Параллельная обработка данных. Процесс параллельной обработки данных

24.04.2019 Программы и сервисы

Параллельная обработка

Параллельная обработка

Параллельная обработка - модель выполнения прикладного процесса одновременно группой процессоров. Различают три способа реализация параллелизма:
-1- способ SIMD работы с одним потоком команд и несколькими потоками данных, при котором все процессоры, работающие по одной программе, обрабатывают собственные массивы данных под управлением ведущего процессора;
-2- способ MIMD работы с несколькими потоками команд и несколькими потоками данных, при котором процессоры работают по своим программам независимо друг от друга, лишь эпизодически связываясь друг с другом;
-3- способ MISD работы с несколькими потоками команд и одним потоком данных.

По-английски: Parallel processing

Финансовый словарь Финам .


Смотреть что такое "Параллельная обработка" в других словарях:

    Параллельная обработка - Один из видов обработки информации, когда несколько операций могут выполняться одновременно. В отличие от осознанной обработки, которая обычно выполняется последовательно, этот вид обработки происходит без осознанных усилий. Например, читая эти… …

    - (parallel processing) Метод работы на компьютере, при котором две или несколько частей программы выполняются не последовательно, а параллельно. Строго говоря, применение данного метода возможно только на компьютерах, обладающих двумя и более… … Словарь бизнес-терминов

    параллельная обработка - — Тематики электросвязь, основные понятия EN parallel processing …

    параллельная обработка - lygiagretusis apdorojimas statusas T sritis automatika atitikmenys: angl. parallel processing vok. Parallelverarbeitung rus. параллельная обработка, f pranc. traitement en parallèle, m … Automatikos terminų žodynas

    параллельная обработка информации - модель обработки информации в мозге головном, согласно коей информация проходит ряд преобразований в определенных «функциональных блоках» мозга так, что в каждый момент времени ее обработка ведется одновременно (параллельно) в нескольких… … Большая психологическая энциклопедия

    ПАРАЛЛЕЛЬНАЯ ОБРАБОТКА ИНФОРМАЦИИ - См. обработка информации, параллельная …

    Способ параллельной обработки данных большим числом процессоров, реализующий способ организации параллелизма MIMD. По английски: Massively Parallel Processing Синонимы английские: MPP См. также: Параллельная обработка Финансовый словарь Финам … Финансовый словарь

    ОБРАБОТКА, ПАРАЛЛЕЛЬНАЯ - Обработка информации, при которой более чем одна последовательность операций по обработке проводятся одновременно, или параллельно. Обработка может включать чрезвычайно низкий уровень, несимволические компоненты, такие, которые используются в… … Толковый словарь по психологии

    параллельная конвейерная обработка - lygiagretusis konvejerinis apdorojimas statusas T sritis radioelektronika atitikmenys: angl. parallel pipelining vok. Parallel Pipelineverarbeitung, f rus. параллельная конвейерная обработка, f pranc. traitement de pipeline parallèle, m … Radioelektronikos terminų žodynas

    одновременная обработка - параллельная обработка — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы параллельная обработка EN simultaneous processing … Справочник технического переводчика

Книги

  • Параллельная обработка данных
  • Параллельная обработка данных , А. О. Лацис. В учебном пособии дан углубленный систематический обзор технологий параллельной обработки данных. Основное внимание уделено традиционным программным технологиям параллельного программирования…

Простые рассчеты показывают, что конфигурации подобных систем могут стоить не один миллион долларов США - ради интереса прикиньте, сколько стоят, скажем, лишь 4 Тбайта оперативной памяти? Возникает целый ряд естественных вопросов: какие задачи настолько важны, что требуются компьютеры стоимостью несколько миллионов долларов? Или, какие задачи настолько сложны, что хорошего Пентиума не достаточно? На эти и подобные им вопросы хотелось бы найти разумные ответы.

Для того, чтобы оценить сложность решаемых на практике задач, возьмем конкретную предметную область, например, оптимизацию процесса добычи нефти. Имеем подземный нефтяной резервуар с каким-то число пробуренных скважин: по одним на поверхность откачивается нефть, по другим обратно закачивается вода. Нужно смоделировать ситуацию в данном резервуаре, чтобы оценить запасы нефти или понять необходимость в дополнительных скважинах.

