов. Вы увидите разные цвета, меняющиеся случайным образом.
//RGB LED - random colors //pin connections int red = 9; int green = 10; int blue = 11; void setup(){ pinMode(red, OUTPUT); pinMode(blue, OUTPUT); pinMode(green, OUTPUT); } void loop(){ //pick a random color analogWrite(red, random(256)); analogWrite(blue, random(256)); analogWrite(green, random(256)); delay(1000);//wait one second }

Random(256) -возвращает случайное число в диапазоне от 0 до 255.
В прикрепленном файле скетч, который продемонстрирует плавные переходы цветов от красного к зеленому, затем к синему, красному, зеленому и т.д. (скачиваний: 326)
Пример скетча работает, но есть много повторяющегося кода. Можно упростить код, написав собственную вспомогательную функцию, которая будет плавно менять один цвет на другой.
Вот как она будет выглядеть: (скачиваний: 365)
Давайте рассмотрим определение функции по частям. Функция называется fader и имеет два аргумента. Каждый аргумент отделяется запятой и имеет тип объявленный в первой строке определения функции: void fader (int color1, int color2) . Вы видите, что оба аргумента объявлены как int , и им присвоены имена color1 и color2 в качестве условных переменных для определения функции. Void означает, что функция не возвращает никаких значений, она просто выполняет команды. Если надо было бы написать функцию, которая возвращала результат умножения это выглядело бы так:
int multiplier(int number1, int number2){ int product = number1*number2; return product; }
Обратите внимание, как мы объявили Тип int в качестве типа возвращаемого значения вместо
void .
Внутри функции идут команды, которые вы уже использовали в предыдущем скетче, только номера выводов заменили на color1 и color2 . Вызывается функция fader , ее аргументы вычисляются как color1 = red и color2 = green . В архиве полный скетч с использованием функций (скачиваний: 272)

Кнопка

В следующем скетче будет использоваться кнопка с нормально разомкнутыми контактами, без фиксации.


Это значит, что пока кнопка не нажата, ток через неё не идёт, а после отпускания, кнопка возвращается в исходное положение.
В схеме, помимо кнопки используется резистор. В данном случае он не ограничивает ток, а "подтягивает" кнопку к 0в (GND). Т.е. пока кнопка не нажата на выводе Arduino, к которому она подключена, будет низкий уровень. Резистор, используемый в схеме 10 кОм.


//определяем нажатие кнопки int buttonPin = 7; void setup(){ pinMode(buttonPin, INPUT);//инициализируем пин на вход Serial.begin(9600);//инициализируем последовательный порт } void loop(){ if (digitalRead(buttonPin)==HIGH){//если кнопка нажата Serial.println("pressed"); // выводим надпись "pressed" } else { Serial.println("unpressed");// иначе "unpressed" } }
В этом скетче несколько новых команд.
-эта команда принимает значение High (высокий уровень) и low (низкий уровень), того вывода, который мы проверяем. Предварительно в setup() этот вывод надо настроить на вход.
; //где buttonPin это номер вывода, куда подсоединяется кнопка.
Последовательный порт позволяет отправлять Arduino сообщения на компьютер, в то время, как сам контроллер выполняет программу. Это полезно для отладки программы, отправки сообщений на другие устройства или приложения. Чтобы включить передачу данных через последовательный порт (другое название UART или USART), надо инициализировать его в setup()

Serial.begin() имеет всего один аргумент-это скорость передачи данных между Arduino и компьютером.
скетче используется команда для вывода сообщения на экран в Arduino IDE (Tools >> Serial Monitor).
- конструкция позволяют контролировать ход выполнения программы, объеденив несколько проверок в одном месте.
If(если) digitalRead возвращает значение HIGH, то на мониторе выводится слово "нажата". Else(иначе) на мониторе выводится слово " отжата" . Теперь можно попробовать включать и выключать светодиод по нажатию кнопки.
//button press detection with LED output int buttonPin = 7; int ledPin = 8; void setup(){ pinMode(buttonPin, INPUT);//this time we will set button pin as INPUT pinMode(ledPin, OUTPUT); Serial.begin(9600); } void loop(){ if (digitalRead(buttonPin)==HIGH){ digitalWrite(ledPin,HIGH); Serial.println("pressed"); } else { digitalWrite(ledPin,LOW); Serial.println("unpressed"); } }

