Какой вид информации обладает наибольшей степенью сжатия. Сжатие информации

30.10.2019 Социальные сети

Принципы сжатия информации

В основе любого способа сжатия информации лежит модель источника информации, или, более конкретно, модель избыточности. Иными словами для сжатия информации используются некоторые сведения о том, какого рода информация сжимается - не обладая никакми сведениями об информации нельзя сделать ровным счётом никаких предположений, какое преобразование позволит уменьшить объём сообщения. Эта информация используется в процессе сжатия и разжатия. Модель избыточности может также строиться или параметризоваться на этапе сжатия. Методы, позволяющие на основе входных данных изменять модель избыточности информации, называются адаптивными. Неадаптивными являются обычно узкоспецифичные алгоритмы, применяемые для работы с хорошо определёнными и неизменными характеристиками. Подавляющая часть же достаточно универсальных алгоритмов являются в той или иной мере адаптивными.

Любой метод сжатия информации включает в себя два преобразования обратных друг другу:

  • преобразование сжатия;
  • преобразование расжатия.

Преобразование сжатия обеспечивает получение сжатого сообщения из исходного. Разжатие же обеспечивает получение исходного сообщения (или его приближения) из сжатого.

Все методы сжатия делятся на два основных класса

  • без потерь,
  • с потерями.

Кардинальное различие между ними в том, что сжатие без потерь обеспечивает возможность точного восстановления исходного сообщения. Сжатие с потерями же позволяет получить только некоторое приближение исходного сообщения, то есть отличающееся от исходного, но в пределах некоторых заранее определённых погрешностей. Эти погрешности должны определяться другой моделью - моделью приёмника, определяющей, какие данные и с какой точностью представленные важны для получателя, а какие допустимо выбросить.

Характеристики алгоритмов сжатия и применимость

Коэффициент сжатия

Коэффициент сжатия - основная характеристика алгоритма сжатия, выражающая основное прикладное качество. Она определяется как отношение размера несжатых данных к сжатым, то есть:

k = S o /S c ,

где k - коэффициент сжатия, S o - размер несжатых данных, а S c - размер сжатых. Таким образом, чем выше коэффициент сжатия, тем алгоритм лучше. Следует отметить:

  • если k = 1, то алгоритм не производит сжатия, то есть получает выходное сообщение размером, равным входному;
  • если k < 1, то алгоритм порождает при сжатии сообщение большего размера, нежели несжатое, то есть, совершает «вредную» работу.

Ситуация с k < 1 вполне возможна при сжатии. Невозможно получить алгоритм сжатия без потерь, который при любых данных образовывал бы на выходе данные меньшей или равной длины. Обоснование этого факта заключается в том, что количество различных сообщений длиной n Шаблон:Е:бит составляет ровно 2 n . Тогда количество различных сообщений с длиной меньшей или равной n (при наличии хотя бы одного сообщения меньшей длины) будет меньше 2 n . Это значит, что невозможно однозначно сопоставить все исходные сообщения сжатым: либо некоторые исходные сообщения не будут иметь сжатого представления, либо нескольким исходным сообщениям будет соответствовать одно и то же сжатое, а значит их нельзя отличить.

Коэффициент сжатия может быть как постоянным коэффициентом (некоторые алгоритмы сжатия звука, изображения и т. п., например А-закон , μ-закон, ADPCM), так и переменным. Во втором случае он может быть определён либо для какого либо конкретного сообщения, либо оценён по некоторым критериям:

  • среднее (обычно по некоторому тестовому набора данных);
  • максимальное (случай наилучшего сжатия);
  • минимальное (случай наихудшего сжатия);

или каким либо другим. Коэффициент сжатия с потерями при этом сильно зависит от допустимой погрешности сжатия или его качества , которое обычно выступает как параметр алгоритма.

Допустимость потерь

Основным критерием различия между алгоритмами сжатия является описанное выше наличие или отсутствие потерь. В общем случае алгоритмы сжатия без потерь универсальны в том смысле, что их можно применять на данных любого типа, в то время как применение сжатия потерь должно быть обосновано. Некоторые виды данных не приемлят каких бы то ни было потерь:

  • символические данные, изменение которых неминуемо приводит к изменению их семантики: программы и их исходные тексты, двоичные массивы и т. п.;
  • жизненно важные данные, изменения в которых могут привести к критическим ошибкам: например, получаемые с медицинской измерительной техники или контрольных приборов летательных, космических аппаратов и т. п.
  • данные, многократно подвергаемые сжатию и расжатию: рабочие графические, звуковые, видеофайлы.

Однако сжатие с потерями позволяет добиться гораздо больших коэффициентов сжатия за счёт отбрасывания незначащей информации, которая плохо сжимается. Так, например алгоритм сжатия звука без потерь FLAC , позволяет в большинстве случаев сжать звук в 1,5-2,5 раза, в то время как алгоритм с потерями Vorbis , в зависимости от установленного параметра качетсва может сжать до 15 раз с сохранением приемлемого качества звучания.

Системные требования алгоритмов

Различные алгоритмы могут требовать различного количества ресурсов вычислительной системы, на которых исполняются:

  • оперативной памяти (под промежуточные данные);
  • постоянной памяти (под код программы и константы);
  • процессорного времени.

В целом, эти требования зависят от сложности и «интеллектуальности» алгоритма. По общей тенденции, чем лучше и универсальнее алгоритм, тем большие требования с машине он предъявляет. Однако в специфических случаях простые и компактные алгоритмы могут работать лучше. Системные требования определяют их потребительские качества: чем менее требователен алгоритм, тем на более простой, а следовательно, компактной, надёжной и дешёвой системе он может работать.

