Защита информации в беспроводных сетях. Средства защиты беспроводных сетей

25.04.2019 Роутеры и модемы

Итак, вы купили беспроводной адаптер, подключили его в сеть, настроили подключение к интернету – и у вас наступила полная беспроводная свобода. Теперь для доступа в сеть не нужно подключать кабель, достаточно лишь быть в зоне покрытия беспроводной сети – а это намного проще и удобнее. Однако это просто и удобно не только для вас. Ведь, в отличие от проводных сетей, для того, чтобы взломать беспроводные сети, достаточно оказаться в зоне их действия, которая может распространяться за пределы зданий.

Не стоит думать, что вам нечего опасаться в том случае, если вы установили беспроводную сеть дома. Конечно, вряд ли на вашем домашнем компьютере будет храниться какая-то конфиденциальная информация (хотя может быть и такое), и самое большее, на что может рассчитывать злоумышленник – это ваш личный фотоархив и подборка любимой музыки. Однако главная опасность взлома домашних беспроводных сетей состоит не в этом. Обычно предметом интереса хакеров становится ваш доступ в интернет.

Если вы платите за интернет в зависимости от потребляемого трафика, такое несанкционированное подключение может привести к лишним расходам. Счастливые обладатели безлимитных тарифов тоже не могут чувствовать себя спокойно, конечно, если их доступом в интернет начнет пользоваться кто-то еще, они финансово не пострадают. Но при этом есть опасность того, что скорость вашего соединения упадет – это особенно актуально, если любитель халявы не будет скромничать и начнет использовать пиринг через ваш канал на полную катушку.

Ну а говорить о необходимости защиты беспроводных сетей на предприятии не приходится – работа современной организации часто настолько зависит от IT-инфраструктуры, что сбои и нарушения защиты локальных сетей могут полностью разрушить эффективную деятельность.

Шифрование

Шифрование – это один из самых очевидных способов защиты беспроводной сети. В теории все просто – для того, чтобы пользовательское устройство смогло подключиться к беспроводной сети, они должно тем или иным способом подтвердить свое право с помощью аутентификации. Таким образом, для защиты информации в компьютерных сетях достаточно лишь ограничить доступ к сети при помощи паролей или других средств аутентификации.

Исторически первым таким способом защиты беспроводных сетей стало шифрование алгоритмом WEP. Какое-то время назад алгоритм предоставлял достаточно надежную защиту беспроводных сетей, однако в 2001 году криптоаналитиками было проведено несколько исследований, которые обращали внимание на определенные уязвимости этого алгоритма, из-за которых защищенное этим алгоритмом соединение взламывается в течение нескольких минут. Несмотря на то, что такое шифрование лучше, чем передача данных по прямому, незашифрованному соединению, в качестве защиты беспроводных сетей от хакеров беспроводных сетей оно не подходит. Несмотря на это, до сих пор существует большое количество беспроводных сетей, которые защищены именно этим алгоритмом. Это связано с тем, что устаревшее оборудование не поддерживает современные способы защиты информации в компьютерных сетях. Однако, несмотря на ошибки реализации одного способа шифрования, этот подход к защите информации в сетях достаточно эффективен. Поэтому вслед за WEP появился другой алгоритм, лишенный недостатков своего предшественника – WPA.

Помимо устранения ошибок в алгоритме шифрования, этот способ защиты применял новый расширенный протокол аутентификации EAP, временный протокол целостности ключа TKIP и механизм проверки целостности сообщений MIC. Казалось бы, этот внушительный набор технологий должен обеспечивать высокий уровень защиты компьютерных сетей. Однако не так давно, в 2009 году были представлены доказательства того, что любое соединение, защищенное этим протоколом, может быть взломано (причем, при удачных сочетаниях настроек, преодоление защиты компьютерных сетей занимает около 1 минуты). Впрочем, шифрование в качестве метода защиты беспроводных сетей не собирается сдавать свои позиции. В 2004 году, задолго до того, как WPA оказался скомпрометирован, был разработан новый протокол WPA 2. Основное отличие от WPA – это смена принципиально уязвимого способа шифрования RC4 на более стойкий алгоритм AES. На данный момент нет сообщений о том, что такая защита компьютерных сетей может быть взломана.

Однако серьезным камнем преткновения полного внедрения такого современного и стойкого к способам обхода защиты беспроводных сетей от хакеров беспроводных сетей, как WPA2, является его поддержка со стороны клиентских устройств. Нет никаких проблем, если вы развертываете сеть с нуля – все современные устройства, выпущенные после 2006 года, поддерживают этот способ защиты информации в сетях. Однако, если у вас есть беспроводные устройства, которые вы хотели бы использовать в беспроводных сетях, и они при этом не поддерживают WPA2, то не стоит забывать, что шифрование – это не единственный эффективный способ защиты компьютерных сетей.

Фильтрация по MAC-адресам

Достаточно эффективен такой способ защиты локальных сетей, как фильтрация доступа по MAC-адресам. MAC-адрес – это уникальный номер сетевого интерфейса (сетевой карты). Таким образом, зная заранее MAC-адреса доверенных устройств, можно настроить защиту беспроводной сети. Однако, поскольку на современном сетевом оборудовании можно менять заводской MAC-адрес, этот способ защиты информации в сети может оказаться неэффективным. Ведь если злоумышленник каким-то образом получит доступ к доверенному устройству, он может скопировать его MAC-адрес, и, в дальнейшем, использовать его для проникновения в сеть с любого другого устройства (если оно, конечно, поддерживает смену MAC-адреса). Тем не менее, этот способ можно использовать в дополнении с другими, и тем самым усилить защиту беспроводной сети.

Скрытие SSID

Для того, чтобы что-то взломать, это что-то нужно увидеть или по крайней мере знать о его существовании. И если для защиты локальной сети такой способ плохо подходит (попробуйте спрятать провода), то для защиты беспроводных сетей это довольно красивый выход. Дело в том, что по умолчанию точка доступа постоянно транслирует свой SSID – идентификатор беспроводной сети. Именно этот идентификатор замечает сетевая карта вашего ноутбука или коммуникатора, когда на нем появляется сообщение о том, что обнаружена новая беспроводная сеть. Несмотря на то, что отмена трансляции SSID не делает обнаружение сетей в принципе невозможным, злоумышленнику будет гораздо труднее ее обнаружить и еще труднее – подключиться к такой сети. Впрочем, у такого способа защиты информации в сетях есть и определенные недостатки: при подключении новых устройств к существующей беспроводной сети потребуется ввести название сети вручную.

Вообще, такой способ защиты информации, как VPN, был придуман не столько для защиты беспроводных сетей, сколько для того, чтобы организовывать защищенное подключение к удаленной локальной сети через интернет. Однако эта технология прекрасно работает в беспроводных сетях и отлично подходит для защиты локальных сетей. В этом случае сама беспроводная сеть может быть полностью лишена другой защиты, однако при этом в ней не будет открытых ресурсов – все уязвимые ресурсы находятся в виртуальной сети, единственный интерфейс в которую доступен только через беспроводную сеть. Современные алгоритмы шифрования обеспечивают высокую стойкость такого соединения и надежную защиту информации в компьютерных сетях.

Тема защиты беспроводных сетей достаточно обширна, однако общие правила защиты информации в сетях в общем-то одинаковы. Если вы хотите получить по-настоящему стойкую к взлому защиту компьютерных сетей, то лучше комбинировать несколько способов защиты.

