Схема радиопередатчика, рации, радиомикрофона и другое в данном разделе. Простой аудио передатчик

03.08.2019 Флешки и HDD

Радиоередатчик, схема которого приведена на рисунке ниже, работает на частоте 88-108 МГц, дальность передачи радиосигнала составляет от 1 до 5 километров, в зависимости от исполнения схемы.

В схеме использованы широкодоступные радиоэлектронные компоненты. Питается схема от любого источника питания напряжением 9В, это может быть батарея КРОНА или же сетевой блок питания.

Принципиальная схема

На первом транзисторе собран задающий генератор и модулятор. Высокая мощность радиопередатчика достигается за счет использования дополнительного каскада усиления мощности ВЧ, собранного на транзисторе КТ610 и предшествующего ему каскада усиления ВЧ, собранного на транзисторе КТ315.

Если такой мощности передатчика не нужно то схему можно значительно упростить, исключив каскад усиления ВЧ сигнала, на схеме этот каскад выделен синим блоком. Антенну в таком случае подключаем к среднему отводу катушки L3. Таким образом мощность радиопередатчика снизится и дальность действия его составит 800м - 1км.

Если нужна дальность действия порядка 50-200 метров то можно исключить оба каскада усиления ВЧ на транзисторах КТ610 и КТ315, оставляем только задающий генератор на первом транзисторе (обведен серым прямоугольником). В данном случае катушка L2 уже не понадобится, антенну подключаем через конденсатор 5-10 пФ к коллектору транзистора в задающем генераторе.

#27 Андрей Март 17 2015

а есть схема именно для круглосуточной трансляции на 3-5 км, но с четко зафиксированной волной (что б не гуляла и на приемниках проблем с сигналом не было бы)?

#28 Konstantin Июнь 08 2015

Есть ли схема аналогичного по мощности передатчика, но более стабильного, с варикапом?
Вещаю из дома на дачный участок, надоело бегать-подстраивать. Соседи идею одобряют, тоже просят стабильности. Получается смешно: они у себя подстраивают приемник, я у себя танцую с бубном вокруг передатчика, и все вместе дружно еще раз подстраиваем свои приемники. Через некоторое время снова по кругу.

#29 root Июнь 09 2015

Вот радиопередатчик с выходной мощностью 100-200 мВт и с варикапом: Схема мощного радиопередатчика с ЧМ на 65-108 МГц .

Еще добавим что для того чтобы частота не плавала и передатчик работал стабильно, нужен качественный, хорошо стабилизированный источник питания.

#30 NULL Июнь 16 2015

Здравствуйте, прошу советов
Собрал данный передатчик в варианте с первыми двумя каскадами, "заработал" практически сразу.
Сперва вопрос по конструктиву: две катушки по 3 витка, которые образуют L3, как надо располагать? На одной оси рядом друг с другом или же параллельно друг другу? Я расположил на одной оси.
Теперь вопрос по работе: как проверить работоспособность второго каскада? Проблема в том, что передатчик работает, но очень слабо, дальность получилась 1-2 метра, дальше помехи. Частота перестраивается замечательно. В качестве приемника использую смартфон с наушниками.
Т.к. источник - линейный выход, выкинул резистор на 2к, конденсатор вместо 5 мкф поставил 0.22мкф керамику, вместо резистора 100к поставил 75к, а от него 100к на землю.
Вместо конденсаторов 120пф поставил 100пф.
Важный момент: все конденсаторы - постоянные. Частоту перестраиваю, вкурчивая сердечник в пластмассовый каркас L1.
Транзисторы поставил какие нашел с частотой более 100 мгц: 1й каскад - 2SC1740, 2й каскад - 2SD667. Антенна - 30см кусок провода. Питание - 12В аккумулятор.
Наблюдения такие: общее потребление схемы получилось 7-8 мА, что, кажется, маловато. Если касаться антенны рукой, то генерация срывается, и я этого не понимаю, ведь антенна подключена ко второму каскаду, а он вроде как не подает признаков жизни. Резистор во втором каскаде - переменный до 1МОМ, его вращение ничего не дает. Транзистор в нем холодный. Перед впайкой он был 100% рабочий с hfe 130.
Вот, как-то так. Поскольку первый каскад, если его не лапать руками, стабильно генерирует, то копать, полагаю, нужно в сторону второго. Каких дадите советов? Почему получилась столь малая даже для первого каскада дальность 1-2м, это из-за того что антенна подключена ко второму?
Стыдно, но я не понимаю как работает второй каскад. На что влияет емкость подстрочного конденсатора в нем? Так-то я в этих _радио_ делах почти полный 0.

#31 root Июнь 17 2015

Обе части катушки L3 располагаются на одной оси, вы все правильно сделали.
Прежде чем приступать к настройке второго каскада - отключите его полностью и настройте первый каскад с генератором чтобы от него сигнал передавался на несколько десятков метров.
Подключение к линейному выходу, так как вы написали, может быть причиной помех и потери излучаемой мощности. Нужно добиться устойчивой работы генератора, подбирая резисторы которые вы подключили к базе.
Можно попробовать собрать первый каскад по вот этой схеме и подключить к нему второй каскад для увеличения мощности ВЧ.
Также для улучшения ситуации можно попробовать собрать дополнительный каскад НЧ на транзисторе, а уже к нему подключать источник сигнала.
Вкручивать сердечник в каркас L1 - не очень хорошая идея, попробуйте все же достать где-то подстроечный конденсатор и проверить работу с перестройкой через него.
При питании от 12В сопротивление резистора в цепи питания генератора (380 Ом) попробуйте увеличить.
Проверьте транзистор во втором каскаде - возможно уже сгорел, для экспериментов можно впаять новый и в разрыв эмиттера включить резистор сопротивлением примерно 200-300 Ом, когда второй каскад заработает то подберете наиболее удачное сопротивление.

#32 NULL Июнь 17 2015

Спасибо за комментарии.
Да, что-то я растерялся, вы правы по поводу отделения первого каскада - начну с этого. Я довольно давно собирал подобный 1-транзисторный передатчик, как по вашей ссылке, в пределах квартиры он работал и я им пользовался, а вот когда отвез его в частный дом, то оказалось что мощность недостаточна: на участке, за стенами дома сигнал уже был с помехами. Недавно мне вновь потребовался передатчик и я решил попробовать эту 2-3 транзисторную схему.
Как будет время, попробую поэкспериментировать: выкручу сердечник, впаяю контурный конденсатор большей емкости (без сердечника частота получается выше 108 мгц). Забыл написать, что вместо резисторов 300 и 380 ом, я использовал 330 ом. В эмиттере, думаю, не критично, а вот по питанию попробую увеличить. Ну и с высокоомными поиграюсь.
Кстати, какова функция конденсатора 120 пф, который подключен к базе первого транзистора? Нужен ли он в варианте с линейным выходом в качестве источника сигнала?

