Что такое сервопривод, управление сервоприводом. Что такое сервопривод

03.08.2019 Windows

Для самых начинающих. Проверенный код в статье. Подключим, повернем, разберемся с питанием.
В руки прибыл сервопривод SD90 с диагнозом неправильной работы и практически с полным отказом (По словам). Надо разобраться.
Общая информация нужна, информация важна
SD-90 - практически самый дешевый сервопривод на рынке электроники.
Вес всего 15 грамм, а крутящий момент 2кг/см. Работает данный сервопривод SD90 в температурах от -30 до +60 градусов.
Рабочее напряжение от 4В до 8В.
Потребление в движении 70 мА, а в удержании 15 мА.
Угол поворота составляет всего 180 градусов.
Сервопривод SD90 идеально подходит для установки на авиамодели.

Для управления сервоприводами с помощью Ардуин есть стандартная библиотека в IDE Arduino Servo.h , которая включает в себя функции для установки настроек сервопривода, необходимого угла, считывания состояния. Некоторые методы являются перегруженными.

Обращаемся к китайским друзьям за мануалами и судя по рисунку ниже подключение сервопривода SG90 не составляет труда.

Два провода отвечают за питание и один провод для управления. Ниже приведен код программы для ардуино который даст некоторые пояснения.

    * Специально для сайта сайт

    * Сервопривод SG90 + Arduino. Подключение

    //Библиотека для работы с сервоприводом

    #include ‹Servo.h›

    //Обьявление переменной - объекта

    Servo servo;

  1. void setup()

    //К пину №7 подключен управляющий вывод сервопривода

    //Данный метод библиотеки указывает пин через который происходит управление

    servo.attach (7 ) ;

    //servo.detach(7); - этот метод отключит управление от указанного пина.

  2. void loop()

    //Установка вала в 0 градусов

    servo.write (0 ) ;

    delay(2000 ) ; //ждем 2 секунды. Необходимо как минимум 30 микросекунд для установки.

  3. servo.write (90 ) ; //ставим вал под 90 градусов

  4. // В библиотеке есть функция для чтения текущего положения (угла) сервопривода.

    // Будет считано последнее установленное значение в сервоприводе.

    // int AngleServo=servo.read();

    // От 0 до 180 градусов.

  5. servo.write (180 ) ; //ставим вал под 190 градусов

    delay(2000 ) ; //ждем 2 секунды.

  6. //Медленно возвращаемся обратно с интервалом в 1 градус

    for (int p= 179 ; p>= 1 ; p-- )

    servo.write (p) ;

    delay(20 ) ;

    //Угол (Установить) можно задать во времени от нуля.

    //Так как у сервопривода есть характеристика скорости поворота 0.12 сек/60 град

    1 - Коннектор для подключения
    2 - Схема управления сервоприводом, обработки сигналов
    3 - Потенциометр
    4 - Двигатель
    5 - Вал

    Так вот, в самом начале я говорил что в руки попал почти не рабочий сервопривод (По словам). После разбирательств стало понятно что Ардуина имела питание от USB компьютера, а сам сервопривод от Arduino.
    Если углубится в подробности то в экспериментах с было установлено то что китайская версия MEGA не вытягивает нагрузку 150 мА. Сервопривод SG90 в момент движения вала создает нагрузку 75-90 мА в зависимости от нагрузки вала. В итоге при старте Ардуины у человека который попросил разобраться в данной проблеме происходил сброс самой ардуины от повышенной нагрузки и соответственно сервопривод не подавал никаких признаков.

    Решение проблемы самое простое. Необходимо усилить питание для ардуины с помощью внешнего источника (блока питания) или отдельно для сервопривода SG90.
    Но ситуация была такова что в месте установки сервопривода не было возможности применить внешний источник питания. Решение нашлось ниже на рисунке.