Так как алгоритмы сжатия и разжатия работают в паре, то имеет значение также соотношение системных требований к ним. Нередко можно усложнив один алгоритм можно значительно упростить другой. Таким образом мы можем иметь три варианта:

Алгоритм сжатия гораздо требовательнее к ресурсам, нежели алгоритм расжатия. Это наиболее распространённое соотношение, и оно применимо в основном в случаях, когда однократно сжатые данные будут использоваться многократно. В качетсве примера можно привести цифровые аудио и видеопроигрыватели. Алгоритмы сжатия и расжатия имеют примерно равные требования. Наиболее приемлемый вариант для линии связи, когда сжатие и расжатие происходит однократно на двух её концах. Например, это могут быть телефония. Алгоритм сжатия существенно менее требователен, чем алгоритм разжатия. Довольно экзотический случай. Может применяться в случаях, когда передатчиком является ультрапортативное устройство, где объём доступных ресурсов весьма критичен, например, космический аппарат или большая распределённая сеть датчиков, или это могут быть данные распаковка которых требуется в очень малом проценте случаев, например запись камер видеонаблюдения.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Сжатие информации" в других словарях:

    сжатие информации - уплотнение информации — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы уплотнение информации EN information reduction …

    СЖАТИЕ ИНФОРМАЦИИ - (сжатие данных) представление информации (данных) меньшим числом битов по сравнению с первоначальным. Основано на устранении избыточности. Различают С. и. без потери информации и с потерей части информации, несущественной для решаемых задач. К… … Энциклопедический словарь по психологии и педагогике

    адаптивное сжатие информации без потерь - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN adaptive lossless data compressionALDC … Справочник технического переводчика

    уплотнение/сжатие информации - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN compaction … Справочник технического переводчика

    цифровое сжатие информации - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN compression … Справочник технического переводчика

    Звук является простой волной, а цифровой сигнал является представлением этой волны. Это достигается запоминанием амплитуды аналогового сигнала множество раз в течение одной секунды. Например, в обыкновенном CD сигнал запоминается 44100 раз за… … Википедия

    Процесс, обеспечивающий уменьшение объема данных путем сокращения их избыточности. Сжатие данных связано с компактным расположением порций данных стандартного размера. Различают сжатия с потерей и без потери информации. По английски: Data… … Финансовый словарь

    сжатие цифровой картографической информации - Обработка цифровой картографической информации в целях уменьшения ее объема, в том числе исключения избыточности в пределах требуемой точности ее представления. [ГОСТ 28441 99] Тематики картография цифровая Обобщающие термины методы и технологии… … Справочник технического переводчика

Лекция №4. Сжатие информации

Принципы сжатия информации

Цель сжатия данных - обеспечить компактное представление данных, вырабатываемых источником, для их более экономного сохранения и передачи по каналам связи.

Пусть у нас имеется файл размером 1 (один) мегабайт. Нам необходимо получить из него файл меньшего размера. Ничего сложного - запускаем архиватор, к примеру, WinZip, и получаем в результате, допустим, файл размером 600 килобайт. Куда же делись остальные 424 килобайта?

Сжатие информации является одним из способов ее кодирования. Вообще коды делятся на три большие группы - коды сжатия (эффективные коды), помехоустойчивые коды и криптографические коды. Коды, предназначенные для сжатия информации, делятся, в свою очередь, на коды без потерь и коды с потерями. Кодирование без потерь подразумевает абсолютно точное восстановление данных после декодирования и может применяться для сжатия любой информации. Кодирование с потерями имеет обычно гораздо более высокую степень сжатия, чем кодирование без потерь, но допускает некоторые отклонения декодированных данных от исходных.

Виды сжатия

Все методы сжатия информации можно условно разделить на два больших непересекающихся класса: сжатие с потерей инфор­мации и сжатие без потери информации.

Сжатие без потери информации.

Эти методы сжатия нас инте­ресуют в первую очередь, поскольку именно их применяют при передаче текстовых документов и программ, при выдаче выпол­ненной работы заказчику или при создании резервных копий информации, хранящейся на копьютере.

Методы сжатия этого класса не могут допустить утрату информа­ции, поэтому они основаны только на устранении ее избыточности, а информация имеет избыточность почти всегда (правда, если до этого кто-то ее уже не уплотнил). Если бы избыточности не было, нечего было бы и сжимать.

Вот простой пример. В русском языке 33 буквы, десять цифр и еще примерно полтора десятка знаков препинания и прочих спе­циальных символов. Для текста, который записан только про­писными русскими буквами (как в телеграммах и радиограммах) вполне хватило бы шестидесяти разных значений. Тем не менее, каждый символ обычно кодируется байтом, который содержит 8 битов и может выражать 256 различных кодов. Это первое осно­вание для избыточности. Для нашего «телеграфного» текста вполне хватило бы шести битов на символ.

Вот другой пример. В международной кодировке символов ASCII для кодирования любого символа отводится одинаковое количество битов (8), в то время как всем давно и хорошо извест­но, что наиболее часто встречающиеся символы имеет смысл кодировать меньшим количеством знаков. Так, например, в «азбуке Морзе» буквы «Е» и «Т», которые встречаются часто, кодируются одним знаком (соответственно это точка и тире). А такие редкие буквы, как «Ю» ( - -) и «Ц» (- - ), кодиру­ются четырьмя знаками. Неэффективная кодировка - второе основание для избыточности. Программы, выполняющие сжа­тие информации, могут вводить свою кодировку (разную для разных файлов) и приписывать к сжатому файлу некую таблицу (словарь), из которой распаковывающая программа узнает, как в данном файле закодированы те или иные символы или их груп­пы. Алгоритмы, основанные на перекодировании информации, называют алгоритмами Хафмана.

Наличие повторяющихся фрагментов - третье основание для избыточности. В текстах это встречается редко, но в таблицах и в графике повторение кодов - обычное явление. Так, например, если число 0 повторяется двадцать раз подряд, то нет смысла ставить двадцать нулевых байтов. Вместо них ставят один ноль и коэффициент 20. Такие алгоритмы, основанные на выявлении повторов, называют методами RLE (Run Length Encoding ).

Большими повторяющимися последовательностями одинаковых байтов особенно отличаются графические иллюстрации, но не фотографические (там много шумов и соседние точки сущест­венно различаются по параметрам), а такие, которые художники рисуют «гладким» цветом, как в мультипликационных фильмах.

Сжатие с потерей информации.

Сжатие с потерей информации означает, что после распаковки уплотненного архива мы полу­чим документ, который несколько отличается от того, который был в самом начале. Понятно, что чем больше степень сжатия, тем больше величина потери и наоборот.

Разумеется, такие алгоритмы неприменимы для текстовых документов, таблиц баз данных и особенно для программ. Незна­чительные искажения в простом неформатированном тексте еще как-то можно пережить, но искажение хотя бы одного бита в программе сделает ее абсолютно неработоспособной.

В то же время, существуют материалы, в которых стоит пожерт­вовать несколькими процентами информации, чтобы получить сжатие в десятки раз. К ним относятся фотографические иллюстрации, видеоматериалы и музыкальные композиции. Потеря информации при сжатии и последующей распаковке в таких материалах воспринимается как появление некоторого дополнительного «шума». Но поскольку при создании этих мате­риалов определенный «шум» все равно присутствует, его неболь­шое увеличение не всегда выглядит критичным, а выигрыш в раз­мерах файлов дает огромный (в 10-15 раз на музыке, в 20-30 раз на фото- и видеоматериалах).