Сочетание многослойной системы защиты локальной сети (наиболее продвинутый вариант шифрования, скрытие SSID, фильтрация MAC-адресов и передача данных по VPN) позволит получить эффективную защиту информации в компьютерных сетях. Однако, в погоне за эффективностью постарайтесь соблюдать баланс между надежностью защиты и удобством использования – ведь чем больше в вашей беспроводной сети будет различных проверок и препятствий, тем сложнее ей будет пользоваться. Поэтому, задумываясь о защите локальной сети, подумайте о вероятности хакерской атаки на вашу сеть – не стоит перегружать сеть неоправданными мерами защиты, это может отрицательно сказаться на производительности и привести к потерям пропускной способности.

Невероятно быстрые темпы внедрения в современных сетях беспроводных решений заставляют задуматься о надежности защиты данных.

Сам принцип беспроводной передачи данных заключает в себе возможность несанкционированных подключений к точкам доступа.

Не менее опасная угроза - вероятность хищения оборудования. Если политика безопасности беспроводной сети построена на МАС-адресах, то сетевая карта или точка доступа, украденная злоумышленником, может открыть доступ к сети.

Часто несанкционированное подключение точек доступа к ЛВС выполняется самими работниками предприятия, которые не задумываются о защите.

Решением подобных проблем нужно заниматься комплексно. Организационные мероприятия выбираются исходя из условий работы каждой конкретной сети. Что касается мероприятий технического характера, то весьма хорошей результат достигается при использовании обязательной взаимной аутентификации устройств и внедрении активных средств контроля.

В 2001 году появились первые реализации драйверов и программ, позволяющих справиться с шифрованием WEP. Самый удачный - PreShared Key. Но и он хорош только при надежной шифрации и регулярной замене качественных паролей (рис.1).

Рисунок 1 - Алгоритм анализа зашифрованных данных

Современные требования к защите

Аутентификация

В настоящее время в различном сетевом оборудовании, в том числе в беспроводных устройствах, широко применяется более современный способ аутентификации, который определен в стандарте 802.1х - пока не будет проведена взаимная проверка, пользователь не может ни принимать, ни передавать никаких данных.

Ряд разработчиков используют для аутентификации в своих устройствах протоколы EAP-TLS и PEAP, Cisco Systems, предлагает для своих беспроводных сетей, помимо упомянутых, следующие протоколы: EAP-TLS, РЕАР, LEAP, EAP-FAST.

Все современные способы аутентификации подразумевают поддержку динамических ключей.

Главный недостаток LEAP и EAP-FAST - эти протоколы поддерживаются в основном в оборудовании Cisco Systems (рис. 2).

Рисунок 2 - Структура пакета 802.11x при использовании TKIP-PPK, MIC и шифрации по WEP.

Шифрование и целостность

На основании рекомендаций 802.11i Cisco Systems реализован протокол ТКIР (Temporal Integrity Protocol), обеспечивающий смену ключа шифрования РРК (Per Packet Keying) в каждом пакете и контроль целостности сообщений MIC (Message Integrity Check).

Другой перспективный протокол шифрования и обеспечения целостности - AES (Advanced Encryption Standart). Он обладает лучшей криптостойкостью по сравнению DES и ГОСТ 28147-89. Он обеспечивает и шифрацию, и целостность.



Заметим, что используемый в нем алгоритм (Rijndael) не требует больших ресурсов ни при реализации, ни при работе, что очень важно для уменьшения времени задержки данных и нагрузки на процессор.

Стандарт обеспечения безопасности в беспроводных локальных сетях - 802,11i.

Стандарт Wi-Fi Protected Access (WPA) - это набор правил, обеспечивающих реализацию защиты данных в сетях 802.11х. Начиная с августа 2003 года соответствие стандартам WPA является обязательным требованием к оборудования, сертифицируемому на звание Wi-Fi Certified.

В спецификацию WPA входит измененный протокол TKOP-PPK. Шифрование производится на сочетании нескольких ключей - текущего и последующего. При этом длина IV увеличена до 48 бит. Это дает возможность реализовать дополнительные меры по защите информации, к примеру ужесточить требования к реассоциациям, реаутентификациям.

Спецификации предусматривают и поддержку 802.1х/EAP, и аутентификацию с разделяемым ключом, и, несомненно, управление ключами.

Таблица 3 - Способы реализации политики безопасности

Продолжение таблицы 3

При условии использования современного оборудования и ПО в настоящее время вполне возможно построить на базе стандартов серии 802.11х защищенную и устойчивую к атакам беспроводную сеть.

Почти всегда беспроводная сеть связана с проводной, а это, помимо необходимости защищать беспроводные каналы, необходимо обеспечивать защиты в проводных сетях. В противном случае сеть будет иметь фрагментарную защиту, что, по сути, является угрозой безопасности. Желательно использовать оборудование, имеющее сертификат Wi-Fi Certified, то есть подтверждающий соответствие WPA.

Нужно внедрять 802.11х/EAP/TKIP/MIC и динамическое управление ключами. В случае смешанной сети следует использовать виртуальные локальные сети; при наличии внешних антенн применяется технология виртуальных частных сетей VPN.

Необходимо сочетать как протокольные и программные способы защиты, так и административные.

ГЛАВА 3 ТЕХНИЧЕСКАЯ ЗАЩИТА ИНФОРМАЦИИ

В связи с бурным развитием локальных и глобальных вычислительных сетей широкое развитие получили и методы разведки (промышленного шпионажа), направленные на перехват информации, обрабатываемой (передаваемой, хранящейся) в локальных сетях.

Проникновение в локальную сеть какой-либо организации возможно только при недостаточно квалифицированной настройке всех элементов локальной сети администратором системы. В случае же грамотной настройки, злоумышленникам необходимо изыскивать методы добывания информации, не связанные с проникновением в локальную сеть. Для этого используются методы перехвата информации по каналам побочных излучений и наводок (ПЭМИН) элементов локальной сети. Методика защиты отдельных компьютеров достаточно хорошо проработана, подкреплена необходимыми нормативными документами. Задача же защиты информации от утечки по каналам ПЭМИН в локальной сети существенно сложнее, чем для автономно используемых устройств.

Источниками электромагнитных излучений в локальной сети являются рабочие станции и активное сетевое оборудование. Для защиты от утечки информации по каналам побочных излучений и наводок применяется экранирование этого оборудования. Для снижения уровня излучений активного оборудования локальной сети оборудование и серверы лучше всего размещать в экранированном шкафу.

Для компьютеров в настоящее время доступны корпуса, удовлетворяющих требования Европейской Директивы по электромагнитной совместимости (European EMS Directive 89/336/EEC). Современные корпуса позволяют значительно ослабить излучения элементов компьютера, но большинство требует дополнительной доработки. Качество экранирования корпуса системного блока компьютера влияет на уровень излучения всех устройств, подключенных к системному блоку (например, клавиатуры). Стандартная клавиатура обычно имеет очень высокий уровень излучения. В тоже время с клавиатуры вводятся очень критичные с точки зрения безопасности данные, включая пароли пользователей и администратора системы. Для перехвата излучения клавиатуры может использоваться простой коротковолновый приемник. Учитывая также, что данные, вводимые с клавиатуры, вводятся в последовательном коде и поэтому могут быть легко интерпретированы, излучения, создаваемые клавиатурой, следует считать наиболее опасными. Результаты измерений уровня электрической (рис.3) и магнитной (рис.4) составляющих показал, что у компьютеров с различными серийно выпускаемыми корпусами системных блоков мощность побочных излучений от клавиатуры может отличаться более чем в 100 раз.