    В итоге что бы предотвратить нагрузку на Arduino необходимо между питанием и землей установить поддерживающий конденсатор емкостью 1000мФ 10V. И керамический конденсатор любой емкости для предотвращения дребезга от сервопривода (при нагрузке) на Ардуину. Это решение нельзя использовать для постоянного использования, но в экстренных случаях этот вариант вполне подойдет.

    Обратите внимание что данный вариант подойдет для сервоприводов типа "микро". Для больших сервоприводов данный метод для питания все равно даст просадку напряжения, это будет заметно по LED индикаторам ардуины, но все же предотвратит полный сброс.

Одним из самых распространнных деталей для создания роботов является сервопривод. Фактически это небольшой электродвигатель с редуктором и встроенным потенциометром. Потенциометр подключен к выходному валу, и вместе с его поворотом меняет свое сопротивление – соответственно в любой момен времени можно узнать о положении вала. В отличие от обычного двигателя встроенная электроника приводит в движение мотор таким образом, чтобы его положение соответствовало заданному значению

Обычно сервоприводы не расчитаны на полный оборот, вал может поворачиваться на ограниченный угол (чащевсего 180 градусов). Этого вполне достаточно, чтобы управлять рулевыми колесами или магипулятором. Поэтому и примеяют сервоприводы чаще всего для шарниров. Основным показателем мощности сервопривода является крутящий момент, обычно выражается в кг⋅см. Для длинных манипуляторов, которые должны подымать приличный вес, уже потребуются сервоприводы с крутящим моментом 30-40 кг⋅см и больше. Если же мы хотим с помощью нашего сервопривода совершать не очень тяжелую работу, то вполне достаточно самых простейших, на 1,8 или 3,2 кг⋅см.

Вообще, крутящий момент выражается в Н⋅м. Но для большей простоты вычислений его часто приводят к в кг⋅см (1 кг⋅см ~ 0.01 кг⋅м ~ 0.098 Н⋅м) Это усилие, которое может обеспечить сервопривод на определенном расстоянии от оси вращения. Т.е, например сервопривод с моментом 4 кг⋅см может поднять груз в 4 кг, в 1см от оси, или 400 грамм, но уже на расстоянии 10 см от оси. Если мы хоти сделать манипулятор, то нужно прикинуть вес движущихся частей и подбирать соответствующие сервоприводы для каждого сустава.

Подключается сервопривод с помощью трех проводов – стандартной пары из питания и заземления и одного управляющего. Для маломощных сервоприводов все три можно подключать к контроллеру напрямую. Но если мы используем много сервоприводов или несколько, но мощных, то возможностей контоллера будет уже не хватать. Нужно подключать к контроллеру только управляющий вывод, а питание на остальные подавать независимо.

Для более удобного подключения большго количества сервоприводов есть специальные платы расширения, на которых контакты для каждого сервопривода уже собраны в группы по три, что сильно упрощает подключение. Но это для сложных проектов, например паукообразных роботов, где каждый сустав ног управляется отдельно. Мы же рассмотрим простейший вариант с одним сервоприводом, подключенным напрямую к контроллеру.

Запитываем сервопривод от пина “5V” (красный провод), землю подключаем к пину “Gnd” (черный провод). Управление (белый провод) можно подключить к любому из свободных выходов, например к пину номер 2 (выходов контроллера 0 и 1 используются для связи по последовательному интерфейсу, поэтому использовать их не рекомендуется)

Для управления сервоприводом используется стандартынй класс Servo . Нам требуется процедура attach() , которая служит для инициализации сервопривода и write() , для управления его движением:

#include // Подключаем библиотеку для работы с сервоприводом

servo1.write(90); // Даем команду сервоприводу принять положение в 90 градусов,которое соответствует среднему положению

При запуске нашей программы подключнный сервопривод примет положение в 90 градусов. Если он уже в нем, то ничего не произойдет. Попробуем плавно поменять положение от минимального к максимальному:

Servo servo1; // Создаем один объект типа «сервопривод»

int angle = 0; // Переменная,в которой хранится положение сервопривода

servo1.attach(2); // Объясняем контроллеру, что управляющий провод сервопривода подключен к пину 2

Сервоприводы - это устройства, которые предназначены для управления приборами. Осуществляется этот процесс при помощи обратной связи. На сегодняшний день различают асинхронные и синхронные модификации. По устройству модели могут довольно сильно различаться. Также следует учитывать, что существуют модификации линейного типа. Отличаются они большим параметром ускорения.