Примем упрощенную схему, при которой моделируемая область отображается в куб, однако и ее будет достаточно для оценки числа необходимых арифметических операций. Разумные размеры куба, при которых можно получать правдоподобные результаты - это 100*100*100 точек. В каждой точке куба надо вычислить от 5 до 20 функций: три компоненты скорости, давление, температуру, концентрацию компонент (вода, газ и нефть - это минимальный набор компонент, в более реалистичных моделях рассматривают, например, различные фракции нефти). Далее, значения функций находятся как решение нелинейных уравнений, что требует от 200 до 1000 арифметических операций. И наконец, если исследуется нестационарный процесс, т.е. нужно понять, как эта система ведет себя во времени, то делается 100-1000 шагов по времени. Что получилось:

10 6 (точек сетки)*10(функций)*500(операций)*500(шагов по времени) = 2.5*10 12

2500 миллиардов арифметических операций для выполнения одного лишь расчета! А изменение параметров модели? А отслеживание текущей ситуации при изменении входных данных? Подобные расчеты необходимо делать много раз, что накладывает очень жесткие требования на производительность используемых вычислительных систем.

Примеры использования суперкомпьютеров можно найти не только в нефтедобывающей промышленности. Вот лишь небольшой список областей человеческой деятельности, где использование суперкомпьютеров действительно необходимо:

  • автомобилестроение
  • нефте- и газодобыча
  • фармакология
  • прогноз погоды и моделирование изменения климата
  • сейсморазведка
  • проектирование электронных устройств
  • синтез новых материалов
  • и многие, многие другие

В 1995 году корпус автомобиля Nissan Maxima удалось сделать на 10% прочнее благодаря использованию суперкомпьютера фирмы Cray (The Atlanta Journal, 28 мая, 1995г). С помощью него были найдены не только слабые точки кузова, но и наиболее эффективный способ их удаления.

По данным Марка Миллера (Mark Miller, Ford Motor Company), для выполнения crash-тестов, при которых реальные автомобили разбиваются о бетонную стену с одновременным замером необходимых параметров, съемкой и последующей обработкой результатов, компании Форд понадобилось бы от 10 до 150 прототипов новых моделей при общих затратах от 4 до 60 миллионов долларов. Использование суперкомпьютеров позволило сократить число прототипов на одну треть.

Совсем недавний пример - это развитие одной из крупнейших мировых систем резервирования Amadeus, используемой тысячами агенств со 180000 терминалов в более чем ста странах. Установка двух серверов Hewlett-Packard T600 по 12 процессоров в каждом позволила довести степень оперативной доступности центральной системы до 99.85% при текущей загрузке около 60 миллионов запросов в сутки.

И подобные примеры можно найти повсюду. В свое время исследователи фирмы DuPont искали замену хлорофлюорокарбону. Нужно было найти материал, имеющий те же положительные качества: невоспламеняемость, стойкость к коррозии и низкую токсичность, но без вредного воздействия на озоновый слой Земли. За одну неделю были проведены необходимые расчеты на суперкомпьютере с общими затратами около 5 тысяч долларов. По оценкам специалистов DuPont, использование традиционных экспериментальных методов исследований потребовало бы около трех месяцев и 50 тысяч долларов и это без учета времени, необходимого на синтез и очистку необходимого количества вещества.

Увеличение производительности ЭВМ, за счет чего?

А почему суперкомпьютеры считают так быстро? Вариантов ответа может быть несколько, среди которых два имеют явное преимущество: развитие элементной базы и использование новых решений в архитектуре компьютеров.

Попробуем разобраться, какой из этих факторов оказывается решающим для достижения рекордной производительности. Обратимся к известным историческим фактам. На одном из первых компьютеров мира - EDSAC, появившемся в 1949 году в Кембридже и имевшем время такта 2 микросекунды (2*10-6 секунды), можно было выполнить 2*n арифметических операций за 18*n миллисекунд, то есть в среднем 100 арифметических операций в секунду. Сравним с одним вычислительным узлом современного суперкомпьютера Hewlett-Packard V2600: время такта приблизительно 1.8 наносекунды (1.8*10-9 секунд), а пиковая производительность около 77 миллиардов арифметических операций в секунду.