Рисунок 3 - Уровни электрической составляющей

Рисунок 4 - Уровни магнитной составляющей

Аналогичные соотношения получаются и для других устройств, входящих в состав ПК.

Задача доработки стандартных корпусов и шкафов:

Во-первых, в местах соединения отдельных конструкций корпуса всегда есть щели, существенно ухудшающие экранирующие свойства.

Во-вторых, корпус электронного прибора не может быть герметичным так как нужны вентиляционные отверстия для отвода тепла.

В-третьих, конструкция экранирующего корпуса не может быть рассчитана заранее. Поэтому доработка стандартного корпуса с целью улучшения его экранирующих свойств это всегда экспериментальная работа.

Сейчас существует множество материалов, предназначенных для улучшения экранирующих свойств корпусов - всевозможные пружинящие уплотнители, электропроводящие эластомеры, самоклеющиеся металлизированные покрытия.

Источником излучения является блок питания. Внутрь питание подается через фильтр, препятствующий распространению побочных излучений вдоль проводов. Но рассчитать фильтр для полного подавления излучений практически невозможно, так как на его характеристики влияют очень многие параметры внешней сети. Ни один серийно изготавливаемый фильтр не может полностью выполнять свои функции в широкой полосе частот. Хорошие фильтры - это компромиссное решение, которое только в большинстве случаев удовлетворяет предъявляемым к фильтру требованиям.

В зависимости от этого характеристики по защите информации от утечки по каналам ПЭМИН автономного компьютера или компьютера в составе сети, могут существенно отличаться. И основным фактором, приводящим к различию характеристик, является заземление устройств.

В автономных устройствах заземление не улучшает и не ухудшает их экранирующих свойств. Заземление необходимо только по требованиям техники электробезопасности. При грамотно выполненном заземлении уровень побочных излучений несколько снижается. Но в некоторых случаях при подключении заземления уровень побочных излучений может и увеличиться.

Кабельная система не содержит активных элементов, поэтому сама по себе она не может быть источником побочных излучений. Однако кабельная система связывает между собой все элементы компьютерной сети. По ней передаются сетевые данные и она является также приемником всех наводок и средой для переноса побочных электромагнитных излучений (рис.5).

Рисунок 5 - Побочные электромагнитные излучения

Поэтому следует различать:

Побочное излучение, вызванное передаваемыми по данной линии сигналами (трафиком локальной сети);

Прием и последующее переизлучение побочных излучений от расположенных вблизи других линий и устройств;

Излучение кабельной системой побочных колебаний от элементов сетевого активного оборудования и компьютеров, к которым подключен кабель.

Чаще всего при оценке защищенности кабельной системы интересуются только тем, насколько ослабляется побочное излучение, вызванное сигналами, передаваемые по кабелю в процессе сетевого обмена информацией.

Если по радиоизлучению кабельной системы можно восстановить трафик в локальной сети, то это представляет большую опасность. На самом деле трафик локальной сети достаточно хорошо защищен от утечки информации по каналам ПЭМИН. Современные кабели для локальных сетей имеют очень низкий уровень излучения передаваемых сигналов. В этих кабелях сигналы передаются по витой паре проводов, причем количество скруток на единицу длины строго постоянно. В принципе такая система вообще не должна излучать. Более того, наличие экрана у витой пары очень мало влияет на уровень излучения сигналов, передаваемых по витой паре. В реальной системе всегда имеют место отдельные неоднородности кабеля которые влияет на уровень побочного излучения, возникающего в процессе сетевого обмена. Реально на расстоянии буквально единиц метров уже невозможно по электромагнитному излучению современного кабеля перехватить передаваемую по нему информацию. Но в большинстве практических случаев кабельная система - это отличная антенна для всех побочных излучений оборудования, подключенного к сети. Побочные излучения, возникающие в элементах компьютера, наводятся на все провода кабеля локальной сети (рис.6).

Рисунок 6 - Побочные излучения в элементах компьютера

Вследствие этого для побочных излучений элементов компьютера кабель локальной сети необходимо рассматривать просто как одиночный многожильный провод, выходящий за пределы экранированного объема. Поставить для этих проводов фильтр, подавляющий побочные излучения, невозможно. Подавляя побочные излучения, мы подавим и сетевой трафик. Таким образом, если компьютер с защитой информации включить в локальную сеть на неэкранированной витой паре, то провода витой пары, играя роль антенны, могут усилить напряженность поля, создаваемого, например, клавиатурой компьютера (рис. 2, рис. 3), в десятки тысяч раз. Поэтому неэкранированная витая пара не может применяться в локальной сети, в которой обрабатывается информация с ограниченным доступом. Применение же экранированной витой пары значительно улучшают ситуацию.

Локальная компьютерная сеть в настоящее время уже не может эксплуатироваться автономно, без взаимодействия с другими сетями. В частности, любая организация, будь то частное предприятие, орган государственного управления или отдел МВД, должна быть активно представлена в глобальной сети интернет. Это и собственный сайт, и общедоступная электронная почта, и доступ сотрудников к информации глобальной сети. Такое тесное взаимодействие вступает в конфликт с требованиями обеспечения безопасности. При взаимодействии нескольких сетей могут возникать различные угрозы безопасности. Например, при подключении к глобальной сети самой безобидной из возможных угроз является взлом сети из хулиганских побуждений. В компьютерных сетях государственных органов власти циркулирует информация, представляющая интерес для иностранных разведок. В компьютерных сетях МВД циркулирует информация, представляющая интерес для криминала. Эта информация может и не иметь грифа секретности. Однако в совокупности позволяет получить довольно важные сведения. Поэтому, в случае объединения компьютерных сетей государственных органов с глобальной сетью интернет кроме хулиганских взломов следует предполагать и более квалифицированные попытки проникновения в сеть злоумышленников. Противостоять таким попыткам крайне сложно. Поэтому сеть интернет необходимо изолировать от внутренней сети, в которой сосредоточены обобщенные данные. Известно несколько способов изоляции собственной компьютерной сети от глобальной сети интернет с целью обеспечения безопасности. В сетях, в которых не циркулирует информация с ограниченным доступом, для изоляции сетей как правило достаточно использовать маршрутизатор. Но серьезную защиту от вторжения из глобальной сети можно обеспечить только при применением межсетевых экранов (FireWall). Поэтому для защиты корпоративной информации коммерческих фирм необходимо применение межсетевых экранов. Однако, для защиты информации в государственных органах как правило межсетевой экран не обеспечивает требуемого уровня защиты. Наиболее полно безопасность обеспечивается только в случае физической изоляции сети интернет от собственной локальной сети. Безусловно, это создает определенные неудобства в работе и требует дополнительных затрат при создании компьютерной сети. Однако в условиях необходимости противодействия криминалу это оправданная мера.