#33 Андрей Август 23 2015

Собрал передатчик только с генератором. Мощность радует - >=30м с учетом стен. Но замечены гармоники (даже на заявленой дальности). Я искал истинную частоту за помехоустойчивочтью и мощностью. Нашел примерно три таких частоты (искал на расстоянии) в диапазоне 64-108 МГц (самая стаьильная а возможно и истинная находилась ниже заявленной в описании частоты). Пробовал прокручивать конденсаторы и резистор, ставил генератор в коробочку з металла припаянной к минусу(экран) и без. Гармоники остались. Возле котушки поблизости нет деталей кроме подстрочного конденсатора. Питание 10в аккумулятор (при сетевос хоть и з простым стабилизатором но фон сильный) хотя и с аккумулятором слышен немного фон когда поблизости сетевой шнур. Конденсатор на входе 0.33мк слюдяной. Резистор 2к откинул (как линейный вход). Монтаж на плате с прорезанными дорожками (зазор между ними около 0.5мм. Какие ваши рекомендации?

#34 роман Ноябрь 14 2015

хорошая схема кто может прислать плату и детали?

#35 andr Март 01 2016

Спаял на макетке передатчик на первых двух каскадах этой схемы.
Точнее, схема первого каскада (генератор) взята для варианта линейного входа, а не для микрофона. Почти все номиналы элементов у меня чуть другие. Но не суть.
В первом каскаде 2n3904. Сначала настраивал его. Лучшее что удалось добиться - уверенный прием через 1-2 стены. Потребляемый ток 8 мА.
Далее, повесил и настроил второй каскад, транзистор КТ603Б. Уверенный прием стал по всей квартире (через 4 стены).
А теперь вопрос. Потребление схемы получилось сразу 150мА (при этом резистор в базе 90кОм), питание от 12В аккумулятора. Это 1.8вт мощности. Я прекрасно представляю что такое 1.8 вт мощности и понимаю, что КТ603 должен бы вскипеть и помереть. Но этого не происходит. Температура у него - около 40С. Вопрос: неужели бОльшая часть мощности уходит в излучение? Получается, что выходная мощность передатчика у меня - в районе 1-1.5вт? Как-то неожиданно много для столь простой схемы.
Дальность я не проверял, т.к. требовалось только в пределах квартиры.
А так же другой вопрос: как подобрать оптимальную длину антенны? Я пробовал разную от 15 см до 1 м и заметил, что длина немного влияет на нагрев транзистора.

#36 root Март 01 2016

Для удобной настройки можно собрать схему волномера . Поднести на небольшом расстоянии антенну волномера к антенне радиопередатчика и произвести настройку П-контура передатчика или согласующего устройства для антенны, добиваясь максимальных значений в показаниях волномера.
На схеме (Рис. 1) настройку согласования с антенной выполняем при помощи конденсатора, который подключен к катушкам L7, L8, а также изменением расстояния между витками этих катушек.
Передатчик нельзя включать без нагрузки (антенны или ее эквивалента) - может сгореть выходной транзистор.
В вашем случае потребляемый ток вполне приемлемый, на всякий случай на транзистор можно установить небольшой радиатор. Мощность потребляемая схемой не равна мощности которая излучается в антенну, этому способствуют потери на нагрев, режим работы транзистора, тип антенны и т.п.

#37 andr Март 01 2016

Спасибо за ответ! Подойдет ли вместо КД510 КД522? Или лучше сразу 1n4148 поискать?
Про мощность - ну я так и прикинул, что если общее потребление 1.8 вт, и единственный мощный элемент греется слабо, то бОльшая часть (1-1.5вт) уходит в излучение, т.к. греться там больше нечему, а деваться куда-то надо. Кстати, корпус у КТ603 наподобие старых МПшек, так что радиатор к нему разве что припаивать.
Еще такой вопрос. В большинстве случаев в качестве антенны советуют ставить кусок коаксиального провода. Почему? Я использую куски простых проводов - чем они хуже?

#38 POPS Март 07 2016

подскажите, насколько критична емкость разделительного конденсатора в базе второго транзистора, который 120пф в схеме, чем она обусловлена?
если поставить пленку 1нф или даже 10нф, станет ли лучше звук? а то он какой-то деревянный

#39 Алексей Январь 06 2017

А микрофон можно заменить на км 70??????,или китайский полярный?

#40 root Январь 06 2017

Можно применить любой электретный или конденсаторный микрофон (со встроенным транзистором-усилителем). Китайский полярный из магнитофона это и есть электретный микрофон.

#41 Александр Компромистер Октябрь 09 2017

У меня родилась идея по первой схеме: объединить транзисторы VT1 и VT2 в одну транзисторную сборку 1НТ591. И дополнительно повесить мощный каскад на том же КТ610, чтобы от натуги попа не треснула поперёк.

#42 Александр Компромистер Октябрь 09 2017

Re: #25 Андрей Март 10 2015 Попробуй сделать схему [Шустов М.А. Практическая схемотехника: 450 полезных схем радиолюбителям: Книга 1. Альтекс-А: Москва, 2001. - С.125. рисунок 13.11], или [там же. - С.128. рисунок 13.16] для видеотрансляции. Более подробно: [ж. Радио. 10/96-19] и [ж. Радиолюбитель. 3/99-8], соответственно.

#43 Данила Январь 17 2019

Здравствуйте, прошу прощение за столь не лепый вопрос. Чем можно заменить кт610 ? Могу ли я поставить кт9180 он по мощнее будет?

#44 root Январь 17 2019

Данила, в комментариях уже задавали такой вопрос. У КТ9180 Граничная частота коэффициента передачи тока примерно 100МГц, для использования в этой схеме он не годится.

#45 Данила Февраль 05 2019

Спасибо большое вам, я не посмотрел частоту у кт9180 и вообще не рассчитывал получить ответ. Но у меня есть ещё несколько вопросов:
1. Что делать С землёй, раньше я думал что земля = - ,но погуглив,понял что это не так. Где-то в комментариях прочитал что землю надо подсоединить к корпусу для экранизации. Я совершенно запутался что к чему.
2. тот же самый вопрос по поводу КТ610 , можно ли его заменить на BFG135? Это СВЧ н-п-н SMD. Если да, то понадобиться ли его монтировать на радиатор?
3. в комментариях вы советовали, для использования аудиовхода собрать 1 каскад по этой схеме и тут у меня возник вопрос - как подсоединить его к данной схеме? Большое спасибо за беспокойство и внимание.