Что же получается? За полвека производительность компьютеров выросла более, чем в семьсот миллионов раз. При этом выигрыш в быстродействии, связанный с уменьшением времени такта с 2 микросекунд до 1.8 наносекунд, составляет лишь около 1000 раз. Откуда же взялось остальное? Ответ очевиден -- использование новых решений в архитектуре компьютеров. Основное место среди них занимает принцип параллельной обработки данных, воплощающий идею одновременного (параллельного) выполнения нескольких действий.

Параллельная обработка данных на ЭВМ

Параллельная обработка данных, воплощая идею одновременного выполнения нескольких действий, имеет две разновидности: конвейерность и собственно параллельность. Оба вида параллельной обработки интуитивно понятны, поэтому сделаем лишь небольшие пояснения.

Параллельная обработка . Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени. Подобные аналогии можно найти и в жизни: если один солдат вскопает огород за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справятся с той же работой за 12 минут - принцип параллельности в действии!

Кстати, пионером в параллельной обработке потоков данных был академик А.А.Самарский, выполнявший в начале 50-х годов расчеты, необходимые для моделирования ядерных взрывов. Самарский решил эту задачу, посадив несколько десятков барышень с арифмометрами за столы. Барышни передавали данные друг другу просто на словах и откладывали необходимые цифры на арифмометрах. Таким образом, в частности, была расчитана эволюция взрывной волны. Работы было много, барышни уставали, а Александр Андреевич ходил между ними и подбадривал. Это, можно сказать, и была первая параллельная система. Хотя расчеты водородной бомбы были мастерски проведены, точность их была очень низкая, потому что узлов в используемой сетке было мало, а время счета получалось слишком большим.

Конвейерная обработка . Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых.

Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции, причем каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Получаем очевидный выигрыш в скорости обработки за счет совмещения прежде разнесенных во времени операций. Предположим, что в операции можно выделить пять микроопераций, каждая из которых выполняется за одну единицу времени. Если есть одно неделимое последовательное устройство, то 100 пар аргументов оно обработает за 500 единиц. Если каждую микрооперацию выделить в отдельный этап (или иначе говорят - ступень) конвейерного устройства, то на пятой единице времени на разной стадии обработки такого устройства будут находится первые пять пар аргументов, а весь набор из ста пар будет обработан за 5+99=104 единицы времени - ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).

Казалось бы конвейерную обработку можно с успехом заменить обычным параллелизмом, для чего продублировать основное устройство столько раз, сколько ступеней конвейера предполагается выделить. В самом деле, пять устройств предыдущего примера обработают 100 пар аргументов за 100 единиц времени, что быстрее времени работы конвейерного устройства! В чем же дело? Ответ прост, увеличив в пять раз число устройств, мы значительно увеличиваем как объем аппаратуры, так и ее стоимость. Представьте себе, что на автозаводе решили убрать конвейер, сохранив темпы выпуска автомобилей. Если раньше на конвейере одновременно находилась тысяча автомобилей, то действуя по аналогии с предыдущим примером надо набрать тысячу бригад, каждая из которых (1) в состоянии полностью собрать автомобиль от начала до конца, выполнив сотни разного рода операций, и (2) сделать это за то же время, что машина прежде находилась на конвейере. Представили себестоимость такого автомобиля? Нет? Согласен, трудно, разве что Ламборгини приходит на ум, но потому и возникла конвейерная обработка...

Краткая история появления параллелизма в архитектуре ЭВМ

Сегодня параллелизмом в архитектуре компьютеров уже мало кого удивишь. Все современные микропроцессоры, будь то Pentium III или PA-8700, MIPS R14000, Е2К или Power3 используют тот или иной вид параллельной обработки. В ядре Pentium 4 на разных стадиях выполнения может одновременно находиться до 126 микроопераций. На презентациях новых чипов и в пресс-релизах корпораций это преподносится как последнее слово техники и передовой край науки, и это действительно так, если рассматривать реализацию этих принципов в миниатюрных рамках одного кристалла.

Вместе с тем, сами эти идеи появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных, компьютерах своего времени. Затем после должной отработки технологии и удешевления производства они спускались в компьютеры среднего класса, и наконец сегодня все это в полном объеме воплощается в рабочих станциях и персональных компьютерах.

Для того чтобы убедиться, что все основные нововведения в архитектуре современных процессоров на самом деле используются еще со времен, когда ни микропроцессоров, ни понятия суперкомпьютеров еще не было, совершим маленький экскурс в историю, начав практически с момента рождения первых ЭВМ.