Аналоговый вход.

analogRead позволяет считать данные с одного из аналоговых выводов Arduino и выводит значение в диапазоне от 0 (0В) до 1023 (5В). Если напряжение на аналоговом входе будет равно 2.5В, то будет напечатано 2.5 / 5 * 1023 = 512
analogRead имеет только один аргумент- Это номер аналогового входа (А0-А5). В следующем скетче приводится код считывания напряжения с потенциометра. Для этого подключите переменный резистор, крайними выводами на пины 5V и GND, а средний вывод на вход А0.

Запустите следующий код и посмотрите в serial monitor, как меняются значения в зависимости от поворота ручки резистора.
//analog input int potPin = A0;//к этому пину подсоединяется центральный вывод потенциометра void setup(){ //аналоговый пин по умолчанию включен на вход, поэтому инициализация не нужна Serial.begin(9600); } void loop(){ int potVal = analogRead(potPin);//potVal is a number between 0 and 1023 Serial.println(potVal); }
Следующий скетч объединяет скетч нажатия кнопки и скетч управления яркостью светодиода. Светодиод будет включаться от кнопки, и управлять яркостью свечения будет потенциометр.
//button press detection with LED output and variable intensity int buttonPin = 7; int ledPin = 9; int potPin = A0; void setup(){ pinMode(buttonPin, INPUT); pinMode(ledPin, OUTPUT); Serial.begin(9600); } void loop(){ if (digitalRead(buttonPin)==HIGH){//if button pressed int analogVal = analogRead(potPin); int scaledVal = map(analogVal, 0, 1023, 0, 255); analogWrite(ledPin, scaledVal);//turn on led with intensity set by pot Serial.println("pressed"); } else { digitalWrite(ledPin, LOW);//turn off if button is not pressed Serial.println("unpressed"); } }

Этот урок дает минимальные знания, необходимые для программирования систем Ардуино на языке C. Можно только просмотреть его и в дальнейшем использовать как справочную информацию. Тем, кто программировал на C в других системах можно пропустить статью.

Повторю, что это минимальная информация. Описание указателей, классов, строковых переменных и т.п. будет дано в последующих уроках. Если что-то окажется непонятным, не беспокойтесь. В дальнейших уроках будет много примеров и пояснений.

Структура программы Ардуино.

Структура программы Ардуино достаточно проста и в минимальном варианте состоит из двух частей setup() и loop().

void setup() {

void loop() {

Функция setup() выполняется один раз, при включении питания или сбросе контроллера. Обычно в ней происходят начальные установки переменных, регистров. Функция должна присутствовать в программе, даже если в ней ничего нет.

После завершения setup() управление переходит к функции loop(). Она в бесконечном цикле выполняет команды, записанные в ее теле (между фигурными скобками). Собственно эти команды и совершают все алгоритмические действия контроллера.

Первоначальные правила синтаксиса языка C.

; точка с запятой Выражения могут содержать сколь угодно много пробелов, переносов строк. Признаком завершения выражения является символ ”точка с запятой ”.

z = x + y;
z= x
+ y ;

{ } фигурные скобки определяют блок функции или выражений. Например, в функциях setup() и loop().

/* … */ блок комментария , обязательно закрыть.

/* это блок комментария */

// однострочный комментарий , закрывать не надо, действует до конца строки.

// это одна строка комментария

Переменные и типы данных.

Переменная это ячейка оперативной памяти, в которой хранится информация. Программа использует переменные для хранения промежуточных данных вычислений. Для вычислений могут быть использованы данные разных форматов, разной разрядности, поэтому у переменных в языке C есть следующие типы.