При построении сетей с физической изоляцией также необходимо учитывать вопросы защиты от утечки информации по каналам ПЭМИН. Во многих случаях сотруднику, работающему с информацией ограниченного доступа необходима и возможность выхода в интернет. На рабочем месте устанавливается два компьютера, один из которых подключен к локальной сети предприятия (организации), а второй к сети интернет. В этом случае кабели собственной сети с защитой информации и кабели открытой сети интернет очень трудно разнести на достаточное расстояние. Вследствие этого информация, циркулирующая в локальной сети, а также все побочные излучения компьютеров, наведенные на кабели локальной сети, могут наводиться и на кабели открытой сети интернет. Мало того, что кабель открытой сети это достаточно длинная антенна (особенно когда открытая сеть проложена неэкранированным кабелем). Кабели открытой сети как правило выходят за границы охраняемой территории, поэтому снять информацию можно не только путем перехвата излучений, но и путем непосредственного подключения к кабелям открытой сети. Поэтому кабели открытой сети также должны быть проложены в соответствии со всеми рекомендациями, выполняемыми при построении сети с защитой информации.

ГЛАВА 4. РАЗРАБОТКА ЛОКАЛЬНОЙ СЕТИ С ПОВЫШЕННЫМИ ТРЕБОВАНИЯМИ К ЗАЩИТЕ ИНФОРМАЦИИ

"…Защита информации и беспроводные сети?
А что, разве это не взаимоисключающие понятия?"
Из разговора на выставке "Связьэкспоком-2004
"

Устройства беспроводной связи на базе стандартов 802.11х очень агрессивно продвигаются сегодня на рынке сетевого оборудования. Это и не удивительно: удобство работы для мобильных и квазимобильных пользователей, организация коммерческих и корпоративных хот-спотов, "последняя миля", связь локальных сетей (ЛС) между собой - все это далеко не полный перечень оснований для внедрения таких решений. И действительно, количество всевозможного работающего оборудования стандартов 802.11х в мире впечатляет: по данным компании J"son & Partners, число только хот-спотов в конце 2003 г. превысило 43 тыс., а к концу 2004 г. оно должно достигнуть 140 тыс. Доля России в этих показателях невелика, однако количество сетей беспроводной связи (и хот-спотов в том числе) и у нас неуклонно растет. Заметим также, что в нашей стране более 80% корпоративных сетей беспроводной связи построено на "старейшем" и наиболее часто используемом оборудовании - Cisco Aironet.

Но впечатляют не только цифры; гораздо удивительнее количество заблуждений, связанных с обеспечением безопасной передачи данных в таких сетях. Разброс мнений здесь самый широкий: от полного доверия ко всякому оборудованию и любым его настройкам до нелестных характеристик того рода, что мы привели в качестве эпиграфа.

802.11х - восприимчивость к угрозам извне

Сама суть беспроводной передачи данных таит в себе возможность несанкционированных подключений к точкам доступа, перехвата данных и прочих неприятностей. Отсутствие кабеля, который организационно несложно защитить, вызывает ощущение неприятной открытости и доступности.

Стоит упомянуть о "непротокольных" угрозах - именно они и составляют основу проблемы. При разработке беспроводной корпоративной сети администраторы в первую очередь заботятся о качественном покрытии территории офиса. Очень часто никто просто не берет в расчет, что коварные хакеры могут подключиться к сети прямо из автомобиля, припаркованного на улице. Кроме того, бывают ситуации, когда в принципе нельзя ликвидировать саму возможность "слышать" передаваемый трафик. Пример - внешние антенны. Кстати, в странах СНГ соединение ЛС офисов между собой с помощью "беспроводки" - весьма популярное решение.

Не менее опасная угроза - возможность хищения оборудования. Если политика безопасности беспроводной сети построена на МАС-адресах, то любой компонент (сетевая карта, точка доступа), украденный злоумышленником, моментально делает эту сеть открытой.

И, наконец, проблема "слишком умных" пользователей. Часто несанкционированное подключение точек доступа к ЛС - дело рук самих сотрудников организации. Причем делается это исключительно для удобства работы, иногда даже с благими намерениями. Конечно же, защиту информации при подключении к сети таких устройств эти сотрудники обеспечивают тоже самостоятельно и не всегда представляют себе последствия такой "самозащиты".

Решением этих и подобных проблем нужно заниматься комплексно. Заметим сразу, что организационные мероприятия в рамках данной статьи не рассматриваются, - они чаще всего выбираются на основании условий работы каждой конкретной сети. Что касается мероприятий технического свойства, то весьма хороший результат дают обязательная взаимная аутентификация устройств и внедрение активных (например, Observer 8.3, Airopeek NX 2.01, Wireless Sniffer 4.75) и пассивных (таких, как APTools 0.1.0, xprobe 0.0.2) средств контроля.

Уязвимость "старых" методов защиты

Защитой данных в беспроводных сетях комитет IEEE 802.11 занимался всегда. К сожалению, методы обеспечения безопасности сетей 802.11х на этапе их начального развития (1997-1998 гг.) использовались, мягко говоря, неудачные. Они включали шифрование по протоколу WEP (Wired Equivalent Privacy) и аутентификацию: на основании МАС-адреса, открытую (Open) и по разделяемому ключу (PreShared Key).

Рассмотрим перечисленные методы по порядку. Классический протокол шифрования WEP, разработанный компанией RSA Data Security, использует 40-разрядный ключ, который складывается со сгенерированным вектором инициализации (IV, его длина 24 бит). С помощью полученного ключа по алгоритму RC4 шифруются пользовательские данные и контрольная сумма. Вектор IV передается в открытом виде.

Первый минус этого способа - 40-разрядного ключа недостаточно для спокойствия. Даже DES с его 56-разрядным ключом давно признан ненадежным. Второй минус - неизменяемость ключа; применение статичного ключа упрощает проблему взлома. Раз уж 40-разрядный ключ ненадежен, хотелось бы его менять почаще. И, наконец, сам подход к шифрованию весьма сомнителен. Размер IV - 24 бит, значит, он повторится не позднее чем через 5 ч (длина пакета 1500 байт, скорость 11 Мбит/с).

Никита Борисов, Йэн Голдберг и Дэвид Вагнер первыми изучили эту проблему, и уже в 2001 г. появились первые реализации драйверов и программ, позволяющих справиться с шифрованием WEP. Документ, описывающий эту уязвимость, опубликован по адресу: http://www.isaac.cs.berkeley.edu/isaac/wep-faq.htm l.

Способы аутентификации тоже не слишком надежны. Например, ничего не стоит "подслушать" всю процедуру аутентификации по МАС-адресу - ведь МАС-адреса в кадре передаются незашифрованными. Если злоумышленник знает о принятом способе аутентификации - он уже практически готов войти в сеть. Самый надежный из перечисленных способов - PreShared Key, но и он хорош только при надежном шифровании и регулярной замене качественных паролей.

Распространено заблуждение, что применение уникального Service Set ID (SSID) позволяет избежать несанкционированных подключений. Увы, SSID пригоден лишь для логического разбиения сетевых устройств на группы - не более того. Единственное, что можно сделать с помощью SSID, - это смутить юного хакера использованием "непечатных" символов. Точки доступа (Access Point, AP), например, от Cisco Systems позволяют сделать это (можно указывать символы, входящие в SSID в шестнадцатеричном виде, - \xbd\xba).

Таким образом, если еще учесть массу "любознательных" подростков с ноутбуками, в сети беспроводной связи неизбежно встает проблема защиты от почти гарантированных WEP-атак.