К алгоритмам сжатия с потерей информации относятся такие известные алгоритмы как JPEG и MPEG. Алгоритм JPEG исполь­зуется при сжатии фотоизображений. Графические файлы, сжа­тые этим методом, имеют расширение JPG. Алгоритмы MPEG используют при сжатии видео и музыки. Эти файлы могут иметь различные расширения, в зависимости от конкретной программы, но наиболее известными являются.MPG для видео и.МРЗ для музыки.

Алгоритмы сжатия с потерей информации применяют только для потребительских задач. Это значит, например, что если фотография передается для просмотра, а музыка для воспро­изведения, то подобные алгоритмы применять можно. Если же они передаются для дальнейшей обработки, например для редак­тирования, то никакая потеря информации в исходном мате­риале недопустима.

Величиной допустимой потери при сжатии обычно можно управ­лять. Это позволяет экспериментовать и добиваться оптималь­ного соотношения размер/качество. На фотографических иллюст­рациях, предназначенных для воспроизведения на экране, потеря 5% информации обычно некритична, а в некоторых случаях можно допустить и 20-25%.

Алгоритмы сжатия без потери информации

Код Шеннона-Фэно

Для дальнейших рассуждений будет удобно представить наш исходный файл с текстом как источник символов, которые по одному появляются на его выходе. Мы не знаем заранее, какой символ будет следующим, но мы знаем, что с вероятностью p1 появится буква "а", с вероятностью p2 -буква "б" и т.д.

В простейшем случае мы будем считать все символы текста независимыми друг от друга, т.е. вероятность появления очередного символа не зависит от значения предыдущего символа. Конечно, для осмысленного текста это не так, но сейчас мы рассматриваем очень упрощенную ситуацию. В этом случае справедливо утверждение "символ несет в себе тем больше информации, чем меньше вероятность его появления".

Давайте представим себе текст, алфавит которого состоит всего из 16 букв: А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М, Н, О, П, Р. Каждый из этих знаков можно закодировать с помощью всего 4 бит: от 0000 до 1111. Теперь представим себе, что вероятности появления этих символов распределены следующим образом:

Сумма этих вероятностей составляет, естественно, единицу. Разобьем эти символы на две группы таким образом, чтобы суммарная вероятность символов каждой группы составляла ~0.5 (рис). В нашем примере это будут группы символов А-В и Г-Р. Кружочки на рисунке, обозначающие группы символов, называются вершинами или узлами (nodes), а сама конструкция из этих узлов - двоичным деревом (B-tree). Присвоим каждому узлу свой код, обозначив один узел цифрой 0, а другой - цифрой 1.

Снова разобьем первую группу (А-В) на две подгруппы таким образом, чтобы их суммарные вероятности были как можно ближе друг к другу. Добавим к коду первой подгруппы цифру 0, а к коду второй - цифру 1.

Будем повторять эту операцию до тех пор, пока на каждой вершине нашего "дерева" не останется по одному символу. Полное дерево для нашего алфавита будет иметь 31 узел.

Коды символов (крайние правые узлы дерева) имеют коды неодинаковой длины. Так, буква А, имеющая для нашего воображаемого текста вероятность p=0.2, кодируется всего двумя битами, а буква Р (на рисунке не показана), имеющая вероятность p=0.013, кодируется аж шестибитовой комбинацией.

Итак, принцип очевиден - часто встречающиеся символы кодируются меньшим числом бит, редко встречающиеся - большим. В результате среднестатистическое количество бит на символ будет равно

где ni - количество бит, кодирующих i-й символ, pi - вероятность появления i-го символа.

Код Хаффмана.

Алгоритм Хаффмана изящно реализует общую идею статистического кодирования с использованием префиксных множеств и работает следующим образом:

1. Выписываем в ряд все символы алфавита в порядке возрастания или убывания вероятности их появления в тексте.

2. Последовательно объединяем два символа с наименьшими вероятностями появления в новый составной символ, вероятность появления которого полагаем равной сумме вероятностей составляющих его символов. В конце концов построим дерево, каждый узел которого имеет суммарную вероятность всех узлов, находящихся ниже него.

3. Прослеживаем путь к каждому листу дерева, помечая направление к каждому узлу (например, направо - 1, налево - 0) . Полученная последовательность дает кодовое слово, соответствующее каждому символу (рис.).

Построим кодовое дерево для сообщения со следующим алфавитом:

Недостатки методов

Самой большой сложностью с кодами, как следует из предыдущего обсуждения, является необходимость иметь таблицы вероятностей для каждого типа сжимаемых данных. Это не представляет проблемы, если известно, что сжимается английский или русский текст; мы просто предоставляем кодеру и декодеру подходящее для английского или русского текста кодовое дерево. В общем же случае, когда вероятность символов для входных данных неизвестна, статические коды Хаффмана работают неэффективно.

Решением этой проблемы является статистический анализ кодируемых данных, выполняемый в ходе первого прохода по данным, и составление на его основе кодового дерева. Собственно кодирование при этом выполняется вторым проходом.

Еще один недостаток кодов - это то, что минимальная длина кодового слова для них не может быть меньше единицы, тогда как энтропия сообщения вполне может составлять и 0,1, и 0,01 бит/букву. В этом случае код становится существенно избыточным. Проблема решается применением алгоритма к блокам символов, но тогда усложняется процедура кодирования/декодирования и значительно расширяется кодовое дерево, которое нужно в конечном итоге сохранять вместе с кодом.

Данные коды никак не учитывают взаимосвязей между символами, которые присутствуют практически в любом тексте. Например, если в тексте на английском языке нам встречается буква q, то мы с уверенностью сможем сказать, что после нее будет идти буква u.

Групповое кодирование - Run Length Encoding (RLE) - один из самых старых и самых простых алгоритмов архивации. Сжатие в RLE происходит за счет замены цепочек одинаковых байт на пары "счетчик, значение". («красный, красный, ..., красный» записывается как «N красных»).

Одна из реализаций алгоритма такова: ищут наименнее часто встречающийся байт, называют его префиксом и делают замены цепочек одинаковых символов на тройки "префикс, счетчик, значение". Если же этот байт встретичается в исходном файле один или два раза подряд, то его заменяют на пару "префикс, 1" или "префикс, 2". Остается одна неиспользованная пара "префикс, 0", которую можно использовать как признак конца упакованных данных.