Тип данных Разрядность, бит Диапазон чисел
boolean 8 true, false
char 8 -128 … 127
unsigned char 8 0 … 255
byte 8 0 … 255
int 16 -32768 … 32767
unsigned int 16 0 … 65535
word 16 0 … 65535
long 32 -2147483648 … 2147483647
unsigned long 32 0 … 4294967295
short 16 -32768 … 32767
float 32 -3.4028235+38 … 3.4028235+38
double 32 -3.4028235+38 … 3.4028235+38

Типы данных выбираются исходя из требуемой точности вычислений, форматов данных и т.п. Не стоит, например, для счетчика, считающего до 100, выбирать тип long. Работать будет, но операция займет больше памяти данных и программ, потребует больше времени.

Объявление переменных.

Указывается тип данных, а затем имя переменной.

int x; // объявление переменной с именем x типа int
float widthBox; // объявление переменной с именем widthBox типа float

Все переменные должны быть объявлены до того как будут использоваться.

Переменная может быть объявлена в любой части программы, но от этого зависит, какие блоки программы могут ее использовать. Т.е. у переменных есть области видимости.

  • Переменные, объявленные в начале программы, до функции void setup(), считаются глобальными и доступны в любом месте программы.
  • Локальные переменные объявляются внутри функций или таких блоков, как цикл for, и могут использоваться только в объявленных блоках. Возможны несколько переменных с одним именем, но разными областями видимости.

int mode; // переменная доступна всем функциям

void setup() {
// пустой блок, начальные установки не требуются
}

void loop() {

long count; // переменная count доступна только в функции loop()

for (int i=0; i < 10;) // переменная i доступна только внутри цикла
{
i++;
}
}

При объявлении переменной можно задать ее начальное значение (проинициализировать).

int x = 0; // объявляется переменная x с начальным значением 0
char d = ‘a’; // объявляется переменная d с начальным значением равным коду символа ”a”

При арифметических операциях с разными типами данных происходит автоматическое преобразование типов данных. Но лучше всегда использовать явное преобразование.

int x; // переменная int
char y; // переменная char
int z; // переменная int

z = x + (int) y; // переменная y явно преобразована в int

Арифметические операции.

Операции отношения.

Логические операции.

Операции над указателями.

Битовые операции.

& И
| ИЛИ
^ ИСКЛЮЧАЮЩЕЕ ИЛИ
~ ИНВЕРСИЯ
<< СДВИГ ВЛЕВО
>> СДВИГ ВПРАВО

Операции смешанного присваивания.

Выбор вариантов, управление программой.

Оператор IF проверяет условие в скобках и выполняет последующее выражение или блок в фигурных скобках, если условие истинно.

if (x == 5) // если x=5, то выполняется z=0
z=0;

if (x > 5) // если x >
{ z=0; y=8; }

IF … ELSE позволяет сделать выбор между двух вариантов.

if (x > 5) // если x > 5, то выполняется блок z=0, y=8;
{
z=0;
y=8;
}

{
z=0;
y=0;
}

ELSE IF – позволяет сделать множественный выбор

if (x > 5) // если x > 5, то выполняется блок z=0, y=8;
{
z=0;
y=8;
}

else if (x > 20) // если x > 20, выполняется этот блок
{
}

else // в противном случае выполняется этот блок
{
z=0;
y=0;
}

SWITCH CASE - множественный выбор. Позволяет сравнить переменную (в примере это x) с несколькими константами (в примере 5 и 10) и выполнить блок, в котором переменная равна константе.

switch (x) {

case 5:
// код выполняется если x = 5
break;

case 10:
// код выполняется если x = 10
break;

default:
// код выполняется если не совпало ни одно предыдущее значение
break;
}

Цикл FOR . Конструкция позволяет организовывать циклы с заданным количеством итераций. Синтаксис выглядит так:

for (действие до начала цикла;
условие продолжения цикла;
действие в конце каждой итерации) {

// код тела цикла

Пример цикла из 100 итераций.