#46 root Февраль 06 2019

Монтаж этой схемы лучше сразу выполнять с учетом полной экранировки и разделения ее частей экранирующими перегородками. Собирать схему можно на "пятачках" по методике С. Жутяева, описание и примеры с фото есть в статьях и комментариях к ним:

  • Конструкция любительской УКВ радиостанции на диапазоны 144МГц, 430МГц, 1200МГц
  • Схема УКВ приемника прямого преобразования на диапазон 144МГц

При таком монтаже все соединения выполняются на пятачках и навесным монтажом. Оставшаяся изолированная от пятачков подкладка из фольги подсоединяется к минусу схемы, она служит экраном и к ней подключаются выводы компонентов что должны идти к минусу, а также перегородки между каскадами. Эта фольгированная поверхность стеклотекстолита и экран будет землей схемы.

Монтаж передатчика с экранировкой каскадов перегородками:

Насчет BFG135 - высокочастотный SMD транзистор (до 7000МГц) с током коллектора 150мА. Можете попробовать его использовать в выходном каскаде, но ему нужен радиатор.

Подкладка транзистора - это коллектор, а на схеме к минусу идет эмиттер, по этой причине припаять ее к фольге стеклотекстолита не получится. Но можно под коллектор на плате вырезать отдельную площадку и уже туда припаять подкладку транзистора - через нее тепло будет отводиться на печатную плату.

Для использования схемы генератора из другой статьи достаточно к катушке L1 домотать катушку L2, которая подключена к каскадам усиления мощности ВЧ:

Простейшие радиоприемники непригодны ловить FM диапазон, модуляция частотная. Обыватели утверждают: отсюда повелось название. С английского литеры FM трактуем: частотная модуляция. Четко выраженный смысл, читателям важно понять: простейший радиоприемник, своими руками собранный из хлама, FM не примет. Возникает вопрос необходимости: сотовый телефон ловит вещание. В электронную аппаратуру встроена подобная возможность. Вдали от цивилизации люди по-прежнему хотят ловить вещание старым добрым способом - чуть было не сказали зубными коронками - конструировать дельные приборы прослушивания любимых передач. На халяву…

Детекторный простейший радиоприемник: основы

Зубных пломб рассказ коснулся неспроста. Сталь (металл) способна преобразовывать эфирные волны в ток, копируя простейший радиоприемник, челюсть начинает вибрировать, кости уха детектируют сигнал, зашифрованный на несущей. При амплитудной модуляции высокая частота повторяет размахом голос диктора, музыку, звук. Полезный сигнал содержит некоторый спектр, сложно пониманию непрофессионала, важно, что при сложении составляющих получается некоторый закон времени, следуя которому, динамик простейшего радиоприемника воспроизводит вещание. На провалах челюстная кость замирает, воцаряется тишина, пики ухо слышит. Простейший радиоприемник, не дай Бог, конечно, заиметь.

Обратный пьезоэлектрический эффект изменяет согласно закону электромагнитной волны геометрические размеры костей. Перспективное направление: человек-радиоприемник.

Советский Союз славился запуском космической ракеты, впереди планеты всей, научными изысканиями. Времена Союза поощряли степени. Светила принесли немало пользы здесь, – конструирование радиоприемников, – зарабатывают приличные деньги за бугром. Фильмы пропагандировали умных, не зажиточных, неудивительно, что журналы полны различными наработками. Серия современных уроков создания простейших радиоприемников, доступная на Ютубе, основывается на журналах 1970 года издания. Поостережемся отходить от традиций, опишем собственное видение ситуации сферы радиолюбительства.

Концепция персональной электронно-вычислительной машины разработана советскими инженерами. Руководством партии идея признана неперспективной. Силы отданы построению гигантских вычислительных центров. Излишне трудящемуся осваивать дома персональный компьютер. Смешно? Сегодня ситуации позабавнее встретите. Потом жалуются — Америка окутана славой, печатает доллары. AMD, Intel — слышали? Made in USA.

Простейший радиоприемник своими руками сделает каждый. Антенна не нужна, существуй хороший устойчивый сигнал вещания. Диод припаивается к выводам высокоомных наушников (компьютерные отбросьте), остается заземлить один конец. Справедливости ради скажем, фокус пройдет со старыми добрыми Д2 советского выпуска, отводы настолько массивные, что послужат антенной. Землю получим в простейшем радиоприемнике, прислонив одну ножку радиоэлемента к батарее отопления, зачищенной от краски. В противном случае декоративный слой, являясь диэлектриком конденсатора, образованного ножкой и металлом батареи, изменит характер работы. Пробуйте.

Авторы ролика заметили: сигнал вроде есть, представлен невообразимой мешаниной шорохов, осмысленных звуков. Простейший радиоприемник лишен избирательности. Любой может понять, осознать термин. Когда настраиваем приемник, ловим нужную волну. Помните, обсуждали спектр. Эфире содержит ватагу волн одновременно, поймаете нужную, сузив диапазон поиска. Существует в простейшем радиоприемнике избирательность. На практике реализуется колебательным контуром. Известен из уроков физики, сформирован двумя элементами:

  • Конденсатор (емкость).
  • Катушка индуктивности.

Повременим изучать подробности, элементы снабжены реактивным сопротивлением. Благодаря чему волны различной частоты имеют неодинаковое затухание, проходя мимо. Однако существует некий резонанс. У конденсатора реактивное сопротивление на диаграмме направлено в одну сторону, у индуктивности – в другую, причем выведена зависимость частотная. Оба импеданса вычитаются. На некоторой частоте составляющие уравниваются, реактивное сопротивление цепочки падает до нуля. Наступает резонанс. Проходят избранная частота, примыкающие гармоники.

Курс физики показывает процесс выбора ширину полосы пропускания резонансного контура. Определяется уровнем затухания (3 дБ ниже максимума). Приведем выкладки теории, руководствуясь которыми человек может собрать простейший радиоприемник своими руками. Параллельно первому диоду добавляется второй, включенный навстречу. Впаивается последовательно наушникам. Антенна отделяется от конструкции конденсатором емкостью 100 пФ. Здесь заметим: диоды наделены емкостью p-n-перехода, умы, видимо, просчитали условия приема, какой конденсатор входит в простейший радиоприемник, наделенный избирательностью.

Полагаем, несильно отклонимся от истины, сказав: диапазон затронет области КВ или СВ. Будет приниматься несколько каналов. Простейший радиоприемник является чисто пассивной конструкцией, лишенной источника энергии, больших свершений ждать не следует.