WEP-атаки

Недостаточность длины ключа, отсутствие его ротаций и сам принцип шифрования RC4, описанный выше, позволяют организовать весьма эффективную пассивную атаку. Причем злоумышленнику не нужно совершать никаких действий, по которым его можно было бы обнаружить, достаточно просто слушать канал. При этом не требуется и специального оборудования - хватит обычной WLAN-карточки, купленной долларов за 20-25, а также программы, которая будет накапливать пакеты на жестком диске до совпадения значений вектора IV. Когда количество пакетов станет достаточным (чаще всего от 1 млн до 4 млн), легко вычислить WEP-ключ. Одна из самых популярных программ для таких "упражнений" - AirSnort (http://airsnort.shmoo.com). Это ПО работает с сетевыми картами от Cisco Systems, карточками на базе НМС Prism-2 (их довольно много), а также на картах Orinoco или их клонах.

Неплохих результатов может достичь хакер, использующий активные способы атаки. Например, можно посылать известные данные извне ЛС, скажем, из Интернета, одновременно анализируя, как их зашифровала точка доступа. Такой метод позволяет и вычислить ключ, и манипулировать данными.

Еще один метод активной атаки - Bit-Flip attack. Алгоритм действий здесь следующий (рис. 1):

  1. Перехватываем фрейм, зашифрованный WEP.
  2. Меняем произвольно несколько битов в поле "данные" и пересчитываем контрольную сумму CRC-32.
  3. Посылаем модифицированный фрейм на точку доступа.
  4. Точка доступа примет фрейм на канальном уровне, поскольку контрольная сумма верна.
  5. Точка доступа попытается дешифровать данные и ответит заранее известным текстом, например: "Ваш ключ шифрования неверен".
  6. Сравнение текста в зашифрованном и незашифрованном виде может позволить вычислить ключ.

В рамках данной статьи мы не будем рассматривать возможную DOS-атаку на оборудование, использующее способ широкополосной модуляции DSSS. К оборудованию этого типа относятся устройства стандарта 802.11b и 802.11a, работающие на низких скоростях.

Промежуточные выводы

Все вышесказанное позволяет говорить о ненадежности старых методов обеспечения безопасности в беспроводных сетях; а если оборудование не позволяет реализовать современные решения для защиты информации, то выбор стратегий невелик: либо использовать строжайшую административную политику (см. врезку "Административные меры"), либо применять технологию IPSec - ESP.

Технология IPSec - ESP, безусловно, позволит защитить данные, но сильно снизит производительность ЛС. Все-таки эта технология была разработана для глобальных сетей, и в пределах беспроводной локальной сети использовать ее расточительно. Ее применение поверх беспроводных каналов оправдано лишь в случае соединения филиалов или других подобных решений.

Современные требования к защите, или "Из жизни с Cisco"

Для спокойствия любого пользователя нужно обеспечить решение всего трех проблем для его трафика: это конфиденциальность (данные должны быть надежно зашифрованы), целостность (данные должны быть гарантированно не изменены третьим лицом) и аутентичность (уверенность в том, что данные получены от правильного источника).

Аутентификация

В стандарте 802.1x определен более современный по сравнению со стандартами 1997-1998 гг. способ аутентификации, который широко применяется в различном сетевом оборудовании, в беспроводных устройствах в том числе. Принципиальное отличие его от старых способов аутентификации заключается в следующем: пока не будет проведена взаимная проверка, пользователь не может ни принимать, ни передавать никакие данные. Стандарт предусматривает также динамическое управление ключами шифрования, что, естественно, затрудняет пассивную атаку на WEP.

Например, ряд разработчиков используют для аутентификации в своих устройствах протоколы EAP-TLS и PEAP, но более "широко" к проблеме подходит Cisco Systems (http://www.cisco.com), предлагая для своих беспроводных сетей, наряду с этими, следующий ряд протоколов.

Extensible Authentication Protocol - Transport Layer Security (EAP-TLS) - это стандарт IETF, который обеспечивает аутентичность путем двустороннего обмена цифровыми сертификатами.

Protected EAP (PEAP) - пока предварительный стандарт (draft) IETF. Он предусматривает обмен цифровыми сертификатами и дополнительную проверку имени и пароля по специально созданному шифрованному туннелю.

Lightweight EAP (LEAP) - фирменный протокол Cisco Systems. "Легкий" протокол взаимной аутентификации, похожий на двусторонний Challenge Authentication Protocol (CHAP). Использует разделяемый ключ, поэтому требует определенной разумности при генерации паролей. В противном случае, как и любой другой способ PreShared Key, подвержен атакам по словарю.

EAP - Flexible Authentication via Secure Tunneling (EAP-FAST) - разработан Cisco на основании предварительного стандарта (draft) IETF для защиты от атак по словарю и имеет высокую надежность. Требует от администратора минимума усилий для поддержки. Принцип его работы схож с LEAP, но аутентификация проводится по защищенному туннелю. Первые реализации появились в апреле 2004 г. Поддерживается, начиная с версий ПО IOS 12.2(11)JA, VxWorks 12.01T, Cisco Secure ACS 3.2.3.

Все современные способы аутентификации (см. таблицу) подразумевают поддержку динамических ключей, что не может не радовать. Однако если сравнивать все эти стандарты и по остальным параметрам, то способы EAP-TLS и PEAP кажутся более тяжеловесными. И это действительно так. Они больше подходят для применения в сетях, построенных на базе оборудования различных производителей.

Особенности способов аутентификации

Показатель Способ
LEAP EAP-FAST PEAP EAP-TLS
Поддержка современных ОС Да Да Не все Не все
Сложность ПО и ресурсоемкость аутентификации Низкая Низкая Средняя Высокая
Сложность управления Низкая* Низкая Средняя Средняя
Single Sign on (единый логин в Windows) Да Да Нет Да
Динамические ключи Да Да Да Да
Одноразовые пароли Нет Да Да Нет
Поддержка баз пользователей не в формате Microsoft Windows Нет Да Да Да
Fast Secure Roaming Да Да Нет Нет
Возможность локальной аутентификации Да Да Нет Нет

Способы аутентификации, разработанные Cisco, выглядят симпатичнее. Особенную прелесть им придает поддержка технологии Fast Secure Roaming, позволяющей переключаться между различными точками доступа (время переключения примерно 100 мс), что особенно важно при передаче голосового трафика. При работе с EAP-TLS и PEAP повторная аутентификация займет существенно больше времени, и в результате разговор прервется. Главный недостаток LEAP и LEAP-FAST очевиден - эти протоколы поддерживаются только в оборудовании Cisco Systems.

Шифрование и целостность

На основании рекомендаций 802.11i Cisco Systems реализовала протокол TKIP (Temporal Кey Integrity Protocol), который обеспечивает смену ключа шифрования PPK (Рer Рacket Кeying) в каждом пакете и контроль целостности сообщений MIC (Message Integrity Check).

Процедура PPK предусматривает изменение вектора инициализации IV в каждом пакете. Причем шифрование осуществляется значением хэш-функции от IV и самого WEP-ключа. Если еще учесть, что WEP-ключи динамически меняются, то надежность шифрования становится довольно высокой.

Обеспечение целостности возложено на процедуру MIC. В формирующийся фрейм добавляются поля MIC и SEQuence number, в поле SEQ указывается порядковый номер пакета, что позволяет защититься от атак, основанных на повторах и нарушениях очередности. Пакет с неверным порядковым номером просто игнорируется. В 32-разрядном поле MIC располагается значение хэш-функции, вычисленной по значениям самого заголовка пакета 802.11, поля SEQ, пользовательских данных (рис. 2).