for (i=0; i < 100; i++) // начальное значение 0, конечное 99, шаг 1

{
sum = sum + I;
}

Цикл WHILE . Оператор позволяет организовывать циклы с конструкцией:

while (выражение)
{
// код тела цикла
}

Цикл выполняется до тех пор, пока выражение в скобках истинно. Пример цикла на 10 итераций.

x = 0;
while (x < 10)
{
// код тела цикла
x++;
}

DO WHILE – цикл с условием на выходе.

do
{
// код тела цикла
} while (выражение);

Цикл выполняется пока выражение истинно.
BREAK – оператор выхода из цикла. Используется для того, чтобы прервать выполнение циклов for, while, do while.

x = 0;
while (x < 10)
{
if (z > 20) break; // если z > 20, то выйти из цикла
// код тела цикла
x++;
}

GOTO – оператор безусловного перехода.

goto metka1; // переход на metka1
………………
metka1:

CONTINUE - пропуск операторов до конца тела цикла.

x = 0;
while (x < 10)
{
// код тела цикла
if (z > 20) continue; // если z > 20, то вернуться на начало тела цикла
// код тела цикла
x++;
}

Массивы.

Массив это область памяти, где последовательно хранятся несколько переменных.

Объявляется массив так.

int ages; // массив из 10 переменных типа int

float weight; // массив из 100 переменных типа float

При объявлении массивы можно инициализировать:

int ages = { 23, 54, 34, 24, 45, 56, 23, 23, 27, 28};

Обращаются к переменным массивов так:

x = ages; // x присваивается значение из 5 элемента массива.
ages = 32; // 9 элементу массива задается значение 32

Нумерация элементов массивов всегда с нуля.

Функции.

Функции позволяют выполнять одни и те же действия с разными данными. У функции есть:

  • имя, по которому ее вызывают;
  • аргументы – данные, которые функция использует для вычисления;
  • тип данных, возвращаемый функцией.

Описывается пользовательская функция вне функций setup() и loop().

void setup() {
// код выполняется один раз при запуске программы
}

void loop() {
// основной код, выполняется в цикле
}

// объявление пользовательской функции с именем functionName
type functionName(type argument1, type argument1, … , type argument)
{
// тело функции
return();
}

Пример функции, вычисляющей сумму квадратов двух аргументов.

int sumQwadr (int x, int y)
{
return(x* x + y*y);
}

Вызов функции происходит так:

d= 2; b= 3;
z= sumQwadr(d, b); // в z будет сумма квадратов переменных d и b

Функции бывают встроенные, пользовательские, подключаемые.

Очень коротко, но этих данных должно хватить для того, чтобы начать писать программы на C для систем Ардуино.

Последнее, что я хочу рассказать в этом уроке, как принято оформлять программы на C. Думаю, если вы читаете этот урок в первый раз, стоит пропустить этот раздел и вернутся к нему позже, когда будет что оформлять.

Главная цель внешнего оформления программ это улучшить читаемость программ, уменьшить число формальных ошибок. Поэтому для достижения этой цели можно смело нарушать все рекомендации.

Имена в языке C.

Имена, представляющие типы данных, должны быть написаны в смешанном регистре. Первая буква имени должна быть заглавная (верхний регистр).

Signal, TimeCount

Переменные должны быть записаны именами в смешанном регистре, первая буква строчная (нижний регистр).

Введение

Freeduino/Arduino программируется на специальном языке программирования – он основан на C/C ++, и позволяет использовать любые его функции. Строго говоря, отдельного языка Arduino не существует, как и не существует компилятора Arduino – написанные программы преобразуются (с минимальными изменениям) в программу на языке C/C++, и затем компилируются компилятором AVR-GCC. Так что фактически, используется специализированный для микроконтроллеров AVR вариант C/C++.

Разница заключается в том, что Вы получаете простую среду разработки, и набор базовых библиотек, упрощающих доступ к находящейся «на борту» микроконтроллера периферии.