IBM 701 (1953), IBM 704 (1955): разрядно-параллельная память, разрядно-параллельная арифметика .
Все самые первые компьютеры (EDSAC, EDVAC, UNIVAC) имели разрядно-последовательную память, из которой слова считывались последовательно бит за битом. Первым коммерчески доступным компьютером, использующим разрядно-параллельную память (на CRT) и разрядно-параллельную арифметику, стал IBM 701, а наибольшую популярность получила модель IBM 704 (продано 150 экз.), в которой, помимо сказанного, была впервые применена память на ферритовых сердечниках и аппаратное АУ с плавающей точкой.

IBM 709 (1958): независимые процессоры ввода/вывода .
Процессоры первых компьютеров сами управляли вводом/выводом. Однако скорость работы самого быстрого внешнего устройства, а по тем временам это магнитная лента, была в 1000 раз меньше скорости процессора, поэтому во время операций ввода/вывода процессор фактически простаивал. В 1958г. к компьютеру IBM 704 присоединили 6 независимых процессоров ввода/вывода, которые после получения команд могли работать параллельно с основным процессором, а сам компьютер переименовали в IBM 709. Данная модель получилась удивительно удачной, так как вместе с модификациями было продано около 400 экземпляров, причем последний был выключен в 1975 году - 20 лет существования!

IBM STRETCH (1961): опережающий просмотр вперед, расслоение памяти .
В 1956 году IBM подписывает контракт с Лос-Аламосской научной лабораторией на разработку компьютера STRETCH, имеющего две принципиально важные особенности: опережающий просмотр вперед для выборки команд и расслоение памяти на два банка для согласования низкой скорости выборки из памяти и скорости выполнения операций.

ATLAS (1963): конвейер команд .
Впервые конвейерный принцип выполнения команд был использован в машине ATLAS, разработанной в Манчестерском университете. Выполнение команд разбито на 4 стадии: выборка команды, вычисление адреса операнда, выборка операнда и выполнение операции. Конвейеризация позволила уменьшить время выполнения команд с 6 мкс до 1,6 мкс. Данный компьютер оказал огромное влияние, как на архитектуру ЭВМ, так и на программное обеспечение: в нем впервые использована мультипрограммная ОС, основанная на использовании виртуальной памяти и системы прерываний.

CDC 6600 (1964): независимые функциональные устройства .
Фирма Control Data Corporation (CDC) при непосредственном участии одного из ее основателей, Сеймура Р.Крэя (Seymour R.Cray) выпускает компьютер CDC-6600 - первый компьютер, в котором использовалось несколько независимых функциональных устройств. Для сравнения с сегодняшним днем приведем некоторые параметры компьютера:

  • время такта 100нс,
  • производительность 2-3 млн. операций в секунду,
  • оперативная память разбита на 32 банка по 4096 60-ти разрядных слов,
  • цикл памяти 1мкс,
  • 10 независимых функциональных устройств.
Машина имела громадный успех на научном рынке, активно вытесняя машины фирмы IBM.

CDC 7600 (1969): конвейерные независимые функциональные устройства .
CDC выпускает компьютер CDC-7600 с восемью независимыми конвейерными функциональными устройствами - сочетание параллельной и конвейерной обработки. Основные параметры:

  • такт 27,5 нс,
  • 10-15 млн. опер/сек.,
  • 8 конвейерных ФУ,
  • 2-х уровневая память.

ILLIAC IV (1974): матричные процессоры .

Проект: 256 процессорных элементов (ПЭ) = 4 квадранта по 64ПЭ, возможность реконфигурации: 2 квадранта по 128ПЭ или 1 квадрант из 256ПЭ, такт 40нс, производительность 1Гфлоп;

работы начаты в 1967 году, к концу 1971 изготовлена система из 1 квадранта, в 1974г. она введена в эксплуатацию, доводка велась до 1975 года;

центральная часть: устройство управления (УУ) + матрица из 64 ПЭ;

  • УУ это простая ЭВМ с небольшой производительностью, управляющая матрицей ПЭ; все ПЭ матрицы работали в синхронном режиме, выполняя в каждый момент времени одну и ту же команду, поступившую от УУ, но над своими данными;
  • ПЭ имел собственное АЛУ с полным набором команд, ОП - 2Кслова по 64 разряда, цикл памяти 350нс, каждый ПЭ имел непосредственный доступ только к своей ОП;
  • сеть пересылки данных: двумерный тор со сдвигом на 1 по границе по горизонтали;

Несмотря на результат в сравнении с проектом: стоимость в 4 раза выше, сделан лишь 1 квадрант, такт 80нс, реальная произв-ть до 50Мфлоп - данный проект оказал огромное влияние на архитектуру последующих машин, построенных по схожему принципу, в частности: PEPE, BSP, ICL DAP.