При кодировании exe-файлов можно искать и упаковывать последовательности вида AxAyAzAwAt..., которые часто встречаются в ресурсах (строки в кодировке Unicode)

К положительным сторонам алгоритма, можно отнести то, что он не требует дополнительной памяти при работе, и быстро выполняется. Алгоритм применяется в форматах РСХ, TIFF, ВМР. Интересная особенность группового кодирования в PCX заключается в том, что степень архивации для некоторых изображений может быть существенно повышена всего лишь за счет изменения порядка цветов в палитре изображения.

LZW-код (Lempel-Ziv & Welch) является на сегодняшний день одним из самых распространенных кодов сжатия без потерь. Именно с помощью LZW-кода осуществляется сжатие в таких графических форматах, как TIFF и GIF, с помощью модификаций LZW осуществляют свои функции очень многие универсальные архиваторы. Работа алгоритма основана на поиске во входном файле повторяющихся последовательностей символов, которые кодируются комбинациями длиной от 8 до 12 бит. Таким образом, наибольшую эффективность данный алгоритм имеет на текстовых файлах и на графических файлах, в которых имеются большие одноцветные участки или повторяющиеся последовательности пикселов.

Отсутствие потерь информации при LZW-кодировании обусловило широкое распространение основанного на нем формата TIFF. Этот формат не накладывает каких-либо ограничений на размер и глубину цвета изображения и широко распространен, например, в полиграфии. Другой основанный на LZW формат - GIF - более примитивен - он позволяет хранить изображения с глубиной цвета не более 8 бит/пиксел. В начале GIF - файла находится палитра - таблица, устанавливающая соответствие между индексом цвета - числом в диапазоне от 0 до 255 и истинным, 24-битным значением цвета.

Алгоритмы сжатия с потерей информации

Алгоритм JPEG был разработан группой фирм под названием Joint Photographic Experts Group. Целью проекта являлось создание высокоэффективного стандарта сжатия как черно-белых, так и цветных изображений, эта цель и была достигнута разработчиками. В настоящее время JPEG находит широчайшее применение там, где требуется высокая степень сжатия - например, в Internet.

В отличие от LZW-алгоритма JPEG-кодирование является кодированием с потерями. Сам алгоритм кодирования базируется на очень сложной математике, но в общих чертах его можно описать так: изображение разбивается на квадраты 8*8 пикселов, а затем каждый квадрат преобразуется в последовательную цепочку из 64 пикселов. Далее каждая такая цепочка подвергается так называемому DCT-преобразованию, являющемуся одной из разновидностей дискретного преобразования Фурье. Оно заключается в том, что входную последовательность пикселов можно представить в виде суммы синусоидальных и косинусоидальных составляющих с кратными частотами (так называемых гармоник). В этом случае нам необходимо знать лишь амплитуды этих составляющих для того, чтобы восстановить входную последовательность с достаточной степенью точности. Чем большее количество гармонических составляющих нам известно, тем меньше будет расхождение между оригиналом и сжатым изображением. Большинство JPEG-кодеров позволяют регулировать степень сжатия. Достигается это очень простым путем: чем выше степень сжатия установлена, тем меньшим количеством гармоник будет представлен каждый 64-пиксельный блок.

Безусловно, сильной стороной данного вида кодирования является большой коэффициент сжатия при сохранении исходной цветовой глубины. Именно это свойство обусловило его широкое применение в Internet, где уменьшение размера файлов имеет первостепенное значение, в мультимедийных энциклопедиях, где требуется хранение возможно большего количества графики в ограниченном объеме.

Отрицательным свойством этого формата является неустранимое никакими средствами, внутренне ему присущее ухудшение качества изображения. Именно этот печальный факт не позволяет применять его в полиграфии, где качество ставится во главу угла.

Однако формат JPEG не является пределом совершенства в стремлении уменьшить размер конечного файла. В последнее время ведутся интенсивные исследования в области так называемого вейвлет-преобразования (или всплеск-преобразования). Основанные на сложнейших математических принципах вейвлет-кодеры позволяют получить большее сжатие, чем JPEG, при меньших потерях информации. Несмотря на сложность математики вейвлет-преобразования, в программной реализации оно проще, чем JPEG. Хотя алгоритмы вейвлет-сжатия пока находятся в начальной стадии развития, им уготовано большое будущее.

Фрактальное сжатие

Фрактальное сжатие изображений - это алгоритм сжатия изображений c потерями, основанный на применении систем итерируемых функций (IFS, как правило являющимися аффинными преобразованиями) к изображениям. Данный алгоритм известен тем, что в некоторых случаях позволяет получить очень высокие коэффициенты сжатия (лучшие примеры - до 1000 раз при приемлемом визуальном качестве) для реальных фотографий природных объектов, что недоступно для других алгоритмов сжатия изображений в принципе. Из-за сложной ситуации с патентованием широкого распространения алгоритм не получил.

Фрактальная архивация основана на том, что с помощью коэффициентов системы итерируемых функций изображение представляется в более компактной форме. Прежде чем рассматривать процесс архивации, разберем, как IFS строит изображение.

Строго говоря, IFS - это набор трехмерных аффинных преобразований, переводящих одно изображение в другое. Преобразованию подвергаются точки в трехмерном пространстве (x координата, у координата, яркость).

Основа метода фрактального кодирования - это обнаружение самоподобных участков в изображении. Впервые возможность применения теории систем итерируемых функций (IFS) к проблеме сжатия изображения была исследована Майклом Барнсли и Аланом Слоуном. Они запатентовали свою идею в 1990 и 1991 гг. Джеквин (Jacquin) представил метод фрактального кодирования, в котором используются системы доменных и ранговых блоков изображения (domain and range subimage blocks), блоков квадратной формы, покрывающих все изображение. Этот подход стал основой для большинства методов фрактального кодирования, применяемых сегодня. Он был усовершенствован Ювалом Фишером (Yuval Fisher) и рядом других исследователей.

В соответствии с данным методом изображение разбивается на множество неперекрывающихся ранговых подизображений (range subimages) и определяется множество перекрывающихся доменных подизображений (domain subimages). Для каждого рангового блока алгоритм кодирования находит наиболее подходящий доменный блок и аффинное преобразование, которое переводит этот доменный блок в данный ранговый блок. Структура изображения отображается в систему ранговых блоков, доменных блоков и преобразований.