Согласитесь, очень удобно начать работу с последовательным портом на скорости 9600 бит в секунду, сделав вызов одной строчкой:

Serial.begin(9600);

А при использовании «голого» C/C++ Вам бы пришлось разбираться с документацией на микроконтроллер, и вызывать нечто подобное:

UBRR0H = ((F_CPU / 16 + 9600 / 2) / 9600 - 1) >> 8;
UBRR0L = ((F_CPU / 16 + 9600 / 2) / 9600 - 1);
sbi(UCSR0B, RXEN0);
sbi(UCSR0B, TXEN0);
sbi(UCSR0B, RXCIE0);

Здесь кратко рассмотрены основные функции и особенности программирования Arduino. Если Вы не знакомы с синтаксисом языков C/C++, советуем обратиться к любой литературе по данному вопросу, либо Internet-источникам.

С другой стороны, все представленные примеры очень просты, и скорее всего у Вас не возникнет трудностей с пониманием исходных текстов и написанием собственных программ даже без чтения дополнительной литературы.

Более полная документация (на английском языке) представлена на официальном сайте проекта – http://www.arduino.cc . Там же есть форум, ссылки на дополнительные библиотеки и их описание.

По аналогии с описанием на официальном сайте проекта Arduino, под «портом» понимается контакт микроконтроллера, выведенный на разъем под соответствующим номером. Кроме того, существует порт последовательной передачи данных (COM-порт).

Структура программы

В своей программе Вы должны объявить две основных функции: setup() и loop().

Функция setup() вызывается один раз, после каждого включения питания или сброса платы Freeduino. Используйте её, чтобы инициализировать переменные, установить режимы работы цифровых портов и т.д.

Функция loop() последовательно раз за разом исполняет команды, которые описаны в ее теле. Т.е. после завершения функции снова произойдет ее вызов.

Разберем простой пример:

void setup() // начальные установки
{
beginSerial(9600); // установка скорости работы серийного порта на 9600 бит/сек
pinMode(3, INPUT); // установка 3-его порта на ввод данных
}

// Программа проверяет 3-ий порт на наличие на нём сигнала и посылает ответ в
// виде текстового сообщения на последовательный порт компьютера
void loop() // тело программы
{
if (digitalRead(3) == HIGH) // условие на опрос 3го порта
serialWrite("H"); // отправка сообщения в виде буквы «Н» на COM-порт
else
serialWrite("L"); // отправка сообщения в виде буквы «L» на COM-порт
delay(1000); // задержка 1 сек.
}

pinMode (порт, режим);

Описание:

Конфигурирует указанный порт на ввод или вывод сигнала.

Параметры:

порт – номер порта, режим которого Вы желает установить (значение целого типа от 0 до 13).

режим – либо INPUT (ввод) либо OUTPUT (вывод).

pinMode(13, OUTPUT); //13й вывод будет выходом
pinMode(12, INPUT); //а 12й – входом

Примечание:

Аналоговые входы могут использоваться как цифровые входы/выходы, при обращении к ним по номерам с 14 (аналоговый вход 0) по 19 (аналоговый вход 5)

digitalWrite(порт, значение);

Описание:

Устанавливает высокий (HIGH) или низкий (LOW) уровень напряжения на указанном порте.

Параметры:

порт: номер порта

значение: HIGH или LOW

digitalWrite(13, HIGH); // выставляем 13й вывод в «высокое» состояние

value = digitalRead (порт);

Описание:

Считывает значение на указанном порту

Параметры:

порт: номер опрашиваемого порта

Возвращаемое значение: возвращает текущее значение на порту (HIGH или LOW) типа int

int val;
val = digitalRead(12); // опрашиваем 12й вывод

Примечание:

Если к считываемому порту ничего не подключено, то функция digitalRead () может беспорядочно возвращать значения HIGH или LOW.

Аналоговый ввод/вывод сигнала

value = analogRead(порт);

Описание:

Считывает значение с указанного аналогового порта. Freeduino содержит 6 каналов, аналого-цифрового преобразователя на 10 битов каждый. Это означает, что входное напряжения от 0 до 5В преобразовывается в целочисленное значение от 0 до 1023. Разрешающая способность считывания составляет: 5 В/1024 значений = 0,004883 В/значение (4,883 мВ). Требуется приблизительно 100 нС (0.0001 С), чтобы считать значение аналогового ввода, так что максимальная скорость считывания - приблизительно 10000 раз в секунду.