Иерархия памяти.
Иерархия памяти пямого отношения к параллелизму не имеет, однако, безусловно, относится к тем особенностям архитектуры компьютеров, которые имеет огромное значение для повышения их производительности (сглаживание разницы между скоростью работы процессора и временем выборки из памяти). Основные уровни: регистры, кэш-память, оперативная память, дисковая память. Время выборки по уровням памяти от дисковой памяти к регистрам уменьшается, стоимость в пересчете на 1 слово (байт) растет. В настоящее время, подобная иерархия поддерживается даже на персональных компьютерах.

А что же сейчас используют в мире?

По каким же направлениям идет развитие высокопроизводительной вычислительной техники в настоящее время? Основных направлений четыре.

Предположим, что в вашей программе доля операций, которые нужно выполнять последовательно, равна f, где 0

Если 9/10 программы исполняется параллельно, а 1/10 по-прежнему последовательно, то ускорения более, чем в 10 раз получить в принципе невозможно вне зависимости от качества реализации параллельной части кода и числа используемых процессоров (ясно, что 10 получается только в том случае, когда время исполнения параллельной части равно 0).

Посмотрим на проблему с другой стороны: а какую же часть кода надо ускорить (а значит и предварительно исследовать), чтобы получить заданное ускорение? Ответ можно найти в следствии из закона Амдала: для того чтобы ускорить выполнение программы в q раз необходимо ускорить не менее, чем в q раз не менее, чем (1-1/q )-ю часть программы. Следовательно, если есть желание ускорить программу в 100 раз по сравнению с ее последовательным вариантом, то необходимо получить не меньшее ускорение не менее, чем на 99.99% кода, что почти всегда составляет значительную часть программы!

Отсюда первый вывод - прежде, чем основательно переделывать код для перехода на параллельный компьютер (а любой суперкомпьютер, в частности, является таковым) надо основательно подумать. Если оценив заложенный в программе алгоритм вы поняли, что доля последовательных операций велика, то на значительное ускорение рассчитывать явно не приходится и нужно думать о замене отдельных компонент алгоритма.

В ряде случаев последовательный характер алгоритма изменить не так сложно. Допустим, что в программе есть следующий фрагмент для вычисления суммы n чисел:

S = 0 Do i = 1, n s = s + a(i) EndDo (можно тоже самое на любом другом языке)

По своей природе он строго последователен, так как на i-й итерации цикла требуется результат с (i-1)-й и все итерации выполняются одна за одной. Имеем 100% последовательных операций, а значит и никакого эффекта от использования параллельных компьютеров. Вместе с тем, выход очевиден. Поскольку в большинстве реальных программ (вопрос: а почему в большинстве, а не во всех?) нет существенной разницы, в каком порядке складывать числа, выберем иную схему сложения. Сначала найдем сумму пар соседних элементов: a(1)+a(2), a(3)+a(4), a(5)+a(6) и т.д. Заметим, что при такой схеме все пары можно складывать одновременно! На следующих шагах будем действовать абсолютно аналогично, получив вариант параллельного алгоритма.

Казалось бы в данном случае все проблемы удалось разрешить. Но представьте, что доступные вам процессоры разнородны по своей производительности. Значит будет такой момент, когда кто-то из них еще трудится, а кто-то уже все сделал и бесполезно простаивает в ожидании. Если разброс в производительности компьютеров большой, то и эффективность всей системы при равномерной загрузке процессоров будет крайне низкой.

Но пойдем дальше и предположим, что все процессоры одинаковы. Проблемы кончились? Опять нет! Процессоры выполнили свою работу, но результат-то надо передать другому для продолжения процесса суммирования... а на передачу уходит время... и в это время процессоры опять простаивают...

Словом, заставить параллельную вычислительную систему или супер-ЭВМ работать с максимальной эффективность на конкретной программе это, прямо скажем, задача не из простых, поскольку необходимо тщательное согласование структуры программ и алгоритмов с особенностями архитектуры параллельных вычислительных систем .