По принципу действия сервоприводы бывают электромеханического и электрогидромеханического типов. Встретить вышеуказанные приборы чаще всего можно в промышленной сфере. Там они отвечают за работу различного оборудования. В частности, сервоприводы занимаются управлением станков.

Устройство

Схема сервопривода включает в себя датчик, блок питания, а также плату управления. Дополнительно в моделях можно встретить конвертер. Чаще всего он устанавливается линейного типа. В данном случае многое зависит от привода. Представлен он в сервоприводе, как правило, в виде электромотора с редуктором. Однако на сегодняшний день имеется множество модификаций с пневмоцилиндрами.

Как собрать модель?

Сделать сервопривод своими руками довольно просто. Если рассматривать простую модификацию, то в первую очередь следует подобрать корпус для устройства. В данном случае многое зависит от габаритов привода. Для самодельного устройства целесообразнее использовать маломощный электродвигатель. При этом редукторная коробка должна быть установлена рядом.

Далее, чтобы собрать сервопривод своими руками, нужно подобрать потенциометр аналогового типа. В магазине его найти не составит труда. После этого следует заняться установкой датчика. Как правило, плата управления подбирается серии РР20. Для поворотных регуляторов она подходит хорошо. В конце работы останется только установить конвертер. Все это необходимо для того, чтобы подсоединить устройство к сети.

Модель для отопления

Сервопривод для отопления в наше время является очень востребованным. Отличаются данные устройства высоким параметром предельной частоты. Двигатели чаще всего в моделях используются асинхронного типа. При этом мощность их находится на уровне 2 кВт. Для передачи вращательного момента на вал используются малые шестерни. На сегодняшний день наиболее распространенным принято считать сервопривод для отопления с аналоговыми потенциометрами.

Однако цифровые модели также не являются редкостью. Для повышения пропускной способности устройства применяются специальные контроллеры. При этом управленческие платы устанавливаются самые разнообразные. Для подключения устройства к сети стандартно используются конвертеры. В наше время чаще всего их можно встретить линейного типа. Ремонт сервопривода для отопления может делаться только в сервисном центре.

Устройство с клапаном

Клапан с сервоприводом, как правило, используется в промышленной сфере. Там он способен отвечать за регулировку станков. Отличительной особенностью данных моделей принято считать мощные двигатели. При этом параметр предельной частоты у них достигает 22 Гц. Все это, в конечном счете, дает приборам хорошее ускорение. Непосредственно моторы можно встретить в основном асинхронного типа. Соединение с валом клапан с сервоприводом имеет шестерного типа. Регуляторы в таких устройствах встречаются поворотного и кнопочного вида. В данном случае клапаны могут использоваться только односторонние.

Модель для печки

Сервопривод печки в среднем мощность имеет на уроне 2 кВт. Двигатели чаще всего устанавливаются асинхронного типа с предельной частотой на отметке в 31 Гц. Отличительной особенностью таких устройств принято считать наличие резистивного элемента. В его обязанности входит повышение пропускной способности модели. Редукторы чаще всего устанавливаются низкочастотного типа. Дополнительно следует отметить, что на рынке представлено множество модификаций с потенциометрами.

Управленческие платы, как правило, имеются серии РР20. Для многофункционального контроля печки они подходят идеально. В данной ситуации выходные валы подсоединяются напрямую к коробке редуктора. Все это необходимо для того, чтобы повысить крутящий момент. В качестве рычага производители используют плечо. Устанавливается оно, как правило, не большого размера. Подключается сервопривод печки к сети через специальные контакты на конвертере. В данном случае статор к устройству подсоединять можно. Дополнительно сервопривод отлично способен выполнять функции усилителя.