Параметры:

Возвращаемое значение: возвращает число типа int в диапазоне от 0 до 1023, считанное с указанного порта.

int val;
val = analogRead(0); // считываем значение на 0м аналоговом входе

Примечание:

Аналоговые порты по умолчанию определенны на ввод сигнала и в отличие от цифровых портов их не требуется конфигурировать с помощью вызова функции pinMode.

analogWrite(порт, значение);

Описание:

Выводит на порт аналоговое значение. Эта функция работает на: 3, 5, 6, 9, 10, и 11 цифровых портах Freeduino.

Может применяться для изменения яркости светодиода, для управления двигателем и т.д. После вызова функции analogWrite, соответствующий порт начинает работать в режиме широтно-импульсного модулирования напряжения до тех пор, пока не будет следующего вызова функции analogWrite (или функций digitalRead / digitalWrite на том же самом порте).

Параметры:

порт: номер опрашиваемого аналогового входа

значение: целочисленное между 0 и 255. Значение 0 генерирует 0 В на указанном порте; значение 255 генерирует +5 В на указанном порте. Для значений между 0 и 255, порт начинает быстро чередовать уровень напряжения 0 и +5 В - чем выше значение, тем, более часто порт генерирует уровень HIGH (5 В).

analogWrite(9, 128);// устанавливаем на 9 контакте значение эквивалентное 2,5В

Примечание:

Нет необходимости вызвать функцию pinMode, чтобы установить порт на вывод сигналов перед вызовом функции analogWrite.

Частота генерирования сигнала – приблизительно 490 Гц.

time = millis();

Описание:

Возвращает число миллисекунд, с момента исполнения Freeduino текущей программы. Счетчик переполнится и обнулится приблизительно через 9 часов.

Возвращаемое значение: возвращает значение типа unsigned long

unsigned long time; // объявление переменной time типа unsigned long
time = millis(); // передача количества миллисекунд

delay(время_мс);

Описание:

Приостанавливает программу на заданное число миллисекунд.

Параметры:

время_мс – время задержки программы в миллисекундах

delay(1000); //пауза 1 секунда

delayMicroseconds

delayMicroseconds(время_мкс);

Описание:

Приостанавливает программу на заданное число микросекунд.

Параметры:

время_мкс – время задержки программы в микросекундах

delayMicroseconds(500); //пауза 500 микросекунд

pulseIn(порт, значение);

Описание:

Считывает импульс (высокий или низкий) c цифрового порта и возвращает продолжительность импульса в микросекундах.

Например, если параметр «значение» при вызове функции установлен в HIGH, то pulseIn() ожидает, когда на порт поступит высокий уровень сигнала. С момента его поступления начинается отсчет времени до тех пор, пока на порт не поступит низкий уровень сигнала. Функция возвращает длину импульса (высокого уровня) в микросекундах. Работает с импульсами от 10 микросекунд до 3 минут. Обратите внимание, что эта функция не будет возвращать результат, пока импульс не будет обнаружен.

Параметры:

порт: номер порта, с которого считываем импульс

значение: тип импульса HIGH или LOW

Возвращаемое значение: возвращает длительность импульса в микросекундах (тип int)

int duration; // объявление переменной duration типа int
duration = pulseIn(pin, HIGH); // измеряем длительность импульса

Последовательная передача данных

Freeduino имеет встроенный контроллер для последовательной передачи данных, который может использоваться как для связи между Freeduino/Arduino устройствами, так и для связи с компьютером. На компьютере соответствующее соединение представлено USB COM-портом.

Связь происходит по цифровым портам 0 и 1, и поэтому Вы не сможете использовать их для цифрового ввода/вывода если используете функции последовательной передачи данных.