Пара слов, почему обсуждали удаленные закутки, где радиолюбители жаждут экспериментов. В природе замечены физиками явления рефракции, дифракции, оба позволяют радиоволнам отклоняться от прямого курса. Первое назовем огибанием препятствий, горизонт отодвигается, уступая вещанию, второе — преломлением атмосферой.

ДВ, СВ и КВ ловятся на значительном удалении, сигнал будет слабым. Следовательно, простейший радиоприемник, рассмотренный выше, является пробным камнем.

Простейший радиоприемник с усилением

В рассмотренной конструкции простейшего радиоприемника нельзя применять низкоомные наушники, сопротивление нагрузки напрямую определяет уровень передаваемой мощности. Давайте сначала улучшим характеристики, пользуясь помощью резонансного контура, затем дополним простейший радиоприемник батарейкой, создав усилитель низкой частоты:

  • Избирательный контур состоит из конденсатора, индуктивности. Журнал рекомендует в простейший радиоприемник включить переменный конденсатор диапазона подстройки 25 — 150 пФ, индуктивность необходимо изготовить, руководствуясь инструкцией. Ферромагнитный стержень диаметром 8 мм обматывается равномерно 120 витками, захватывающими 5 см сердечника. Подойдет медный провод, покрытый лаковой изоляцией, диаметром 0,25 – 0,3 мм. Приводили читателям адрес ресурса, где посчитаете индуктивность, вводя цифры. Аудитории доступно самостоятельно найти, пользуясь Яндексом, вычислить, количество мГн индуктивности. Формулы подсчета резонансной частоты также общеизвестны, следовательно, можно, оставаясь у экрана, представить канал настройки простейшего радиоприемника. Обучающее видео предлагает изготовить переменную катушку. Необходимо внутри каркаса с намотанными витками проволоки выдвигать, вдвигать сердечник. Положения феррита определяет индуктивность. Диапазон посчитайте, воспользовавшись помощью программы, умельцы Ютуба предлагают, наматывая катушку, каждые 50 витков делать выводы. Поскольку отводов порядка 8-ми, делаем вывод: суммарное число оборотов превышает 400. Индуктивность меняете скачкообразно, точную подстройку ведете сердечником. Добавим к этому: антенна для радиоприемника развязывается с остальной схемой конденсатором емкостью 51 пФ.

  • Второй момент, который нужно знать, это то, что в биполярном транзисторе также имеются p-n-переходы, и даже два. Вот коллекторный как раз и уместно использовать вместо диода. Что касается эмиттерного перехода, то заземляется. Затем на коллектор прямо через наушники подается питание постоянным током. Рабочая точка не выбирается, поэтому результат несколько неожиданный, понадобится терпение, пока устройство радиоприемника будет доведено до совершенства. Батарейка тоже в немалой степени влияет на выбор. Сопротивление наушников считаем коллекторным, которое задает крутизну наклона выходной характеристики транзистора. Но это тонкости, например, резонансный контур тоже придется перестроить. Даже при простой замене диода, не то что внедрении транзистора. Вот почему рекомендуется вести опыты постепенно. А простейший радиоприемник без усиления у многих вовсе не будет работать.

А как сделать радиоприемник, который бы допускал использование простых наушников. Подключите через трансформатор, наподобие того, что стоит в абонентской точке. Ламповый радиоприемник отличается от полупроводникового тем, что в любом случае требует питания для работы (накал нитей).

Вакуумные приборы долго выходят на режим. Полупроводники готовы сразу же принимать. Не забывайте: германий не терпит температур выше 80 градусов Цельсия. При необходимости предусмотрите охлаждение конструкции. На первых порах это нужно, пока не подберете размер радиаторов. Используйте вентиляторы из персонального компьютера, процессорные кулеры.


РАДИОПЕРЕДАТЧИК НА 600 МЕТРОВ

При использовании компактной антенны это устройство обеспечивает дальность связи около 100 метров, а при использовании полноразмерной штыревой антенны - более 600 метров. Схема передатчика приведена на рис.

Сигнал от микрофона поступает на усилитель низкой частоты (транзисторы VT1, VT2) c непосредственными связями. Усиленный сигнал через фильтр R9, C4, R10 подается на варикап VD1 типа КВ109, включенный в эмиттерную цепь транзистора VT3 типа КТ904. Напряжение смещения варикапа задается коллекторным напряжением транзистора VT2. Генератор ВЧ выполнен по схеме общей базы. В коллекторной цепи транзистора VT3 включен контур C8, C9, L1. Частота настройки определяется индуктивностью катушки и емкостями C8, C5, VD1. Конденсатор С9 устанавливает глубину обратной связи, а С10 - согласование с антенной. Дроссель любого типа индуктивностью около 60 мкГн. Катушка L1 - бескаркасная, с внутренним диаметром 8 мм, имеет 7 витков провода ПЭВ 0,8 мм. Длина полной антенны 0,75...1 метр. Мощность передатчика около 200 мВт. Если такая мощность не нужна, можно понизить ее, применив резистор R2 сопротивлением 50..100 кОм и заменив дроссель резистором сопротивлением около 300 Ом. Транзистор при этом можно заменить на КТ368. Стабильность частоты маломощного передатчика выше, и увеличивается срок службы батарей.