Заключительный вопрос . Как вы думаете, верно ли утверждение: чем мощнее компьютер, тем быстрее на нем можно решить данную задачу?

Заключительный ответ . Нет, это не верно. Это можно пояснить простым бытовым примером. Если один землекоп выкопает яму 1м*1м*1м за 1 час, то два таких же землекопа это сделают за 30 мин - в это можно поверить. А за сколько времени эту работу сделают 60 землекопов? За 1 минуту? Конечно же нет! Начиная с некоторого момента они будут просто мешаться друг другу, не ускоряя, а замедляя процесс. Так же и в компьютерах: если задача слишком мала, то мы будем дольше заниматься распределением работы, синхронизацией процессов, сборкой результатов и т.п., чем непосредственно полезной работой.

Совершенно ясно, что не все так просто...

Лаборатория Параллельных Информационных Технологий, НИВЦ МГУ

1.2 Параллельная обработка данных

1.2.1 Принципиальная возможность параллельной обработки

Практически все разработанные к настоящему времени алгоритмы являются последовательными. Например, при вычислении выражения a + b × c , сначала необходимо выполнить умножение и только потом выполнить сложение. Если в электронно-вычислительных машин присутствуют узлы сложения и умножения, которые могут работать одновременно, то в данном случае узел сложения будет простаивать в ожидании завершения работы узла умножения. Можно доказать утверждение, состоящее в том, что возможно построить машину, которая заданный алгоритм будет обрабатывать параллельно.

Можно построить m процессоров, которые при одновременной работе выдают нужный результат за один-единственный такт работы вычислителя.

Такие "многопроцессорные" машины теоретически можно построить для каждого конкретного алгоритма и, казалось бы, "обойти" последовательный характер алгоритмов. Однако не все так просто – конкретных алгоритмов бесконечно много, поэтому развитые выше абстрактные рассуждения имеют не столь прямое отношение к практической значимости. Их развитие убедило в самой возможности распараллеливания, явилось основой концепции неограниченного параллелизма, дало возможность рассматривать с общих позиций реализацию так называемых вычислительных сред – многопроцессорных систем, динамически настраиваемых под конкретный алгоритм.

1.2.2 Абстрактные модели параллельных вычислений

Модель параллельных вычислений обеспечивает высокоуровневый подход к определению характеристик и сравнению времени выполнения различных программ, при этом абстрагируются от аппаратного обеспечения и деталей выполнения. Первой важной моделью параллельных вычислений явилась машина с параллельным случайным доступом (PRAM – Parallel Random Access Machine), которая обеспечивает абстракцию машины с разделяемой памятью (PRAM является расширением модели последовательной машины с произвольным доступом RAM – Random Access Machine). Модель BSP (Bulk Synchronous Parallel, массовая синхронная параллельная) объединяет абстракции как разделенной, так и распределенной памяти. Считается, что все процессоры выполняют команды синхронно; в случае выполнения одной и той же команды PRAM является абстрактной SIMD-машиной, (SIMD – Single Instruction stream/Multiple Data stream – одиночный поток команд наряду со множественным потоком данных), однако процессоры могут выполнять и различные команды. Основными командами являются считывание из памяти, запись в память и обычные логические и арифметические операции.

Модель PRAM идеализирована в том смысле, что каждый процессор в любой момент времени может иметь доступ к любой ячейке памяти (Операции записи, выполняемые одним процессором, видны всем остальным процессорам в том порядке, в каком они выполнялись, но операции записи, выполняемые разными процессорами, могут быть видны в произвольном порядке). Например, каждый процессор в PRAM может считывать данные из ячейки памяти или записывать данные в эту же ячейку. На реальных параллельных машинах такого, конечно, не бывает, поскольку модули памяти на физическом уровне упорядочивают доступ к одной и той же ячейке памяти. Более того, время доступа к памяти на реальных машинах неодинаково из-за наличия кэшей и возможной иерархической организации модулей памяти.

Базовая модель PRAM поддерживает конкурентные (в данном контексте параллельные) считывание и запись. Известны подмодели PRAM, учитывающие правила, позволяющие избежать конфликтных ситуаций при одновременном обращении нескольких процессоров к общей памяти.