Идея заключается в следующем: предположим, что исходное изображение является неподвижной точкой некоего сжимающего отображения. Тогда можно вместо самого изображения запомнить каким-либо образом это отображение, а для восстановления достаточно многократно применить это отображение к любому стартовому изображению.

По теореме Банаха, такие итерации всегда приводят к неподвижной точке, то есть к исходному изображению. На практике вся трудность заключается в отыскании по изображению наиболее подходящего сжимающего отображения и в компактном его хранении. Как правило, алгоритмы поиска отображения (то есть алгоритмы сжатия) в значительной степени переборные и требуют больших вычислительных затрат. В то же время, алгоритмы восстановления достаточно эффективны и быстры.

Вкратце метод, предложенный Барнсли, можно описать следующим образом. Изображение кодируется несколькими простыми преобразованиями (в нашем случае аффинными), то есть определяется коэффициентами этих преобразований (в нашем случае A, B, C, D, E, F).

Например, изображение кривой Коха можно закодировать четырмя аффинными преобразованиями, мы однозначно определим его с помощью всего 24-х коэффициентов.

В результате точка обязательно перейдёт куда-то внутрь чёрной области на исходном изображении. Проделав такую операцию много раз, мы заполним все чёрное пространство, тем самым восстановив картинку.

Наиболее известны два изображения, полученных с помощью IFS: треугольник Серпинского и папоротник Барнсли. Первое задается тремя, а второе - пятью аффинными преобразованиями (или, в нашей терминологии, линзами). Каждое преобразование задается буквально считанными байтами, в то время как изображение, построенное с их помощью, может занимать и несколько мегабайт.

Становится понятно, как работает архиватор, и почему ему требуется так много времени. Фактически, фрактальная компрессия - это поиск самоподобных областей в изображении и определение для них параметров аффинных преобразований.

В худшем случае, если не будет применяться оптимизирующий алгоритм, потребуется перебор и сравнение всех возможных фрагментов изображения разного размера. Даже для небольших изображений при учете дискретности мы получим астрономическое число перебираемых вариантов. Даже резкое сужение классов преобразований, например, за счет масштабирования только в определенное число раз, не позволит добиться приемлемого времени. Кроме того, при этом теряется качество изображения. Подавляющее большинство исследований в области фрактальной компрессии сейчас направлены на уменьшение времени архивации, необходимого для получения качественного изображения.

Для фрактального алгоритма компрессии, как и для других алгоритмов сжатия с потерями, очень важны механизмы, с помощью которых можно будет регулировать степень сжатия и степень потерь. К настоящему времени разработан достаточно большой набор таких методов. Во-первых, можно ограничить количество преобразований, заведомо обеспечив степень сжатия не ниже фиксированной величины. Во-вторых, можно потребовать, чтобы в ситуации, когда разница между обрабатываемым фрагментом и наилучшим его приближением будет выше определенного порогового значения, этот фрагмент дробился обязательно (для него обязательно заводится несколько линз). В-третьих, можно запретить дробить фрагменты размером меньше, допустим, четырех точек. Изменяя пороговые значения и приоритет этих условий, можно очень гибко управлять коэффициентом компрессии изображения: от побитного соответствия, до любой степени сжатия.

Сравнение с JPEG

Сегодня наиболее распространенным алгоритмом архивации графики является JPEG. Сравним его с фрактальной компрессией.

Во-первых, заметим, что и тот, и другой алгоритм оперируют 8-битными (в градациях серого) и 24-битными полноцветными изображениями. Оба являются алгоритмами сжатия с потерями и обеспечивают близкие коэффициенты архивации. И у фрактального алгоритма, и у JPEG существует возможность увеличить степень сжатия за счет увеличения потерь. Кроме того, оба алгоритма очень хорошо распараллеливаются.

Различия начинаются, если мы рассмотрим время, необходимое алгоритмам для архивации/разархивации. Так, фрактальный алгоритм сжимает в сотни и даже в тысячи раз дольше, чем JPEG. Распаковка изображения, наоборот, произойдет в 5-10 раз быстрее. Поэтому, если изображение будет сжато только один раз, а передано по сети и распаковано множество раз, то выгодней использовать фрактальный алгоритм.

JPEG использует разложение изображения по косинусоидальным функциям, поэтому потери в нем (даже при заданных минимальных потерях) проявляются в волнах и ореолах на границе резких переходов цветов. Именно за этот эффект его не любят использовать при сжатии изображений, которые готовят для качественной печати: там этот эффект может стать очень заметен.

Фрактальный алгоритм избавлен от этого недостатка. Более того, при печати изображения каждый раз приходится выполнять операцию масштабирования, поскольку растр (или линиатура) печатающего устройства не совпадает с растром изображения. При преобразовании также может возникнуть несколько неприятных эффектов, с которыми можно бороться либо масштабируя изображение программно (для дешевых устройств печати типа обычных лазерных и струйных принтеров), либо снабжая устройство печати своим процессором, винчестером и набором программ обработки изображений (для дорогих фотонаборных автоматов). Как можно догадаться, при использовании фрактального алгоритма таких проблем практически не возникает.

Вытеснение JPEG фрактальным алгоритмом в повсеместном использовании произойдет еще не скоро (хотя бы в силу низкой скорости архивации последнего), однако в области приложений мультимедиа, в компьютерных играх его использование вполне оправдано.

АРХИВАТОРЫ

Сжатие информации – это процесс преобразования информации, хранящейся в файле, путем уменьшения избыточности данных. Целью этого процесса является уменьшения обьема, занимемого данными.

Архивный файл – это специально созданный файл, содержащий в себе один или несколько файлов в сжатом виде.

Степень сжатия : K c =V c /V o *100%

K c – коэффициент сжатия, V c – объем сжатого файла, V o – исходный объем файла.

Степень сжатия зависит от:

1) используемой пограммы – архиватора,

2) метода сжатия,

3) типа исходного файла: текстового, графического, видео, звукового и т.д.

Программы, осуществляющие упаковку и распаковку файлов называются архиваторами. Наиболее распространенными являются: ARJ, ZIP, RAR. Расширение архивных файлов совпадает с названием использованного для их создания архиватора.

Архиваторы позволяют создавать самораспаковывающиеся архивные файлы, т.е. для их распаковки не требуется запуска программы-архиватора, т.к. они сами содержат программу распаковки. Эти архивы называются SFX-архивы
(SelF-eXtracting). Расширение таких файлов *.EXE.