Устройство для регулировки заслонки

Сервопривод заслонки можно сделать даже самостоятельно. В данной ситуации электромотор имеет смысл подбирать с мощностью не более 2 кВт. В противном случае выходной вал не выдержит больших нагрузок и поломается. При сборке в первую очередь устанавливается коробка редуктора. Пневмоцилиндрические устройства используются довольно редко.

Статоры в сервопривод заслонки монтируются часто электронного типа. Конвертер устанавливается в модель только после плеча. Затем необходимо уделить внимание управленческой плате. Выходной вал в данном случае должен быть закреплен на оси. Для этого подбирают металлическую проволоку не больших размеров. В последнюю очередь останется только подсоединить проводы к конвертеру. Далее их напрямую появится возможность подключить к блоку управления.

Модель с краном

Кран с сервоприводом позволяет регулировать напор воды. Встретить прибор данного типа чаще всего можно в промышленной сфере. В данном случае используются только пневмоцилиндры. В свою очередь электромоторы встречаются довольно редко. Статорные коробки для сервопривода подходят ручного типа. Для регулировки устройства обязана быть предусмотрена специальная плата.

На сегодняшний день многие производители отдают предпочтение модификации РР20. Непосредственно контроллеры устанавливаются поворотного типа. Подключение сервопривода к сети осуществляется при помощи конвертера. На рынке в наше время представлены как нелинейные, так и линейные его типы.

Синхронные модификации

Синхронный сервопривод - что это? На самом деле указанное устройство используется для регулировки станков. При этом в вентиляционных системах они также являются востребованным. Датчики у моделей устанавливаются, как правило, проворного типа. В данном случае мощность двигателя может варьироваться от 1 до 3 кВт. Отдельного внимания в устройствах заслуживает конвертер. Устанавливается он, как правило, на два контакта. Однако имеются и другие модификации.

Статоры используются цифрового типа, и регулировать их можно при помощи котроллера. Еще одной отличительной чертой данных устройств принято считать наличие энкодеров. Данные детали необходимы для обратной связи. Параметр предельной частоты у сервоприводов не превышает 35 Гц. Подключение устройства к сети осуществляется только через клеммы. Дополнительно следует отметить, что резистивные механизмы используются, как правило, низкочастотного типа. Самостоятельно сложить сервопривод довольно сложно. Однако в данном случае многое зависит от типа управленческой платы.

Асинхронные сервоприводы

Асинхронный сервопривод - что это? В действительности указанное устройство предназначено исключительно для оборудования, которое блок питания имеет на 15 В. В этом случае мощность прибора, как правило, не превышает 2 кВт. Нагрузку максимум потенциометр в моделях способен выдерживать на уровне 23 А. Для передачи крутящего момента от мотора используются не большого диаметра выходные валы. При этом рычаг двигается за счет шестерни.

Изменение частоты вращения происходит благодаря котроллеру. Управление сервоприводом осуществляется при помощи специальной платы. В некоторых случаях для изменения положения регулятора используется плечо. Резистивные устройства чаще всего устанавливаются низкочастотные. При этом сервоприводы на пневмоцилиндрах в наше время встречаются довольно редко. Чтобы самостоятельно собрать такую модификацию, потребуется мощный редуктор. Также для него следует подобрать статор ручного типа.

Сервоприводные модификации линейного движения

Линейного движения сервопривод - что это? На самом деле указанное устройство является регулятором с обратной связью. На сегодняшний день модели очень востребованы. Для различных систем отопления они подходят идеально. Конвертеры в них чаще всего используются на три контакта. Статорные коробки устанавливаются различной мощности. Двигатели могут использоваться только синхронного типа.