Радиопередатчик повышенной мощности без дополнительного усилителя мощности

От предыдущих устройств предлагаемый радиопередатчик отличается конструкцией задающего генератора, позволяющей получить по¬вышенную мощность излучения без использования дополнительного усилителя мощности. Радиопередатчик (рис.1) работает на частоте 27-28 МГц с амплитудной модуляцией. Частота несущей стабилизирована кварцем, что позволяет увеличить дальность связи при использовании приемника с кварцевой стабилизацией частоты. Питается устройство от источника питания напряжением 3-4,5 В. Усилитель звуковой частоты выполнен на транзисторе VT1 типа КТ315. Для питания микрофона и задания режимов по постоянному току транзисторов VT1, VT2, VT3 используется параметрический ста¬билизатор напряжения на резисторе R2, светодиоде VD1 и конденса¬торе С1. Напряжение 1,2 В поступает на электретный микрофон с усилителем Ml типа МКЭ-3, "Сосна" и др. Напряжение звуковой час¬тоты с микрофона Ml через конденсатор С2 поступает на базу тран¬зистора VT1. Режим работы этого транзистора по постоянному току задается резистором R1. Усиленный сигнал звуковой частоты, снимае¬мый с коллекторной нагрузки транзистора VT1 - резистора R3, через конденсатор СЗ поступает на задающий генератор, осуществляя тем самым амплитудную модуляцию передатчика. Задающий генератор передатчика собран на двух транзисторах VT2 и VT3 типа КТ315 и представляет собой двухтактный автогенератор с кварцевой стабили¬зацией в цепи обратной связи. Контур, состоящий из катушки L1 и конденсатора С5, настроен на частоту кварцевого резонатора ZQ1. Контур, состоящий из катушки L2 и конденсатора С7, предназначен для согласования антенны и передатчика. В устройстве применены резисторы МЛТ-0,125. Конденсаторы ис¬пользованы на напряжение более 6,3 В. Транзистор VT1 можно заме¬нить на любой п-р-п транзистор, например, на КТ3102, КТ312. Тран¬зисторы VT2, VT3 можно заменить на КТ3102, КТ368 с одинаковым коэффициентом передачи по току. Хороший результат можно полу¬чить при использовании микросхемы КР159НТ1, представляющей со¬бой пару идентичных транзисторов. Контурные катушки намотаны на каркасе диаметром 5 мм, имею¬щем подстроечный сердечник из карбонильного железа диаметром 3,5 мм. Намотка катушек ведется с шагом 1 мм. Катушка L1 имеет 4+4 в качестве опорного элемента параметрического стабилизатора напряжения схемы рис. 1 витка, катушка L2 - 4 витка. Обе катушки намотаны проводом ПЭВ 0,5. Дроссель Др1 имеет индуктивность 20-50 мкГн. В качестве антенны используется провод длиной около 1 м. В качестве источника питания можно использовать одну плоскую батарею КБС-4,5 В или четыре элемента типа А316, А336, А343. Светодиод VD1 типа АЛ307 можно заменить любым другим или использовать аналог низковольтного стабилитрона с малым током ста¬билизации (рис. 2.). Настройку передатчика начинают с установки режимов транзисто¬ров VT2 и VT3 по постоянному току. Для этого подключают миллиам¬перметр в разрыв цепи питания в точке А и подбирают величину со¬противления резистора R4 такой, чтобы ток был равен 40 мА. Настройку контуров L1, L2, С5, С7 проводят по максимуму ВЧ излучения. Причем грубо на рабочую частоту настраивают конденса¬торами, а точнее - сердечником катушки. Подстроечник катушек L1, L2 должен находиться на расстоянии не более чем 3 мм от центра катушек, т. к. в крайних его положениях генерация может срываться из-за нарушения симметрии плеч транзисторов VT2, VT3.

Передатчик на 5 километров:

Усилитель мощности на 20 ватт

Передатчики с аналоговой стабилизацией частоты. -> 4 Watt FM Transmitter

Это небольшой но довольно мощный FM передатчик, имеющий три радиочастотных каскада, соединяющихся с аудио предусилителем для лучшей модуляции. Его выходная мощность 4 Ватта а питается он от 12-18 вольт постоянного тока, что делает его портативным. Это идеальный проект для новичков, которые хотят погрузится в восхитительный мир FM радиовещания и хотят схему, которая составит основу для экспериментов с этим..
Технические спецификации - Характеристики
Тип модуляции:........ FM
Диапазон частот: ...... 88-108 MHz
Рабочее напряжение: ..... 12-18 VDC
Максимальный ток: ....... 450 мА
Мощность на выходе: ....... 4 Вт

Как это работает Как уже говорилось, передаваемый сигнал - частотно модулированный (FM) это означает, что амплитуда несущей остается постоянной, а ее частота изменяется в соответствии с изменением амплитуды аудио сигнала. Когда амплитуда сигнала на входе увеличивается (т.е. в течении положительных полупериодов) частота несущей увеличивается тоже, с другой стороны когда амплитуда сигнала на входе уменьшается (отрицательные полупериоды или отсутствие сигнала) соответственно уменьшается частота несущей. На рисунке 1 вы можете увидеть графическое представление частотной модуляции, такой как она появляется на экране осциллографа, вместе с модулирующим звуковым сигналом. Исходящая частота передатчика изменяется от 88 до 108 МГц, т.е. полоса FM используемая для радиовещания. Схема, как мы уже говорили, состоит из четырех каскадов. Три радиочастотных каскада и аудио предусилитель для модуляции. Первый РЧ каскад - это генератор, он построен на основе TR1. Частота генератора контролируется LC цепочкой L1-C15. C7 находится там для обеспечения продолжения генерации а C8 регулирует емкостную связь между генератором и следующим РЧ каскадом, который является усилителем. Усилитель собран на основе TR2, который работает в классе C, вход которого настраивается изменением значений C10 L4. С выхода этого последнего каскада, который настраивается изменением значений L3-C12 снимается выходной сигнал, который через настроенную цепочку L5-C11 приходит на антенну. Схема предусилителя очень проста, она построена на TR4. Входная чувствительность регулируется, чтобы сделать возможным использование передатчика с различными входными сигналами и зависит от значения VR1. Передатчик может модулироваться напрямую с пьезоэлектрического микрофона, небольшого кассетного магнитофона и т.д. И конечно можно использовать аудио микшер для более профессиональных результатов.