Другой перспективный протокол шифрования и обеспечения целостности, уже зарекомендовавший себя в проводных решениях, - это AES (Advanced Encryption Standard). Он разработан сравнительно недавно - в октябре 2001 г. и обладает лучшей криптостойкостью по сравнению с DES и ГОСТ 28147-89. Длина ключа AES составляет 128, 192 или 256 бит. Как уже отмечалось, он обеспечивает и шифрование, и целостность.

Заметим, что используемый в нем алгоритм (Rijndael) не требует больших ресурсов ни при реализации, ни в работе, что очень важно для уменьшения времени задержки данных и нагрузки на процессор.

AES уже работает в ОС Cisco IOS (k9), начиная с 12.2(13)T. В настоящее время практически все устройства Cisco Systems стандарта 802.11g готовы к поддержке AES. Сетевая общественность находится в ожидании объявления о выходе этого ПО в свет, однако неоднократно называвшиеся сроки не соблюдаются. Впрочем, сейчас определенная ясность все-таки появилась. Компания объявила, что все устройства, работающие в стандарте 802.11g, можно будет совершенно свободно снабдить новым ПО, которое обязательно появится вскоре… Но - только после ратификации стандарта 802.11i. Стандарт ратифицирован IEEE в конце июня (см. врезку "Стандарт 802.11i ратифицирован"). Так что ждем-с.

Wi-Fi Protected Access

Стандарт Wi-Fi Protected Access (WPA) - это набор правил для реализации защиты данных в сетях 802.11х. Начиная с августа 2003 г., соответствие WPA входит в состав требований к оборудованию, сертифицирующемуся на высокое звание Wi-Fi Certified (http://www.wi-fi.org/OpenSection/pdf/Wi-Fi_Protected_Access_Overview.pdf).

Заметим, что в спецификации WPA входит немного измененный протокол TKIP-PPK. Шифрование выполняется на "смеси" нескольких ключей - текущего и последующего. При этом длина IV увеличена до 48 бит.

WPA определяет и контроль целостности сообщений согласно упрощенной версии MIC (Michael MIC), отличающейся от описанной тем, что хэш-функция рассчитывается на основании меньшего количества полей, но само поле MIC имеет большую длину - 64 бит. Это дает возможность реализовать дополнительные меры защиты информации, например, ужесточить требования к ре-ассоциациям, ре-аутентификациям и т. п.

Спецификации предусматривают также поддержку 802.1x/EAP и аутентификации с разделяемым ключом и, несомненно, - управление ключами.

Особенно радует, что WPA-устройства готовы к работе и с клиентами, оборудование у которых поддерживает современные стандарты, и с клиентами, совершенно не заботящимися о своей безопасности и использующими старое оборудование или ПО. Автор категорически рекомендует: распределяйте пользователей с разной степенью защищенности по разным виртуальным ЛС и в соответствии с этим реализуйте свою политику безопасности.

Сегодня, при условии использования современного оборудования и ПО, защищенную и устойчивую к атакам беспроводную сеть на базе стандартов 802.11х построить вполне возможно. Для этого нужно только применить в ней несколько разумных постулатов.

Надо помнить, что почти всегда беспроводная сеть связана с проводной. Кроме необходимости защищать беспроводные каналы, данный факт служит побудительным мотивом к внедрению новых методов защиты и в проводных сетях. В противном случае может сложиться ситуация, когда сеть будет иметь фрагментарную защиту, что по сути создает потенциальную угрозу безопасности.

Желательно использовать оборудование, имеющее сертификат Wi-Fi Certified, выданный позднее августа 2003 г., т. е. подтверждающий соответствие WPA.

Многие администраторы, устанавливая в ЛС устройства, сохраняют настройки производителя по умолчанию. В серьезных беспроводных сетях это категорически недопустимо.

Несомненно, нужно внедрять 802.1х/EAP/TKIP/MIC и динамическое управление ключами. Если сеть смешанная - используйте виртуальные локальные сети. Сейчас практически любой серьезный производитель точек доступа поддерживает данную технологию. А если он ее не поддерживает, то не стоит поддерживать и такого производителя, приобретая его оборудование. В случае использования внешних антенн (например, при соединении разных ЛС между собой) рекомендуется технология виртуальных частных сетей VPN.

Стоит сочетать протокольные и программные способы защиты с административными. Имеет смысл подумать и о внедрении технологии Intrusion Detection System (IDS) для обнаружения возможных вторжений. Можно также использовать описанные выше программные продукты.

И, наконец, самое главное - при планировании защищенной беспроводной сети руководствуйтесь здравым смыслом. Помните: любое шифрование или другие манипуляции с данными неизбежно привносят дополнительную задержку, увеличивают объем служебного трафика и нагрузку на процессоры сетевых устройств. Безусловно, безопасность - важный фактор в современных сетях, но она теряет всякий смысл, если трафик пользователя не получает должной полосы пропускания. Ведь, к сожалению, любые сети создаются в конечном счете для пользователей, а не для администраторов. Впрочем, тема QoS в беспроводных сетях стандарта 802.11х заслуживает отдельной статьи.

Стандарт 802.11i ратифицирован

25 июня 2004 г. Институт инженеров по электротехнике и радиоэлектронике (IEEE) ратифицировал давно ожидаемый стандарт обеспечения безопасности в беспроводных локальных сетях - 802.11i.

До его принятия, еще в 2002 г., отраслевой консорциум Wi-Fi Alliance предложил использовать в качестве промежуточного варианта протокол WPA. В него вошли некоторые механизмы 802.11i, в том числе шифрование по протоколу TKIP и возможность использования системы аутентификации пользователей 802.1x, базирующейся на протоколе RADIUS. Протокол WPA существует в двух модификациях: облегченной (для домашних пользователей) и включающей в себя стандарт аутентификации 802.1x (для корпоративных пользователей).

В официальном стандарте 802.11i к возможностям протокола WPA добавилось требование использовать стандарт шифрования AES, который обеспечивает уровень защиты, соответствующий требованиям класса 140-2 стандарта FIPS (Federal Information Processing Standard), применяемого в правительственных структурах США. Однако во многих существующих сетях протокол AES может потребовать замены оборудования, если оно не оснащено специальными средствами шифрования и дешифрования.

Кроме того, новый стандарт приобрел и несколько относительно малоизвестных свойств. Одно из них - key-caching - незаметно для пользователя записывает информацию о нем, позволяя при выходе из зоны действия беспроводной сети и последующем возвращении в нее не вводить всю информацию о себе заново.

Второе нововведение - пре-аутентификация. Суть ее в следующем: из точки доступа, к которой в настоящее время подключен пользователь, пакет пре-аутентификации направляется в другую точку доступа, обеспечивая этому пользователю предварительную аутентификацию еще до его регистрации на новой точке и тем самым сокращая время авторизации при перемещении между точками доступа.

Wi-Fi Alliance намерен приступить к тестированию устройств на соответствие новому стандарту (его еще называют WPA2) до сентября текущего года. По заявлению его представителей, повсеместной замены оборудования не понадобится. И если устройства с поддержкой WPA1 могут работать там, где не требуется продвинутое шифрование и RADIUS-аутентификация, то продукты стандарта 802.11i можно рассматривать как WPA-оборудование, поддерживающее AES.