Принципы сжатия информации

В любом тексте встречаются повторяющиеся символы. Возможно указать один символ и число повторений. Еще выше эффективность этого алгоритма применительно к графическим файлам. Если взглянуть на монитор, то можно видеть очень много повторяющихся точек одного цвета. На этом принципе сжатия информации основан формат графических файлов PCX. Современные архиваторы выделяют, не только повторяющиеся символы, но и цепочки символов, отдельные слова.

Если в тексте используются не все символы алфавита ПК, то для их кодирования можно использовать в место одного байта, 8-ми бит, меньше число. Этот принцип используется в телеграфном аппарате, где используются только русские заглавные буквы, для их представления достаточно 5 бит, что позволяет записать в два байта три символа.

3. В следующим принципе используется закономерность что в тексте буквы встречаются с разной частотой. Например в этом тексте пробел самый распространенный символ, очень часто встречаются символы «а», «и». Эти часто встречающиеся символы можно представлять короткой комбинацией битов, остальные символы возможно кодировать более длинной последовательностью. Например:

4. Физически ПК выделяет место для размещения файлов на диске по кластерам - блоками по 4 кБ. Меньше выделить невозможно. Например если файл имеет размер 8193 байта (8 кБ и 1 байт), физически он будет занимать 16 кБ или 16384 байта. Объединение группы файлов в один позволяет сэкономить на этих остатков. При упаковки маленьких файлов это дает большую экономию.

Итого, при отдельном размещении файлов не используются 6 кБ, что составляет 100% от содержания файлов. Во втором случае неиспользуемыми остается 2 кБ, 33%.


Архиватор zip

Запаковка файлов pkzip [ключи] <имя архива> [пути файлов]

Ключи: -rp архивация с подкаталогами с сохранением структуры

SPWD защита архива паролем (PWD)

A добавить файлы в архив

M переместить файлы в архив

V просмотр содержимого архива

Если производится архивация всех файлов каталога, то обязательно указывать маску *.*

Распаковка файлов pkunzip [ключи] <имя архива> [имена файлов]

Ключи: -d распаковка с подкаталогами с сохранением структуры

SPWD пароль архива (PWD)


Архиватор arj

arj <команда> [ключи] <имя архива> [имена файлов]

Для архиватора arj один файл выполняет операции и распаковки и запаковки.

Команды: a архивация

e распаковка без сохранения структуры каталогов

x распаковка с сохранением структуры

l просмотр содержимого архива

m переместить файлы в архив

d удалить файлы из архива

Ключи: -r упаковка с подкаталогами с сохранением структуры

V разбивка архива на тома с объемом vol(если указан)

размер для стандартных дискет (360, 720, 1200, 1440) указывается в килобайтах, размер нестандартных дискет указывается в байтах

V указывается при распаковке многотомного архива

GPWD пароль архива (PWD )

Запаковка файлов

Распаковка файлов

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08

Еще вчера казалось, что диск размером в один гигабайт - это так много, что даже неясно, чем его заполнить, и уж конечно, каждый про себя думал: был бы у меня гигабайт памяти, я бы перестал «жадничать» и сжимать свою информацию какими-то архиваторами. Но, видимо, мир так устроен, что «свято место пусто не бывает», и как только у нас появляется лишний гигабайт - тут же находится чем его заполнить. Да и сами программы, как известно, становятся все более объемными. Так что, видимо, с терабайтами и экзабайтами будет то же самое.

Поэтому, как бы ни росли объемы памяти диска, упаковывать информацию, похоже, не перестанут. Наоборот, по мере того как «места в компьютере» становится все больше, число новых архиваторов увеличивается, при этом их разработчики не просто соревнуются в удобстве интерфейсов, а в первую очередь стремятся упаковать информацию все плотнее и плотнее.

Однако очевидно, что процесс этот не бесконечен. Где лежит этот предел, какие архиваторы доступны сегодня, по каким параметрам они конкурируют между собой, где найти свежий архиватор - вот далеко не полный перечень вопросов, которые освещаются в данной статье. Помимо рассмотрения теоретических вопросов мы сделали подборку архиваторов, которые можно загрузить с нашего диска, чтобы самим убедиться в эффективности той или иной программы и выбрать из них оптимальную - в зависимости от специфики решаемых вами задач.

Совсем немного теории для непрофессионалов

Позволю себе начать эту весьма серьезную тему со старой шутки. Беседуют два пенсионера:

Вы не могли бы сказать мне номер вашего телефона? - говорит один.

Вы знаете, - признается второй, - я, к сожалению, точно его не помню.

Какая жалость, - сокрушается первый, - ну скажите хотя бы приблизительно…

Действительно, ответ поражает своей нелепостью. Совершенно очевидно, что в семизначном наборе цифр достаточно ошибиться в одном символе, чтобы остальная информация стала абсолютно бесполезной. Однако представим себе, что тот же самый телефон написан словами русского языка и, скажем, при передаче этого текста часть букв потеряна - что произойдет в подобном случае? Для наглядности рассмотрим себе конкретный пример: телефонный номер 233 34 44.

Соответственно запись «Двсти трцать три трицть четре сорк чтре», в которой имеется не один, а несколько пропущенных символов, по-прежнему легко читается. Это связано с тем, что наш язык имеет определенную избыточность, которая, с одной стороны, увеличивает длину записи, а с другой - повышает надежность ее передачи. Объясняется это тем, что вероятность появления каждого последующего символа в цифровой записи телефона одинакова, в то время как в тексте, записанном словами русского языка, это не так. Очевидно, например, что твердый знак в русском языке появляется значительно реже, чем, например, буква «а». Более того, некоторые сочетания букв более вероятны, чем другие, а такие, как два твердых знака подряд, невозможны в принципе, и так далее. Зная, какова вероятность появления какой-либо буквы в тексте, и сравнив ее с максимальной, можно установить, насколько экономичен данный способ кодирования (в нашем случае - русский язык).

Еще одно очевидное замечание можно сделать, вернувшись к примеру с телефоном. Для того чтобы запомнить номер, мы часто ищем закономерности в наборе цифр, что, в принципе, также является попыткой сжатия данных. Вполне логично запомнить вышеупомянутый телефон как «два, три тройки, три четверки».