Моделировать схемы из функциональных элементов с помощью параллельных машин с произвольным доступом (PRAM) позволяет теорема Брента. В качестве функциональных элементов могут выступать как 4 основных (осуществляющих логические операции NOT, AND, OR, XOR – отрицание, логическое И, логическое ИЛИ и исключающее ИЛИ соответственно), более сложные NAND и NOR (И-НЕ и ИЛИ-НЕ), так и любой сложности.

В дальнейшем предполагается, что задержка (т.е. время срабатывания – время, через которое предусмотренные значения сигналов появляются на выходе элемента после установления значений на входах) одинакова для всех функциональных элементов.

Рассматривается схема из функциональных элементов, соединенных без образования циклов (предполагаем, что функциональные элементы имеют любое количество входов, но ровно один выход – элемент с несколькими выходами можно заменить несколькими элементами с единственным выходом). Число входов определяет входную степень элемента, а число входов, к которым подключен выход элемента – его выходной степенью. Обычно предполагается, что входные степени всех используемых элементов ограничены сверху, выходные же степени могут быть любыми. Под размером схемы понимается количество элементов в ней, наибольшее число элементов на путях от входов схемы к выходу элемента называется глубиной этого элемента (глубина схемы равна наибольшей из глубин составляющих ее элементов).

Рисунок 1. Моделирование схемы размера 15, глубины 5 с двумя процессорами с помощью параллельной машины с произвольным доступом (PRAM – машина)

На рисунке 1 приведен результат моделирования схемы размером (общее количество процессоров) n=15 при глубине схемы (максимальное число элементов на каждом из уровней глубины) d=5 с числом процессоров p=2 (одновременно моделируемые элементы объединены в группы прямоугольными областями, причем для каждой группы указан шаг, на котором моделируются ее элементы; моделирование происходит последовательно сверху вниз в порядке возрастания глубины, на каждой глубине по р штук за раз). Согласно теоремы Брента моделирование такой схемы займет не более ceil(15/2+1)=9 шагов.

Увеличение производительности ЭВМ, за счет чего?

А почему суперкомпьютеры считают так быстро? Вариантов ответа может быть несколько, среди которых два имеют явное преимущество: развитие элементной базы и использование новых решений в архитектуре компьютеров.

Попробуем разобраться, какой из этих факторов оказывается решающим для достижения рекордной производительности. Обратимся к известным историческим фактам. На одном из первых компьютеров мира - EDSAC, появившемся в 1949 году в Кембридже и имевшем время такта 2 микросекунды (2*10-6 секунды), можно было выполнить 2*n арифметических операций за 18*n миллисекунд, то есть в среднем 100 арифметических операций в секунду. Сравним с одним вычислительным узлом современного суперкомпьютера Hewlett-Packard V2600: время такта приблизительно 1.8 наносекунды (1.8*10-9 секунд), а пиковая производительность около 77 миллиардов арифметических операций в секунду.

Что же получается? За полвека производительность компьютеров выросла более, чем в семьсот миллионов раз. При этом выигрыш в быстродействии, связанный с уменьшением времени такта с 2 микросекунд до 1.8 наносекунд, составляет лишь около 1000 раз. Откуда же взялось остальное? Ответ очевиден -- использование новых решений в архитектуре компьютеров. Основное место среди них занимает принцип параллельной обработки данных, воплощающий идею одновременного (параллельного) выполнения нескольких действий.

Параллельная обработка данных, воплощая идею одновременного выполнения нескольких действий, имеет две разновидности: конвейерность и собственно параллельность. Оба вида параллельной обработки интуитивно понятны, поэтому сделаем лишь небольшие пояснения.

Параллельная обработка . Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени. Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени. Подобные аналогии можно найти и в жизни: если один солдат вскопает огород за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справятся с той же работой за 12 минут - принцип параллельности в действии!

Кстати, пионером в параллельной обработке потоков данных был академик А.А.Самарский, выполнявший в начале 50-х годов расчеты, необходимые для моделирования ядерных взрывов. Самарский решил эту задачу, посадив несколько десятков барышень с арифмометрами за столы. Барышни передавали данные друг другу просто на словах и откладывали необходимые цифры на арифмометрах. Таким образом, в частности, была расчитана эволюция взрывной волны. Работы было много, барышни уставали, а Александр Андреевич ходил между ними и подбадривал. Это, можно сказать, и была первая параллельная система. Хотя расчеты водородной бомбы были мастерски проведены, точность их была очень низкая, потому что узлов в используемой сетке было мало, а время счета получалось слишком большим.