Конструкция. Прежде всего позвольте нам рассмотреть некоторые основы сборки электронных схем на печатной плате. Плата сделана из тонкого изоляционного армированного материала с тонким слоем проводящей меди, проводящему слою придается такая форма, чтобы создать необходимые соединения между различными компонентами на плате. Очень желательно использование правильно спроектированной печатной платы, так как это значительно ускоряет сборку и уменьшает вероятность совершения ошибки. К тому же, комплект плат приходит с просверленными отверстиями и очертаниями компонентов с их обозначением на стороне компонентов, чтобы сделать сборку проще. Чтобы во время хранения защитить плату от окисления и гарантировать что вы получите ее в прекрасной форме, она залужена во время производства и покрыта специальным лаком, который защищает ее от окисления и делает пайку проще. Припаивание компонентов это единственный путь, чтобы собрать схему, и кстати от этого во многом зависит ваш успех или неудача. Это не слишком сложно, и если вы придерживаетесь некоторых правил, у вас не должно возникнуть проблем. Используемый вами паяльник должен быть легким и его мощность не должна превышать 25 Ватт. Жало должно быть тонким и все время чистым. Для этой цели есть очень удобные, специально сделанные губки, которые держат влажными, и время от времени вы можете вытирать о них горячее жало, чтобы убрать все остатки которые имеют тенденцию скапливаться на нем. НЕ ШЛИФУЙТЕ напильником или наждачной бумагой грязное или изношенное жало. Если жало нельзя отчистить, замените его. В магазинах есть множество различных типов припоя, и вам следует выбрать припой хорошего качества, содержащий флюс, чтобы каждый раз обеспечивать превосходное соединение. НЕ ИСПОЛЬЗУЙТЕ флюс для пайки, кроме того, что уже содержится в припое. Слишком большое количество флюса может явиться причиной многих проблем и одной из главных причин неправильной работы схемы. Если все - таки вам приходится использовать дополнительный флюс, как в случае, когда необходимо залудить медные провода, тщательно очистите его, по окончанию работы. Чтобы правильно и надлежащим образом спаять компоненты, вам следует сделать следующее: - Очистите ножки компонентов при помощи небольшого кусочка наждачной бумаги. Согните их на соответствующем расстоянии от корпуса компонента и вставьте его в плату на его место. - Иногда вам могут встретиться компоненты, с ножками большими чем обычно, они слишком толстые, чтобы войти в отверстия на печатной плате. В этом случае используйте мини дрель чтобы расширить отверстия. - Не делайте отверстия слишком большими, так как впоследствии это создаст трудности при пайке. - Возьмите горячий паяльник и поместите его жало на ножку компонента, пока держите кончик проволочного припоя в точке, где ножка выходит из платы. Жало должно касаться ножки немного выше платы.- Когда припой начнет плавится и течь, подождите пока он равномерно покроет всю область вокруг отверстия, а флюс закипит и выйдет под припоем. Вся операция не должна занимать более 5 секунд. Уберите паяльник и позвольте припою остыть самому не дуя на него или перемещая компонент. Если все сделано правильно, поверхность соединения должна иметь блестящий металлически кончик, а границы должны равномерно заканчиваться на ножке компонента и дорожке платы. Если припой смотрится неуклюже, ненормально, или имеет форму кляксы, тогда вы сделали плохое соединение, и следует убрать припой (С помощью насоса или паяльного фитиля) и повторить все действия. - Следите за тем чтобы не перегреть дорожки, так как их очень просто отделить от платы и порвать. - Во время пайки чувствительных компонентов, хорошей практикой будет держать пинцетом ножку со стороны компонентов, для отвода тепла, которое может повредить компонент. - Убедитесь что вы не используете припоя больше чем необходимо, так как можете сделать короткое замыкание дорожек, расположенных рядом, особенно если они очень близко друг к другу. - По окончанию работы, отрежьте все выступающие ножки компонентов и тщательно отчистите плату соответствующим растворителем, чтобы убрать все остатки флюса, оставшегося на плате. Это РЧ проект, а это требует даже бОльшей осторожности во время пайки, поскольку небрежность во время сборки может привести к низкой выходной мощности, или к ее отсутствию вообще, низкой стабильности и другим проблемам. Убедитесь в том, что вы следуете основным правилам сборки электронных схем, описанных выше, и проверяйте все дважды, прежде чем перейти к следующему шагу. Все компоненты понятно маркированы на стороне элементов платы, и вас не должно возникнуть проблем в определении их места и установки. Сначала припаяйте все выводы, а затем катушки, смотря за тем чтобы не деформировать их, затем дроссели, резисторы, конденсаторы, а в конце электролиты и подстроечники. Проверти установлены ли электролиты правильно, в соответствии с их полярностью, и не перегреты ли подстроечники во время пайки. На этом месте нужно остановиться для проверки сделанной работы, и если все в порядке припаивайте транзисторы на их места, следя за тем чтобы не перегреть их, поскольку они наиболее чувствительные из всех компонентов, использованных в этом проекте. Аудио сигнал подается на точки 1 (ground) и 2 (signal), питание на точки 3 (-) и 4 (+) антенна соединена с точками 5 (ground) и 6 (signal). Как мы уже говорили сигнал, который вы будете использовать для модуляции, может подаваться от предусилителя или микшера, а в случае когда вы хотите модулировать несущую голосом, можете использовать пьезоэлектрический микрофон, поставляемый с набором. (Качество этого микрофона не столь высоко, но он подойдет если вас интересует только речь.) В качестве антенны можно использовать открытый диполь или Ground Plane (схему этой антенны см. на рисунке прим. перев.) Перед началом использования или смены рабочей частоты, следует проделать процедуру, называемую настройкой и описанную ниже.

Список деталей

R1 = 220K
R2 = 4,7K
R3 = R4 = 10K
R5 = 82 Ohm
R = 150Ohm 1/2W x2 *
VR1 = 22K подстроечный

C1 = C2 = 4,7uF 25V электролит
C3 = C13 = 4,7nF керамический
C4 = C14 = 1nF керамический
C5 = C6 = 470pF керамический
C7 = 11pF керамический
C8 = 3-10pF подстроечный
C9 = C12 = 7-35pF подстроечный
C10 = C11 = 10-60pF подстроечный
C15 = 4-20pF подстроечный
C16 = 22nF керамический *

L1 = 4 витка посеребренной проволки на оправке 5,5mm
L2 = 6 витков посеребренной проволки на оправке 5,5mm
L3 = 3 витка посеребренной проволки на оправке 5,5mm
L4 = вытравлена на плате
L5 = 5 витков посеребренной проволки на оправке 7,5mm

RFC1=RFC2=RFC3= VK200 RFC tsok

TR1 = TR2 = 2N2219 NPN
TR3 = 2N3553 NPN
TR4 = BC547/BC548 NPN
D1 = 1N4148 диод*
MIC = crystalic microphone

Внимание: детали отмеченные * используются для настройки передатчика, в случае когда у вас нет стационарного волнового моста.

Настройки

Если вы ждете, что ваш передатчик будет отдавать максимум мощности в любое время, вам необходимо настроить надлежащим образом все 3 РЧ каскада, чтобы гарантировать что энергия между ними, течет наилучшим образом. Для этого есть два пути, и каким путем следовать зависит от того есть ли у вас КСВ метр. Если у вас есть КСВ метр, то включите передатчик, с подключенным последовательно к антенне КСВ метром, и крутите C15, чтобы настроить передатчик на частоту, выбранную вами для вещания. Затем регулируйте подстроечники C8,9,10,12 и 11 пока не добьетесь максимальной выходной мощности на КСВ метре. Для тех у кого нет КСВ метра, есть другой метод, который дает неплохие результаты. Нужно только собрать небольшую схему, изобр. на рис. 2, которая соединяется с выходом передатчика, на его вход (на C16) вы подключаете ваш мультитестер, имеющий подходящую размеченную шкалу вольт. Вы подстраиваете C15 на желаемую частоту, а затем настраиваете другие подстроечники в том же порядке как это описано выше, до максимального значения на мультитестере. Неудобство этого метода в том что вы не можете регулировать передатчик с подключенной на выходе антенной, что может быть необходимо при небольшой настройки C11 и C12 для наилучшего согласования антенны. Не забывайте регулировать ваш передатчик каждый раз после смены антенны или рабочей частоты. ВНИМАНИЕ: В каждом передатчике, кроме основной частоты, присутствуют различные гармоники, обычно имеющие небольшой радиус действия. Для того чтобы убедиться что вы не настроились на одну из них, проводите настройку как можно дальше от вашего приемника, или используйте анализатор спектра, чтобы посмотреть спектр на выходе и убедиться что вы настроили передатчик на правильную частоту.