Избыточность естественных языков

Теория информации гласит, что информации в сообщении тем больше, чем больше его энтропия. Для любой системы кодирования можно оценить ее максимальную информационную емкость (Hmax) и действительную энтропию (Н). Тогда случай Н

R = (Hmax - H)/ Hmax

Измерение избыточности естественных языков (тех, на которых мы говорим) дает потрясающие результаты: оказывается, избыточность этих языков составляет около 80%, а это свидетельствует о том, что практически 80% передаваемой с помощью языка информации является избыточной, то есть лишней. Любопытен и тот факт, что показатели избыточности разных языков очень близки. Данная цифра примерно определяет теоретические пределы сжатия текстовых файлов.

Сжатие с потерями

Говоря о кодах сжатия, различают понятия «сжатие без потерь» и «сжатие с потерями». Очевидно, что когда мы имеем дело с информацией типа «номер телефона», то сжатие такой записи за счет потери части символов не ведет ни к чему хорошему. Тем не менее можно представить целый ряд ситуаций, когда потеря части информации не приводит к потери полезности оставшейся. Сжатие с потерями применяется в основном для графики (JPEG), звука (MP3), видео (MPEG), то есть там, где в силу огромных размеров файлов степень сжатия очень важна, и можно пожертвовать деталями, не существенными для восприятия этой информации человеком. Особые возможности для сжатия информации имеются при компрессии видео. В ряде случаев большая часть изображения передается из кадра в кадр без изменений, что позволяет строить алгоритмы сжатия на основе выборочного отслеживания только части «картинки». В частном случае изображение говорящего человека, не меняющего своего положения, может обновляться только в области лица или даже только рта - то есть в той части, где происходят наиболее быстрые изменения от кадра к кадру.

В целом ряде случаев сжатие графики с потерями, обеспечивая очень высокие степени компрессии, практически незаметно для человека. Так, из трех фотографий, показанных ниже, первая представлена в TIFF-формате (формат без потерь), вторая сохранена в формате JPEG c минимальным параметром сжатия, а третья с максимальным. При этом можно видеть, что последнее изображение занимает почти на два порядка меньший объем, чем первая.Однако методы сжатия с потерями обладают и рядом недостатков.

Первый заключается в том, что компрессия с потерями применима не для всех случаев анализа графической информации. Например, если в результате сжатия изображения на лице изменится форма родинки (но лицо при этом останется полностью узнаваемо), то эта фотография окажется вполне приемлемой, чтобы послать ее по почте знакомым, однако если пересылается фотоснимок легких на медэкспертизу для анализа формы затемнения - это уже совсем другое дело. Кроме того, в случае машинных методов анализа графической информации результаты кодирования с потерей (незаметные для глаз) могут быть «заметны» для машинного анализатора.

Вторая причина заключается в том, что повторная компрессия и декомпрессия с потерями приводят к эффекту накопления погрешностей. Если говорить о степени применимости формата JPEG, то, очевидно, он полезен там, где важен большой коэффициент сжатия при сохранении исходной цветовой глубины. Именно это свойство обусловило широкое применение данного формата в представлении графической информации в Интернете, где скорость отображения файла (его размер) имеет первостепенное значение. Отрицательное свойство формата JPEG - ухудшение качества изображения, что делает практически невозможным его применение в полиграфии, где этот параметр является определяющим.

Теперь перейдем к разговору о сжатии информации без потерь и рассмотрим, какие алгоритмы и программы позволяют осуществлять эту операцию.

Сжатие без потерь

Сжатие, или кодирование, без потерь может применяться для сжатия любой информации, поскольку обеспечивает абсолютно точное восстановление данных после кодирования и декодирования. Сжатие без потерь основано на простом принципе преобразования данных из одной группы символов в другую, более компактную.

Наиболее известны два алгоритма сжатия без потерь: это кодирование Хаффмена (Huffman) и LZW-кодирование (по начальным буквам имен создателей Lempel, Ziv, Welch), которые представляют основные подходы при сжатии информации. Кодирование Хаффмена появилось в начале 50-х; принцип его заключается в уменьшении количества битов, используемых для представления часто встречающихся символов и соответственно в увеличении количества битов, используемых для редко встречающихся символов. Метод LZW кодирует строки символов, анализируя входной поток для построения расширенного алфавита, основанного на строках, которые он обрабатывает. Оба подхода обеспечивают уменьшение избыточной информации во входных данных.

Кодирование Хаффмена

Кодирование Хаффмена - один из наиболее известных методов сжатия данных, который основан на предпосылке, что в избыточной информации некоторые символы используются чаще, чем другие. Как уже упоминалось выше, в русском языке некоторые буквы встречаются с большей вероятностью, чем другие, однако в ASCII-кодах мы используем для представления символов одинаковое количество битов. Логично предположить, что если мы будем использовать меньшее количество битов для часто встречающихся символов и большее для редко встречающихся, то мы сможем сократить избыточность сообщения. Кодирование Хаффмена как раз и основано на связи длины кода символа с вероятностью его появления в тексте.

Динамическое кодирование

В том случае, когда вероятности символов входных данных неизвестны, используется динамическое кодирование, при котором данные о вероятности появления тех или иных символов уточняются «на лету» во время чтения входных данных.

LZW-сжатие

Алгоритм LZW , предложенный сравнительно недавно (в 1984 году), запатентован и принадлежит фирме Sperry.

LZW-алгоритм основан на идее расширения алфавита, что позволяет использовать дополнительные символы для представления строк обычных символов. Используя, например, вместо 8-битовых ASCII-кодов 9-битовые, вы получаете дополнительные 256 символов. Работа компрессора сводится к построению таблицы, состоящей из строк и соответствующих им кодов. Алгоритм сжатия сводится к следующему: программа прочитывает очередной символ и добавляет его к строке. Если строка уже находится в таблице, чтение продолжается, если нет, данная строка добавляется к таблице строк. Чем больше будет повторяющихся строк, тем сильнее будут сжаты данные. Возвращаясь к примеру с телефоном, можно, проведя весьма упрощенную аналогию, сказать, что, сжимая запись 233 34 44 по LZW-методу, мы придем к введению новых строк - 333 и 444 и, выражая их дополнительными символами, сможем уменьшить длину записи.

Какой же выбрать архиватор?

Наверное, читателю будет интересно узнать, какой же архиватор лучше. Ответ на этот вопрос далеко не однозначен.

Если посмотреть на таблицу, в которой «соревнуются» архиваторы (а сделать это можно как на соответствующем сайте в Интернете , так и на нашем CD-ROM), то можно увидеть, что количество программ, принимающих участие в «соревнованиях», превышает сотню. Как же выбрать из этого многообразия необходимый архиватор?