Serial.begin(скорость_передачи);

Описание:

Устанавливает скорость передачи информации COM порта битах в секунду для последовательной передачи данных. Для того чтобы поддерживать связь с компьютером, используйте одну из этих нормированных скоростей: 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, или 115200. Также Вы можете определить другие скорости при связи с другим микроконтроллером по портам 0 и 1.

Параметры:

скорость_передачи: скорость потока данных в битах в секунду.

Serial.begin(9600); //устанавливаем скорость 9600 бит/сек

Serial.available

count = Serial.available();

Описание:

Принимаемые по последовательному порту байты попадают в буфер микроконтроллера, откуда Ваша программа может их считать. Функция возвращает количество накопленных в буфере байт. Последовательный буфер может хранить до 128 байт.

Возвращаемое значение:

Возвращает значение типа int – количество байт, доступных для чтения, в последовательном буфере, или 0, если ничего не доступно.

if (Serial.available() > 0) { // Если в буфере есть данные
// здесь должен быть прием и обработка данных
}

char = Serial.read();

Описание:

Считывает следующий байт из буфера последовательного порта.

Возвращаемое значение:

Первый доступный байт входящих данных с последовательного порта, или -1 если нет входящих данных.

incomingByte = Serial.read(); // читаем байт

Описание:

Очищает входной буфер последовательного порта. Находящиеся в буфере данные теряются, и дальнейшие вызовы Serial.read() или Serial.available() будут иметь смысл для данных, полученных после вызова Serial.flush().

Serial.flush(); // Очищаем буфер – начинаем прием данных «с чистого листа»

Описание:

Вывод данных на последовательный порт.

Параметры:

Функция имеет несколько форм вызова в зависимости от типа и формата выводимых данных.

Serial.print(b, DEC) выводит ASCII-строку - десятичное представление числа b.

int b = 79;

Serial.print(b, HEX) выводит ASCII-строку - шестнадцатиричное представление числа b.

int b = 79;

Serial.print(b, OCT) выводит ASCII-строку - восьмеричное представление числа b.

int b = 79;
Serial.print(b, OCT); //выдаст в порт строку «117»

Serial.print(b, BIN) выводит ASCII-строку - двоичное представление числа b.

int b = 79;
Serial.print(b, BIN); //выдаст в порт строку «1001111»

Serial.print(b, BYTE) выводит младший байт числа b.

int b = 79;
Serial.print(b, BYTE); //выведет число 79 (один байт). В мониторе
//последовательного порта получим символ «O» - его
//код равен 79

Serial.print(str) если str – строка или массив символов, побайтно передает str на COM-порт.

char bytes = {79, 80, 81}; //массив из 3 байт со значениями 79,80,81
Serial.print("Here our bytes:"); //выводит строку «Here our bytes:»
Serial.print(bytes); //выводит 3 символа с кодами 79,80,81 –
//это символы «OPQ»

Serial.print(b) если b имеет тип byte или char, выводит в порт само число b.

char b = 79;
Serial.print(b); //выдаст в порт символ «O»

Serial.print(b) если b имеет целый тип, выводит в порт десятичное представление числа b.

int b = 79;
Serial.print(b); //выдаст в порт строку «79»

Описание:

Функция Serial.println аналогична функции Serial.print, и имеет такие же варианты вызова. Единственное отличие заключается в том, что после данных дополнительно выводятся два символа – символ возврата каретки (ASCII 13, или "\r") и символ новой линии (ASCII 10, или "\n").

Пример 1 и пример 2 выведут в порт одно и то же:

int b = 79;
Serial.print(b, DEC); //выдаст в порт строку «79»
Serial.print("\r\n"); //выведет символы "\r\n" – перевод строки
Serial.print(b, HEX); //выдаст в порт строку «4F»
Serial.print("\r\n");//выведет символы "\r\n" – перевод строки

int b = 79;
Serial.println(b, DEC); //выдаст в порт строку «79\r\n»
Serial.println(b, HEX); //выдаст в порт строку «4F\r\n»

В мониторе последовательного порта получим.