В противном случае блоки питания не выдерживают предельного напряжения. В качестве приводов в данной ситуации применяются редукторные коробки. Для передачи крутящего момента от двигателя используются шестерни. Да сегодняшний день на рынке представлено множество модификаций с выходным валом. В данном случае регулировать скорость оборотов можно при помощи котроллера. Также следует помнить, что в устройствах имеются специальные платы. Устанавливаются они с маркировкой Р20. Смена режима в данном случае производится за счет контроллера. Роторные модификации сервоприводов в наше время встречаются довольно редко. Используются они чаще всего для управления станками.

Устройства для промышленных роботов

Для сервопривод - что это? В действительности указанное устройство является многофункциональным котроллером. В данном случае платы используются серии РР30. За счет этого у пользователя открывается возможность регулировать параметр предельной частоты. В среднем он колеблется в районе 25 Гц. Работают устройства данного типа от блоков питания на 15 В.

Управление сервоприводом осуществляется часто при помощи регулятора поворотного типа. Однако цифровые аналоги в наше время не являются редкостью. Роторы применяются в устройствах исключительно низкочастотные. Все это необходимо для быстрого ускорения сервопривода. Потенциометры можно встретить как аналогового, так и цифрового типа. Редукторные коробки по конструкции могут довольно сильно отличаться. Самостоятельно собрать сервопривод указанного типа сложно. В данном случае проблема заключается в поиске нужного контролера.

Сервоприводные модели для полиграфических станков

Для полиграфических станков модели необходимы с синхронными типами моторов. Мощность их обязана достигать 2 кВт. Параметр предельной частоты приветствуется на уровне 30 Гц. На сегодняшний день большинство производителей выпускают сервоприводы с аналоговыми потенциометрами. Также следует отметить, что редукторные коробки, как правило, используются плоские. Все это необходимо для того, чтобы устройство было компактным.

Отдельного внимания в сервоприводах данного типа заслуживают роторы. Показатель проводимости у них обязан минимум составлять 3 мк. Все это необходимо для хорошего ускорения. Выходные валы в данном случае используются небольшого диаметра. Конвертеры чаще всего можно встретить на три контакта. Для блоков питания на 20 В они подходят идеально. Статорные коробки устанавливаются различной формы и по конструкции могут сильно различаться. В этой ситуации многое зависит от энкодера, который установлен в сервоприводе.

Устройства для швейных машин

Сервоприводы данного типа отличаются от прочих устройств своей компактностью. Двигатели у таких моделей чаще всего можно встретить асинхронного типа. От сети с напряжением 220 В они работают без каких-либо проблем. Регулятор в данном случае используется поворотного типа. Максимум параметр предельной мощности достигает 1.2 кВт. Пороговая частота в этой ситуации едва доходит до отметки 20 Гц. Потенциометры используются только аналогового типа.

Редукторные коробки для этой модификации подходят маломощные. Сервоприводы на две шестерни попадаются довольно часто. Однако в основном устанавливаются роторы для передачи крутящего момента от мотора. Выходные валы обладают малой частотой вращения. При этом нагрузка на плечо оказывается небольшая. Контроллеры в данном случае используются одноканальные. При этом менять параметр мощности у пользователя нет возможности. Датчик обратной связи в сервоприводах данного типа располагается возле статора.

Сервоприводные модификации для упаковочных станков

Модель данного типа чаще всего работает от движения пневмоцилиндров. При этом блоки питания часто используются на 12 В. В данном случае системы защиты устанавливаются довольно часто. Конвертеры можно встретить на два и три контакта. Статорные коробки устанавливаются различной конфигурации. В некоторых случаях датчики обратной связи в сервоприводах заменяются энкодерами. Роторные коробки на предельное напряжение должны быть рассчитаны в районе 12 В. Резистивные механизмы в устройствах встречаются довольно редко.

Самостоятельно собрать сервопривод данного типа можно. С этой целью лучше всего подобрать аналоговый потенциометр. При этом конвертер лучше использовать на два контакта. Вместо энкодера многие специалисты рекомендуют применять датчики обратной связи. Однако для их успешной эксплуатации необходимо проверить устройство на чувствительность. Регулятор проще всего использовать поворотного типа из пластика. Модуляторы применяются только одноканальные.