Большинство существующего на данный момент Wi-Fi оборудования имеет поддержку технологии WPA (Wi-Fi Protected Access), которая пришла на смену технологии WEP.

Технология WPA состоит из нескольких компонентов:

  • - протокол 802.1х - универсальный протокол для аутентификации, авторизации и учета (ААА);
  • - протокол ЕАР - расширяемый протокол аутентификации (Extensible Authentication Protocol);
  • - протокол TKIP - протокол временной целостности ключей, другой вариант перевода - протокол целостности ключей во времени (Temporal Key Integrity Protocol);
  • - MIC - криптографическая проверка целостности пакетов (Message Integrity Code);
  • - протокол RADIUS.

За шифрование данных в WPA отвечает протокол TKIP, который в отличие от WEP, использует динамические ключи (то есть ключи часто меняются). Он применяет более длинный вектор инициализации и использует криптографическую контрольную сумму (MIC) для подтверждения целостности пакетов (последняя является функцией от адреса источника и назначения, а также поля данных).

RADIUS-протокол предназначен для работы в связке с сервером аутентификации, в качестве которого обычно выступает RADIUS- сервер. В этом случае беспроводные точки доступа работают в enterprise-режиме.

Если в сети отсутствует RADIUS-сервер, то роль сервера аутентификации выполняет сама точка доступа - так называемый режим WPA-PSK (pre-shared key, общий ключ). В этом режиме в настройках всех точек доступа заранее прописывается общий ключ. Он же прописывается и на клиентских беспроводных устройствах. Такой метод защиты не очень удобен с точки зрения управления. PSK-ключ требуется прописывать на всех беспроводных устройствах, пользователи беспроводных устройств его могут видеть. Если потребуется заблокировать доступ какому-то клиенту в сеть, придется заново прописывать новый PSK на всех устройствах сети и так далее. Другими словами, режим WPA-PSK подходит для домашней сети и, возможно, небольшого офиса, но не более того.

В технологии WPA2 используется протокол ССМР (Counter Mode with Cipher Block Chaining Message Authentication Code Protocol), взамен TKIP, в нем применяется усовершенствованный стандарт шифрования AES (Advanced Encryption Standard). А для управления и распределения ключей по-прежнему применяется протокол 802.1х.

Как уже было сказано выше, протокол 802.1х может выполнять несколько функций. В данном случае нас интересуют функции аутентификации пользователя и распределение ключей шифрования. Необходимо отметить, что аутентификация происходит «на уровне порта» - то есть пока пользователь не будет аутентифицирован, ему разрешено посылать/принимать пакеты, касающиеся только процесса его аутентификации (учетных данных) и не более того. Только после успешной аутентификации порт устройства будет открыт и пользователь получит доступ к ресурсам сети.

Функции аутентификации возлагаются на протокол EAR Кадр этого протокола приведен на рис. 5.13. Протокол ЕАР является лишь каркасом для методов аутентификации. Данный протокол очень просто реализовать на аутентификаторе (точке доступа), так как ей не требуется знать никаких специфичных особенностей различных методов аутентификации. Аутентификатор служит лишь передаточным звеном между клиентом и сервером аутентификации. Методов же аутентификации, которых существует довольно много:

  • - ЕАР-SIM, ЕАР-АКА - используются в сетях GSM мобильной связи;
  • - LEAP - метод от Cisco systems;
  • - EAP-MD5 - простейший метод, аналогичный CHAP (не стойкий);
  • - EAP-MSCHAP V2 - метод аутентификации на основе логи- на/пароля пользователя в MS-сетях;
  • - EAP-TLS - аутентификация на основе цифровых сертификатов;
  • - EAP-SecurelD - метод на основе однократных паролей.

Рис. 5.13.

Кроме вышеперечисленных, следует отметить следующие два метода, EAP-TTLS и ЕАР-РЕАР. В отличие от предыдущих, эти два метода перед непосредственной аутентификацией пользователя сначала образуют TLS-туннель между клиентом и сервером аутентификации. А уже внутри этого туннеля осуществляется сама аутентификация, с использованием как стандартного ЕАР (MD5, TLS), или старых методов (PAP, CHAP, MS-CHAP, MS-CHAP v2), последние работают только с EAP-TTLS (РЕАР используется только совместно с ЕАР методами). Предварительное туннелирование повышает безопасность аутентификации, защищая от атак типа «man- in-middle», «session hihacking» или атаки по словарю.

Протокол РРР появился на рис. 5.13 потому, что изначально ЕАР планировался к использованию поверх РРР туннелей. Но так как использование этого протокола только для аутентификации по локальной сети - излишняя избыточность, ЕАР-сообщения упаковываются в «ЕАР over LAN» (EAPOL) пакеты, которые и используются для обмена информацией между клиентом и аутентификатором (точкой доступа).

Схема аутентификации состоит из трех компонентов:

  • - Supplicant-софт, запущенный на клиентской машине, пытающейся подключиться к сети;
  • - Authenticator - узел доступа, аутентификатор (беспроводная точка доступа или проводной коммутатор с поддержкой протокола 802Лх);
  • - Authentication Server - сервер аутентификации (обычно это RADIUS-сервер).

Теперь рассмотрим сам процесс аутентификации. Он состоит из следующих стадий:

  • 1. Клиент может послать запрос на аутентификацию (EAP-start message) в сторону точки доступа
  • 2. Точка доступа (аутентификатор) в ответ посылает клиенту запрос на идентификацию клиента (EAP-request/identity message). Аутентификатор может послать EAP-request самостоятельно, если увидит, что какой-либо из его портов перешел в активное состояние.
  • 3. Клиент в ответ высылает ЕАР-response packet с нужными данными, который точка доступа (аутентификатор) перенаправляет в сторону Radius-сервера (сервера аутентификации).
  • 4. Сервер аутентификации посылает аутентификатору (точке доступа) challenge-пакет (запрос информации о подлинности клиента). Аутентификатор пересылает его клиенту.
  • 5. Далее происходит процесс взаимной идентификации сервера и клиента. Количество стадий пересылки пакетов варьируется в зависимости от метода ЕАР, но для беспроводных сетей приемлема лишь strong-аутентификация с взаимной аутентификацией клиента и сервера (EAP-TLS, EAP-TTLS, ЕАР-РЕАР) и предварительным шифрованием канала связи.
  • 6. На следующей стадии сервер аутентификации, получив от клиента необходимую информацию, разрешает (accept) или запрещает (reject) тому доступ, с пересылкой данного сообщения аутентификатору. Аутентификатор (точка доступа) открывает порт для Supplicant-a, если со стороны RADIUS-сервера пришел положительный ответ (Accept).
  • 7. Порт открывается, аутентификатор пересылает клиенту сообщение об успешном завершении процесса, и клиент получает доступ в сеть.
  • 8. После отключения клиента, порт на точке доступа опять переходит в состояние «закрыт».

Для коммуникации между клиентом (supplicant) и точкой доступа (authenticator) используются пакеты EAPOL. Протокол RADIUS используется для обмена информацией между аутентификатором (точкой доступа) и RADIUS-сервером (сервером аутентификации). При транзитной пересылке информации между клиентом и сервером аутентификации пакеты ЕАР переупаковываются из одного формата в другой на аутентификаторе.