Вполне возможно, что для многих пользователей не последним является вопрос способа распространения программы. Большинство архиваторов распространяются как ShareWare, и некоторые программы ограничивают количество функций для незарегистрированных версий. Есть программы, которые распространяются как FreeWare.

Если вас не волнуют меркантильные соображения, то прежде всего необходимо уяснить, что имеется целый ряд архиваторов, которые оптимизированы на решение конкретных задач. В связи с этим существуют различные виды специализированных тестов, например на сжатие только текстовых файлов или только графических. Так, в частности, Wave Zip в первую очередь умеет сжимать WAV-файлы, а мультимедийный архиватор ERI лучше всех упаковывает TIFF-файлы. Поэтому если вас интересует сжатие какого-то определенного типа файлов, то можно подыскать программу, которая изначально предназначена специально для этого.

Существует тип архиваторов (так называемые Exepackers), которые служат для сжатия исполняемых модулей COM, EXE или DLL. Файл упаковывается таким образом, что при запуске он сам себя распаковывает в памяти «на лету» и далее работает в обычном режиме.

Одними из лучших в данной категории можно назвать программы ASPACK и Petite. Более подробную информацию о программах данного класса, а также соответствующие рейтинги можно найти по адресу .

Если же вам нужен архиватор, так сказать, «на все случаи жизни», то оценить, насколько хороша конкретная программа, можно обратившись к тесту, в котором «соревнуются» программы, обрабатывающие различные типы файлов. Просмотреть список архиваторов, участвующих в данном тесте, можно на нашем CD-ROM.

Зачем нужно сжимать информацию и какие существуют способы это сделать.

А действительно, зачем? Посчитаем, к примеру, сколько займет памяти изображение, по качеству близкое к телевизионному. Пусть его разрешение -- 800х6009 пиксел, а число оттенков цвета около 16 тысяч (High Color), т. е. цвет каждого пиксела представляется двухбайтовым кодом. 800x600=480000 элементов. 480000x2 байт = 960000 байт -- это чуть меньше 1 мегабайта. Кажется, не так много -- на лазерном диске поместится больше 650 таких картинок. Ну, а если речь идет о фильме? Стандартная скорость кинопроекции -- 24 кадра в секунду. Значит на компакт-диске можно записать фрагмент длительностью 650:24=27 секунд. Куда это годится?! А ведь это далеко не единственный случай, когда информации "слишком много". Таким образом, одна из причин использования сжатия данных -- желание поместить больше информации в память того же объема. Есть и вторая причина. Сжатие информации ускоряет ее передачу. Но об этом -- в следующей главе.

Существует несколько методов сжатия (компрессии10) данных. Все их можно разделить на две группы -- сжатие без потерь и с потерями. В первом случае распакованное сообщение точно повторяет исходное. Естественно, так можно обрабатывать любую информацию. Сжатие же с потерями возможно только в тех случаях, когда допустимы некоторые искажения -- какие именно, зависит от конкретного типа данных.

Практически все методы сжатия без потерь основаны на одной из двух довольно простых идей.

Одна из них впервые появилась в методе сжатия текстовой информации, предложенном в 1952 году Хафманом. Вы знаете, что стандартно каждый символ текста кодируется одним байтом. Но дело в том, что одни буквы встречаются чаще, а другие реже. Например, в тексте, написанном на русском языке, в каждой тысяче символов в среднем будет 90 букв "о", 72 -- "е" и только 2 -- "ф". Больше же всего окажется пробелов: сто семьдесят четыре. Если для наиболее распространенных символов использовать более короткие коды (меньше 8 бит), а для менее распространенных -- длинные (больше 8 бит), текст в целом займет меньше памяти, чем при стандартной кодировке.

Несколько методов сжатия основаны на учете повторяющихся байтов или последовательностей байт. Простейший из них -- RLE11 -- широко используется при сжатии изображений. В файле, сжатом таким методом, записывается, сколько раз повторяются одинаковые байты. Например, вместо "RRRRRGGGBBBBBBRRRBBRRRRRRR" будет храниться "5R3G6B3R2B7R"12. Очевидно, что такой метод лучше всего работает, когда изображение содержит большие участки с однотонной закраской.

Другие методы основаны на том, что если некоторая последовательность байт встречается в файле многократно, ее можно записать один раз в особую таблицу, а потом просто указывать: "взять столько-то байт из такого-то места таблицы"13.

Методы сжатия без потерь уменьшают размер файлов не очень сильно. Обычно коэффициент сжатия не превосходит 1/3-1/4. Гораздо лучших результатов можно добиться, используя сжатие с потерями. В этом случае на основе специальных исследований определяется, какой информацией можно пожертвовать.

Например, установлено, что человеческое зрение очень чувствительно к изменению яркости и гораздо меньше, к цветовому тону. Поэтому при сжатии фотографических изображений (и вообще, изображений, в которых нет резких границ между цветами) можно исключить информацию о цвете части пикселов. При распаковке же определять его по соседним. На практике чаще всего применяется метод, использующий более сложную обработку, -- JPEG14. Он позволяет сжимать изображение в десятки раз. С учетом особенностей восприятия человеком информации строятся также методы сжатия с потерями видеоизображения (наиболее распространены сейчас методы MPEG15) и звука.

Естественно, сжатие с потерями может использоваться только программами, предназначеными для обработки конкретных видов данных (например, графическими редакторами). А вот методы сжатия без потерь применяются и для любых произвольных файлов (широко известны программы-компрессоры ARJ, ZIP, RAR, StuffIt и др).

Заметим, что не стоит пытаться сжать файлы, которые уже были сжаты: размер их либо уменьшится совсем незначительно, либо даже увеличится.

Примечания

На самом деле, в телевизионном изображении 625 строк.

Compressus (лат.) -- сжимание.

Run-Length Encoding (англ.) -- кодирование длины последовательности.

На самом деле, конечно, используются коды цветов и коды, указывающие либо сколько раз повторяется следующий байт, либо сколько следующих байтов -- неповторяющиеся.

На этой идее основан широко использующийся для сжатия различных данных метод LZW, названный так по первым буквам фамилий его разработчиков: Lempel, Ziv и Welch.

Joint Photographic Experts Group (англ.) -- Объединенная группа экспертов по фотографии, разработавшая одноименный метод сжатия изображений.

Moving Picture Experts Group (англ.) -- Группа экспертов по движущимся изображениям