– это привод, вал которого может встать в заданное положение или поддерживать заданную скорость вращения. Другими словами, валом сервопривода можно управлять, например, задавая ему положение в градусах или определенную частоту вращения.

Используются в самых разных областях, например, в робототехнике они помогают моделировать различные движения роботов. Сервоприводы эффективное решение для перемещения механизмов в пространстве.

В этом уроке мы научимся управлять сервоприводом .

Для урока нам понадобиться:

Подключение к Arduino

Для достижения самых разных целей робототехники к программируемому контроллеру Arduino может быть подключен сервопривод. Подключение осуществляется через кабели, которые выходят из сервопривода. Обычно это три кабеля: красный; коричневый или черный; желтый, оранжевый или белый.

Подключение сервопривода к плате Arduino производится через ШИМ-выводы. Что Такое PWM (ШИМ) мы уже рассматривали в уроке: Плавное включение светодиода на Arduino с помощью ШИМ (PWM)

За основу возьмем урок Подключение кнопки и светодиода плате Arduino к схеме добавим сервопривод и вот что у нас должно получиться.

Изменим код:

#include // подключаем библиотеку для работы с сервоприводом Servo servo; // объявляем переменную servo типа "servo" int led_pin=3; // пин подключения int button_pin = 4; // пин кнопки // переменные int buttonState = 0; // переменная для хранения состояния кнопки void setup() { pinMode(led_pin, OUTPUT); // Инициализируем цифровой вход/выход в режиме выхода. pinMode(button_pin, INPUT); // Инициализируем цифровой вход/выход в режиме входа. servo.attach(5); // привязываем сервопривод к аналоговому выходу 10 } void loop() { buttonState = digitalRead(button_pin);// считываем значения с входа кнопки if (buttonState == HIGH) { digitalWrite(led_pin, HIGH);// зажигаем светодиод servo.write(0); //ставим вал на 180 delay (1000); // задержка в 1 секунду } else { digitalWrite(led_pin, LOW);// выключаем светодиод servo.write(180); //ставим вал на 0 delay (1000); // задержка в 1 секунду } }

#include // подключаем библиотеку для работы с сервоприводом

Мы еще не работали с библиотеками. Библиотека это класс, содержащий функции которые мы можем использовать в нашей программе. Библиотека позволяет сократить объем написанного кода и скорость разработки приложения.

Ка вы поняли строка выше подключает нашу библиотеку Servo.h, после чего мы можем использовать все функции данной библиотеки.

Servo servo; // объявляем переменную servo типа "servo"

Объявлением переменную, она нам понадобиться для работы с библиотекой.

Servo.attach(5); // привязываем сервопривод к аналоговому выходу 5

Функция библиотеки Servo.

Servo.write(180); //ставим вал на 180

С помощью данной функции мы можем повернуть сервопривод на заданный угол.

Следующий урок: IR Пульт. Включение выключение светодиода.

– это привод, вал которого может встать в заданное положение или поддерживать заданную скорость вращения. Другими словами, валом сервопривода можно управлять, например, задавая ему положение в градусах или определенную частоту вращения.

Сервоприводы используются в самых разных областях, например, в робототехнике они помогают моделировать различные движения роботов. Сервоприводы – эффективное решение для перемещения механизмов в пространстве.


Устройство сервопривода

Если говорить об основных элементах сервопривода, то он состоит из блока управления, мотора и датчика.

Управление происходит через печатную плату, к которой подключен мотор постоянного тока и потенциометр (датчик). Внутри блока управления также находятся шестерни редуктора.



Фактически сам привод представляет собой электрический мотор с редуктором, именно электромотор преобразует электричество в механическое действие. Но скорость вращения мотора не всегда подходит для достижения поставленных целей. Чтобы было возможно управлять вращением мотора, используется редуктор. В итоге он понижает скорость вращения выходного вала до нужного значения. Потенциометр контролирует получаемый на выходе результат.