Конвейерная обработка . Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых.

Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции, причем каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Получаем очевидный выигрыш в скорости обработки за счет совмещения прежде разнесенных во времени операций. Предположим, что в операции можно выделить пять микроопераций, каждая из которых выполняется за одну единицу времени. Если есть одно неделимое последовательное устройство, то 100 пар аргументов оно обработает за 500 единиц. Если каждую микрооперацию выделить в отдельный этап (или иначе говорят - ступень) конвейерного устройства, то на пятой единице времени на разной стадии обработки такого устройства будут находится первые пять пар аргументов, а весь набор из ста пар будет обработан за 5+99=104 единицы времени - ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).

Казалось бы конвейерную обработку можно с успехом заменить обычным параллелизмом, для чего продублировать основное устройство столько раз, сколько ступеней конвейера предполагается выделить. В самом деле, пять устройств предыдущего примера обработают 100 пар аргументов за 100 единиц времени, что быстрее времени работы конвейерного устройства! В чем же дело? Ответ прост, увеличив в пять раз число устройств, мы значительно увеличиваем как объем аппаратуры, так и ее стоимость. Представьте себе, что на автозаводе решили убрать конвейер, сохранив темпы выпуска автомобилей. Если раньше на конвейере одновременно находилась тысяча автомобилей, то действуя по аналогии с предыдущим примером надо набрать тысячу бригад, каждая из которых (1) в состоянии полностью собрать автомобиль от начала до конца, выполнив сотни разного рода операций, и (2) сделать это за то же время, что машина прежде находилась на конвейере. Представили себестоимость такого автомобиля? Нет? Согласен, трудно, разве что Ламборгини приходит на ум, но потому и возникла конвейерная обработка...

суперкомпьютер - это очень мощная ЭВМ с производительностью свыше 10 MFLOPS . Сегодня этот результат перекрывают уже не только рабочие станции, но, по пиковой производительности , и ПК. В начале 1990-х годов границу проводили уже около отметки в 300 MFLOPS . В 2001 году специалисты двух ведущих "суперкомпьютерных" стран, США и Японии, договорились о подъеме планки до 5 GFLOPS .

Таким образом, основные признаки, характеризующие супер-ЭВМ , следующие:

  • самая высокая производительность;
  • самый современный технологический уровень (например, GaAs -технология);
  • специфические архитектурные решения, направленные на повышение быстродействия (например, наличие операций над векторами);
  • цена, обычно свыше 1-2 млн. долларов.

Какой из факторов является решающим в достижении современных фантастических показателей производительности? Обратимся к историческим фактам. На одном из самых первых компьютеров EDSAC (1949 г.), имевшем время такта 2 мкс, можно было выполнить в среднем 100 арифметических операций в секунду. А пиковая производительность суперкомпьютера CRAY C90 с временем такта порядка 4 нс - около 1 миллиарда арифметических операций в секунду. Таким образом, производительность компьютеров за этот период возросла примерно в 10 миллионов раз, а время такта уменьшилось лишь в 500 раз. Следовательно, увеличение производительности происходило и за счет других факторов, важнейшим среди которых является использование новых архитектурных решений, в частности - принципа параллельной обработки данных .

Имеет две разновидности: конвейерность и параллельность.

Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции , причем так, чтобы каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Выигрыш в скорости обработки данных получается за счет совмещения прежде разнесенных во времени операций.

Параллельная обработка данных предполагает наличие нескольких функционально независимых устройств.

Закон Амдала

Закон Амдала

S<= 1/

где S - ускорение, f - доля операций, которые нужно выполнить последовательно, p - число процессоров.

Следствие из закона Амдала : для того чтобы ускорить выполнение программы в q раз, необходимо ускорить не менее чем в q раз и не менее чем (1-1/q) -ую часть программы. Следовательно, если нужно ускорить программу в 100 раз по сравнению с ее последовательным вариантом, то необходимо получить не меньшее ускорение на не менее чем 99,99 % кода!

История появления параллелизма в архитектуре ЭВМ

Все современные процессоры используют тот или иной вид

  • 1974 г. - ALLIAC: матричные процессоры (УУ + матрица из 64 процессоров).
  • 1976 г. - CRAY1: векторно-конвейерные процессоры. Введение векторных команд, работающих с целыми массивами независимых данных.