ВНИМАНИЕ

Если устройство не работает. - Проверьте устройство на наличие плохого соединения, замыкания соседних дорожек или остатков флюса, которые обычно являются причиной проблемы. - Проверти еще раз все внешние соединения идущие к схеме и от нее, может ошибка в них. - Проверьте все ли комноненты установлены, и на свои ли места. - Убедитесь в том, что все компоненты имеющие полярность установлены правильно. - Убедитесь в том, что напряжение питания имеет верное значение, и подается на схему в соответствующем месте. - Проверти схему на наличие неисправных или поврежденных компонентов.

Передатчик на 10 Вт

Схема 1 (27 Мгц):

Q1 КТ904 на радиаторе площадью 600 см^2
L1 - диаметр 15 мм на керамическом каркасе. 5 витков серебрёного провода диаметром 1 мм, длина намотки - 20 мм, отвод от 2-го витка, считая от заземлённого провода.
L3 - бескаркасная, на оправе 8 мм, содержит 11 витков ПЭВ-2 диаметром 1 мм.
L2(дроссель) типа ДММ-2,4 (20 мкГн)
C1, C5, C6 - с воздушным диэлектриком.
L3 - бескаркасная, на оправе 8 мм, содержит 8 (6 на 94 Мгц) витков ПЭВ-2 диаметром 1 мм. Состоит из 2-х половин.
L4 - на той же оправе и тем же проводом, расположена между 2-х половин L3 и содержит 2-3 витка

Схема 3 (Частотный модулятор):

Q1 КТ315
D1, D2 - варикапы КВ102Д или диоды Д220.
ВМ1 - электретный микрофон МКЭ-3

Описание и настройка: Выбирете одну из 2-х высокочастотных схем (в зависимости от приёмника) и соедините её с модулятором в точке А. Далее в качестве нагрузки подключите к антенне и общему проводу 2 лампы 6,3 В(0.22 А), соединённые последовательно. Подключите питание 5 В. Отключите контур L1, C1, вместо него подайте на вход сигнал с УКВ генератора. Проверьте волномером частоту выходного сигнала (если его нет или она не как с генератора - подстройте конденсаторы и катушки выходного контура). Далее соедините контур L1, C1 и повышайте напряжение питания. Дoлжна возникнуть автогенерация уже при 5 В (если не возникает - переместите эмиттер по катушке на 0.5...2 витка) - ток 250 мА. Не поднимайте напряжение выше 20В(ток 750 мА, мощность 8...10 Вт). Далее подстройте все контура, проверяя частоту по волномеру. При монтаже (навесном, прямо на радиаторе) выводы деталей должны быть как можно короче, использоваться конденсаторыс соответствующим ТКЕ, катушки должны быть плотно намотаны. Только тогда вы получите хорошую стабильность частоты, иначе она будет "плыть" до 500 Гц. Частотный модулятор насттраивают, подбирая R1, когда напряжение на коллекторе Q1 станет равны половине питающего. Так же может потребоваться поключение точки А к части витков L1.

Радиопередающие устройства (рис. 13.1 — 13.5) могут быть получены путем простого объединения усилителя (или генератора) низкой частоты (УНЧ, ГНЧ) и генератора высокой частоты (ГВЧ).

Блок-схема передатчика с амплитудной модуляцией (AM), которую используют преимущественно в диапазонах длинных, средних и коротких волн, приведена на рис. 13.1. Выходной сигнал звуковой частоты, вырабатываемый УНЧ или ГНЧ, выделяется на сопротивлении нагрузки Rh, которое включено в цепь питания схемы ГВЧ . Поскольку напряжение питания генератора ВЧ изменяется пропорционально сигналу звуковой частоты, амплитуда высокочастотного сигнала модулируется. В качестве ГВЧ может быть использован генератор, показанный на рис. 13.6. Точки А, В, С, D на схеме генератора соответствуют точкам его подключения на блок-схемах (рис. 13.1 — 13.5).

Один из способов получения амплитудной модуляции сигнала с использованием низкочастотного дросселя или обмотки выходного низкочастотного трансформатора показан на рис. 13.2. Использование индуктивностей, сопротивление которых переменному току возрастает с ростом частоты, позволяет увеличить глубину модуляции. Кроме того, повышается амплитуда высших частот звукового диапазона, что заметно повышает разборчивость сигнала при приеме.

При частотной модуляции (ЧМ), используемой обычно в диапазоне ультракоротких волн, осуществляется изменение частоты высокочастотного сигнала. Для получения частотно-мо-дулированного сигнала могут быть использованы схемы, представленные на рис. 13.3 и 13.4. В схеме передатчика (рис. 13.3) частотная модуляция высокочастотного сигнала происходит путем подачи сигнала звуковой частоты через конденсатор относительно небольшой емкости на базу или эмиттер транзистора ГВЧ. При этом изменяются межэлектродные емкости активного элемента (транзистора), и, следовательно, модулируется резонансная частота колебательного контура, определяющая частоту генерации. Строго говоря, при таком виде подачи модулирующего напряжения одновременно осуществляется и неглубокая амплитудная модуляция, поскольку напряжение на базе (или эмиттере) также изменяется пропорционально модулирующему сигналу.

Частотную модуляцию «в чистом виде» можно получить, используя свойство варикапа, либо его аналога, изменять свою емкость от величины приложенного напряжения (рис. 13.4). В этой схеме включение/выключение модуляции осуществляется переключателем SA1. Потенциометр RA предназначен для проверки частотных границ перестройки генератора.

Амплитудную модуляцию высокочастотного сигнала можно получить, если включить ГВЧ вместо сопротивления нагрузки УНЧ (ГНЧ) (рис. 13.5). Конденсатор С предназначен для заземления по высокой частоте цепи питания ГВЧ.

Помимо амплитудной и частотной модуляции сигнала для передачи данных, организации радиосвязи, довольно часто используют однополосную, реже фазовую и другие виды модуляции.

На рис. 13.7 — 13.16 приведены практические схемы микро-передающихустройств, работающих в УКВ-ЧМдиапазоне (66...74 или 88... 108 МГц). Мощность этих передатчиков невелика (от долей до единиц мВт), поэтому их излучение не мешает радио- и телевизионному приему. Расстояние, на котором можно обнаружить сигналы таких устройств (рис. 13.7 — 13.16), обычно не превышает нескольких метров. Заметим, что мощность гетеродинов — генераторов высокой частоты, используемых в любом радиоприемнике или телевизоре, зачастую превышает единицы мВт.