Также из сервопривода выходят три провода. Два из них питают мотор, третий провод используется для подачи сигнала, который несет в себе заданное значение.





Принцип работы

При включении электромотора запускается вращение выходного вала. К нему можно подключить или присоединить то, чем в дальнейшем планируется управлять.


Сервопривод получает заданное значение, после этого сравнивает данное значение со значением на своем датчике. В случае расхождения блок управления стремится достичь и поддержать заданное значение, чтобы оно по возможности совпадало со значением, которое поступает с датчика.


Основные технические характеристики сервопривода

Крутящий момент (Усилие на валу) . Измеряется в кг/см. Представляет собой произведение силы на длину рычага. На практике крутящий момент отвечает за ускорение выходного вала и его способность преодолевать сопротивление вращению. Чем выше крутящий момент, тем больше возможностей у мотора реализовать свой потенциал.


Скорость поворота . Означает скорость, с которой выходной вал сервопривода меняет свое положение. Угол изменения положения указывается в градусах.


Угол поворота . Это максимальный угол, на который может повернуться выходной вал. Наиболее распространенные значения для этой характеристики: 180° и 360°.


Габариты сервопривода . Сервоприводы бывают маленькие, стандартные и большие. Стандартные сервоприводы самые недорогие. При отклонении габаритов от стандартных значений цена, как правило, меняется пропорционально такому отклонению.


Материал шестерней . Шестерни редуктора производятся из пластика, карбона, металла. Пластиковые шестерни легкие, но не предназначены для серьезных нагрузок. Карбоновые шестерни более прочные, но и более дорогие. Металлические шестерни – самые тяжелые, идеально подходят для максимальных нагрузок.




Виды сервоприводов

Сервоприводы бывают цифровые и аналоговые.

По внешнему виду они почти не отличаются друг от друга. Основное отличие заключается в принципе управления мотором. У аналоговых сервоприводов управление происходит с помощью специальной микросхемы, цифровые сервоприводы обладают микропроцессором. Микросхема и микропроцессор способны принимать и анализировать управляющие импульсы. Только на микросхему они обычно поступают с частотой 50 Гц, а на микропроцессор – с частотой 200 Гц и более. В результате этого цифровой сервопривод мобильнее и четче реагирует на управляющий сигнал.



Цифровые сервоприводы – это новый шаг в развитии техники, и они характеризуются рядом преимуществ. К таким преимуществам относятся: высокая точность позиционирования, возможность более быстрого управления приводом, возможность поддержания постоянного крутящего момента.


Подключение к Arduino

Для достижения самых разных целей робототехники к программируемому контроллеру Arduino может быть подключен сервопривод. Подключение осуществляется через кабели, которые выходят из сервопривода. Обычно это три кабеля: красный; коричневый или черный; желтый, оранжевый или белый.





Красный кабель отвечает за питание сервопривода. Коричневый - за заземление. Желтый – подключается непосредственно к плате Arduino и предназначен для передачи управляющего сигнала.

Подключение сервопривода к плате Arduino производится через ШИМ-выводы.



Итак, черный провод подключается к любому GND-пину.

Красный кабель питания (VTG) - к соответствующему выводу для подключения питания.

Белый сигнальный кабель – к ШИМ-выводу.


Питание сервоприводов

Большинство плат Arduino рассчитано на 500 мА. Исходя из этого, сервопривод является достаточно энергоемким компонентом, так как потребляет более 100 мА. Если в ходе проекта требуется использование мощного сервопривода или нескольких сервоприводов, то необходимо позаботиться об их дополнительном питании. Проблема дополнительного питания сервоприводов может быть решена следующим образом:

Обеспечить питание сервопривода от дополнительно приобретенного блока питания, например, 5 или 6 В;

При отсутствии блока питания с нужным напряжением, можно использовать стабилизатор.

Напрямую к Arduino можно подключать только маломощный сервопривод. В противном случае пользователя ожидают разные побочные эффекты: от перезагрузки платы до перегорания отдельных компонентов.