Первоначальная аутентификация производится на основе общих данных, о которых знают и клиент, и сервер аутентификации (как то логин/пароль, сертификат и т.д.) - на этом этапе генерируется Master Key. Используя Master Key, сервер аутентификации и клиент генерируют Pairwise Master Key (парный мастер-ключ), который передается аутентификатору со стороны сервера аутентификации. А уже на основе Pairwise Master Key и генерируются все остальные динамические ключи, которым и закрывается передаваемый трафик. Необходимо отметить, что сам Pairwise Master Key тоже подлежит динамической смене.

Несанкционированный доступ – чтение, обновление или разрушение информации при отсутствии на это соответствующих полномочий .

Несанкционированный доступ осуществляется, как правило, с использованием чужого имени, изменением физических адресов устройств, использованием информации, оставшейся после решения задач, модификацией программного и информационного обеспечения, хищением носителя информации, установкой аппаратуры записи.

Для успешной защиты своей информации пользователь должен иметь абсолютно ясное представление о возможных путях несанкционированного доступа. Основные типовые пути несанкционированного получения информации:

· хищение носителей информации и производственных отходов;

· копирование носителей информации с преодолением мер защиты;

· маскировка под зарегистрированного пользователя;

· мистификация (маскировка под запросы системы);

· использование недостатков операционных систем и языков программирования;

· использование программных закладок и программных блоков типа "троянский конь";

· перехват электронных излучений;

· перехват акустических излучений;

· дистанционное фотографирование;

· применение подслушивающих устройств;

· злоумышленный вывод из строя механизмов защиты и т.д..

Для защиты информации от несанкционированного доступа применяются:

1) организационные мероприятия;

2) технические средства;

3) программные средства;

4) шифрование.

Организационные мероприятия включают в себя:

· пропускной режим;

· хранение носителей и устройств в сейфе (дискеты, монитор, клавиатура и т.д.);

· ограничение доступа лиц в компьютерные помещения и т.д..

Технические средства включают в себя:

· фильтры, экраны на аппаратуру;

· ключ для блокировки клавиатуры;

· устройства аутентификации – для чтения отпечатков пальцев, формы руки, радужной оболочки глаза, скорости и приемов печати и т.д.;

· электронные ключи на микросхемах и т.д.

Программные средства включают в себя:

· парольный доступ – задание полномочий пользователя;

· блокировка экрана и клавиатуры с помощью комбинации клавиш в утилите Diskreet из пакета Norton Utilites;

· использование средств парольной защиты BIOS – на сам BIOS и на ПК в целом и т.д.

Шифрование–это преобразование (кодирование) открытой информации в зашифрованную, не доступную для понимания посторонних. Методы шифрования и расшифровывания сообщения изучает наука криптология, история которой насчитывает около четырех тысяч лет.

2.5. Защита информации в беспроводных сетях

Невероятно быстрые темпы внедрения в современных сетях беспроводных решений заставляют задуматься о надежности защиты данных.

Сам принцип беспроводной передачи данных заключает в себе возможность несанкционированных подключений к точкам доступа.

Не менее опасная угроза - вероятность хищения оборудования. Если политика безопасности беспроводной сети построена на МАС-адресах, то сетевая карта или точка доступа, украденная злоумышленником, может открыть доступ к сети.

Часто несанкционированное подключение точек доступа к ЛВС выполняется самими работниками предприятия, которые не задумываются о защите.

Решением подобных проблем нужно заниматься комплексно. Организационные мероприятия выбираются исходя из условий работы каждой конкретной сети. Что касается мероприятий технического характера, то весьма хорошей результат достигается при использовании обязательной взаимной аутентификации устройств и внедрении активных средств контроля.

В 2001 году появились первые реализации драйверов и программ, позволяющих справиться с шифрованием WEP. Самый удачный - PreShared Key. Но и он хорош только при надежной шифрации и регулярной замене качественных паролей (рис.1).

Рисунок 1 - Алгоритм анализа зашифрованных данных

Современные требования к защите

Аутентификация

В настоящее время в различном сетевом оборудовании, в том числе в беспроводных устройствах, широко применяется более современный способ аутентификации, который определен в стандарте 802.1х - пока не будет проведена взаимная проверка, пользователь не может ни принимать, ни передавать никаких данных.

Ряд разработчиков используют для аутентификации в своих устройствах протоколы EAP-TLS и PEAP, Cisco Systems, предлагает для своих беспроводных сетей, помимо упомянутых, следующие протоколы: EAP-TLS, РЕАР, LEAP, EAP-FAST.

Все современные способы аутентификации подразумевают поддержку динамических ключей.

Главный недостаток LEAP и EAP-FAST - эти протоколы поддерживаются в основном в оборудовании Cisco Systems (рис. 2).

Рисунок 2 - Структура пакета 802.11x при использовании TKIP-PPK, MIC и шифрации по WEP.

Шифрование и целостность

На основании рекомендаций 802.11i Cisco Systems реализован протокол ТКIР (Temporal Integrity Protocol), обеспечивающий смену ключа шифрования РРК (Per Packet Keying) в каждом пакете и контроль целостности сообщений MIC (Message Integrity Check).

Другой перспективный протокол шифрования и обеспечения целостности - AES (Advanced Encryption Standart). Он обладает лучшей криптостойкостью по сравнению DES и ГОСТ 28147-89. Он обеспечивает и шифрацию, и целостность.

Заметим, что используемый в нем алгоритм (Rijndael) не требует больших ресурсов ни при реализации, ни при работе, что очень важно для уменьшения времени задержки данных и нагрузки на процессор.

Стандарт обеспечения безопасности в беспроводных локальных сетях - 802,11i.

Стандарт Wi-Fi Protected Access (WPA) - это набор правил, обеспечивающих реализацию защиты данных в сетях 802.11х. Начиная с августа 2003 года соответствие стандартам WPA является обязательным требованием к оборудования, сертифицируемому на звание Wi-Fi Certified.

В спецификацию WPA входит измененный протокол TKOP-PPK. Шифрование производится на сочетании нескольких ключей - текущего и последующего. При этом длина IV увеличена до 48 бит. Это дает возможность реализовать дополнительные меры по защите информации, к примеру ужесточить требования к реассоциациям, реаутентификациям.

Спецификации предусматривают и поддержку 802.1х/EAP, и аутентификацию с разделяемым ключом, и, несомненно, управление ключами.

Таблица 3 - Способы реализации политики безопасности

Показатель

Поддержка современных ОС

Сложность ПО и ресурсоёмкость аутентификации

Сложность управления

Single Sign on (единый логин в Windows)

Динамические ключи

Одноразовые пароли

Продолжение таблицы 3

При условии использования современного оборудования и ПО в настоящее время вполне возможно построить на базе стандартов серии 802.11х защищенную и устойчивую к атакам беспроводную сеть.

Почти всегда беспроводная сеть связана с проводной, а это, помимо необходимости защищать беспроводные каналы, необходимо обеспечивать защиты в проводных сетях. В противном случае сеть будет иметь фрагментарную защиту, что, по сути, является угрозой безопасности. Желательно использовать оборудование, имеющее сертификат Wi-Fi Certified, то есть подтверждающий соответствие WPA.

Нужно внедрять 802.11х/EAP/TKIP/MIC и динамическое управление ключами. В случае смешанной сети следует использовать виртуальные локальные сети; при наличии внешних антенн применяется технология виртуальных частных сетей VPN.

Необходимо сочетать как протокольные и программные способы защиты, так и административные.