Количество сервоприводов

Количество подключаемых к плате Arduino сервоприводов ограничено. Большинство моделей Arduino предусматривает подключение 12 сервоприводов, Arduino Mega позволяет подключить до 48 сервоприводов.





Управление сервоприводом


Библиотека Servo

Библиотека для сервопривода содержит в себе набор дополнительных команд, которые позволяют вводить программу в упрощенном виде.

На сегодняшний день уже написаны программы для самых разных целей. Библиотеки можно подобрать по ссылке .

На платах Arduino за исключением модели Arduino Mega обращение к библиотеке отключает функцию analogWrite(PWM) на пинах 9 и 10. Наличие подключения сервопривода или отсутствие такового при этом роли не играет. На платах Arduino Mega можно подключить до 12 сервомоторов без отключения функции PWM.


Для управления сервоприводом предусмотрена библиотека Servo.h.



Вызывается она через #include . После подключения библиотеки становится возможным пользоваться списком, содержащихся в ней функций. С функциями библиотеки можно ознакомиться через меню «Файл/примеры». Для каждого сервопривода создается свой «объект» (servo), который прикрепляется к соответствующему цифровому пину. После этого программируемый контроллер Arduino готов отправлять управляющие сигналы на конкретный сервопривод. Передача сигналов производится постоянно, даже при «простое» сервопривода. Для приостановки передачи сигналов нужно отправить команду вручную.


Управляющий сигнал

Для управления сервоприводом управляющий сигнал приобретает решающее значение. Он представляет собой импульс, который имеет нужную ширину и посылается с соответствующей частотой. Ширину импульса можно вбивать в программном коде вручную, методом подбора достигнув точного угла, или использовать команды библиотеки, указывая нужный угол в градусах. У разных марок сервоприводов ширина импульса для поворота выходного вала на определенный угол может быть различна.

Импульсы отвечают как за движение сервопривода, так и за его неподвижное положение. Работа сервопривода происходит в замкнутом цикличном кругу посылаемых импульсов.


Управляющие команды

Управление сервоприводом через библиотеку основано на следующих командах:

Если в работе сервопривода возникают нарушения, то, как правило, об этом говорят соответствующие шумы: жужжание, потрескивание и прочее. Ниже рассмотрим основные причины таких шумов.


Невозможность поворота на заданный угол

Бывают случаи, когда поворот сервопривода на заданный угол невозможен. Например, на его пути возникает какая-либо преграда. Этой преградой может стать закрепленное на сервоприводе устройство или его часть. Упираясь в преграду, сервопривод начинает характерно жужжать. Чтобы решить данную проблему, в программу вносятся команды, ограничивающие перемещение сервопривода путем изменения угла перемещения.


Настройки начальной и конечной позиции

Иногда необходимо подкорректировать координаты начальной или конечной позиции. Это нужно когда значения датчика и фактического положения выходного вала расходятся относительно конечной позиции последнего. Например, выходной вал находится в конечной позиции, но датчик считает, что он еще ее не достиг и пытается заставить выходной вал продолжить движение. Возникает характерный шум. В этом случае начальная позиция не обязательно должна начинаться с 0°С, а конечная не обязательно должна заканчиваться на 180°C. Эти предельные значения можно немного сдвинуть на 5-10°C, и проблема будет решена.




Заключение

На сегодняшний день сервопривод – это необходимый элемент в робототехнике, с помощью которого воплощаются многие творческие проекты. Этот умный управляемый моторчик предназначен для моделирования движения. Пользоваться его функциями достаточно просто, уже написано множество программ, которые могут быть использованы в качестве трафарета для воплощения собственных идей. Сервопривод подключается к программируемому контроллеру Arduino. Все тонкости этого процесса подробно освещены как в этой статье, так и в других статьях, выложенных в сети.

Современные магазины предлагают большой выбор сервоприводов. Зная нужные характеристики, легко подобрать подходящую модель.