В конструкциях по рис. 13.7 — 13.10 и 13.12 использованы электретные микрофоны типа МКЭ-333 либо МКЭ-332, а также МКЭ-3, которые содержат встроенный предусилитель на полевом транзисторе. Вместо электретного микрофона может быть использован электромагнитный телефонный капсюль, подключаемый между точкой А и общим проводом (рис. 13.7, 13.9, 13.10 и 13.12) или шиной питания (рис. 13.8). В этом случае резистор R1 не обязателен. При замене микрофона амплитуда сигнала может снизиться, поэтому для увеличения усиления по НЧ желательно использовать составной транзистор, либо применять более чувствительный УНЧ (см. главы 4 и 5). В большинстве случаев (рис. 13.7 — 13.10 и 13.12) электретный микрофон можно заменить миниатюрным угольным (с подбором резистора R1).

Схема радиомикрофона конструкции Д. Волонцевича показана на рис. 13.7 [Рл 10/99-40]. При напряжении питания 3 В устройство потребляет ток 7 мА. Катушки индуктивности намотаны на оправке диаметром 6 мм проводом /73/7-0,5. L1 имеет 6 витков, a L2 — 4 витка. В качестве антенны использован отрезок монтажного провода длиной 70 см.

УКВ-радиомикрофон А. Иванова, как две капли воды напоминает предыдущую конструкцию (рис. 13.7) [Рл 10/99-40]. Отличие заключается в том, что схема (рис. 13.8) как бы «перевернута» вверх ногами. Такое непривычное расположение рядом почти аналогичных схем позволяет приучить взгляд на «опознание» подобных друг другу конструкций. Схемы рис. 13.7 и 13.8 различаются в «электрическом» отношении способом подачи модулирующего напряжения: в первом случае оно подается на базу транзистора генератора; во втором — на эмиттер. Катушка индуктивности содержит 7 витков провода ПЭВ 0,7...0,8 мм и имеет внутренний диаметр 5 мм. Потребляемый устройством ток составляет 15...20 мА.

На рис. 13.9 дана схема радиомикрофона диапазона 66...74 МГц, в базовую цепь смещения которого в качестве управляемого резистора включен электретный микрофон [Рл 2/97-13]. Антенной является отрезок гибкого многожильного провода длиной 20...40 см. Потребляемый устройством ток около 1 мА.

Каскодное включение транзисторов использовано в схеме на рис. 13.10 [Рл 2/97-13]. При этом для сигналов низкой частоты нагрузкой транзистора VT2 является ВЧ генератор, выполненный на транзисторе VT1. В свою очередь, ток высокой частоты в эмит-терной цепи транзистора VT1 модулируется сигналом с каскада усиления низкочастотных сигналов, снимаемых с микрофона.

На рис. 13.11 приведена схема микропередатчика УКВ-ЧМ диапазона конструкции В. Иванова [Р 10/96-19]. Передатчик способен транслировать сигнал, снимаемый с УНЧ электропроигрывателя, магнитофона и других устройств. Амплитуда НЧ сигнала на входе в пределах 10...500 мВ. Катушка И без каркаса, имеет внутренний диаметр 4 мм и содержит 15 витков провода ПЭВ 0,5. Катушка L2 намотана поверх резистора R3 (МЛТ-0,5) и содержит 50... 100 витков тонкого изолированного провода.

На рис. 13.12 и 13.14 приведены практические схемы микропередатчиков на аналоге лямбда-диода. В качестве управляемого элемента использован прямосмещенный переход полупроводникового диода (светодиода). Частотная модуляция осуществляется за счет изменения его динамического сопротивления. Для высокочастотной составляющей емкостное сопротивление светодиода много ниже его омического сопротивления. Одновременно с выполнением функции управления частотой генерации, светодиод индицирует включенное состояние устройства и стабилизирует его рабочую точку.

Для осуществления частотной модуляции в схеме (рис. 13.14) использован самодельный конденсаторный микрофон. Он выполнен в виде развернутого конденсатора с двумя плоскими неподвижными электродами, параллельно которым закреплена мембрана (тонкая фольга, металлизированная диэлектрическая пленка и т.п.), электрически изолированная от неподвижных электродов. Микрофон может быть собран в рамке фотослайда; его емкость составляет несколько пикофарад.

Для сравнения на рис. 13.13 приведена схема наипростейшего микропередающего устройства, выполненного на туннельном диоде со стабилизатором рабочей точки на германиевом диоде VD1 [Рл 9/91-22, 10/97-17]. Конструкция микрофона, аналогичная описанной выше, может быть использована в схеме на рис. 13.15. Параметры катушек индуктивности (колебательных контуров) могут быть перенесены с одной конструкции на другую.

В схемах (рис. 13.9, 13.10, 13.13, 13.15) для УКВ диапазона (66...74 МГц) использованы бескаркасные катушки индуктивности, имеющие внутренний диаметр 4 мм и содержащие 5...6 витков провода ПЭВ-2 диаметром 0,56 мм. Шаг намотки 1,5 мм. Рабочая частота генерации устанавливается сближением/раз-движением витков катушки, подбором числа и диаметра ее витков, а также емкости конденсатора колебательного контура. Корпус электретного микрофона соединен с общим проводом. Прием высокочастотных сигналов возможен на портативный ЧМ-приемник.

Для создания видеопередатчика (беспроводной передачи видеосигнала с видеомагнитофона на телевизор) может быть использована схема Г. Романа [Рл 3/99-8]. Колебательный контур L1C2 (рис. 13.16) настраивают на частоту одного из свободных от телевизионного вещания каналов.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год


Речь пойдет о том, как сделать самый простой и дешевый радио передатчик, который сможет собрать любой, кто даже ничего не понимает в электронике .

Прием такого радиопередатчика происходит, на обычный радио приемник (на стационарный или в мобильном телефоне), на частоте 90-100 MHz. В нашем случае он будет работать, как радио удлинитель для наушников от телевизора. Радио передатчик через аудио штекер подключается к телевизору через разъем для наушников.

Его можно использовать в разных целях, например:
1) беспроводной удлинитель для наушников
2) Радио няня
3) Жучок для подслушивания и так далее.

Для его изготовления нам потребуются:
1) Паяльник
2) Провода
3) Аудио штекер 3.5 мм
4) Батарейки
5) Медный лакированный провод
6) Клей (Момент или эпоксидный) но он может и не понадобится
7) Старые платы от радио или телевизора(если есть)
8) Кусок простого текстолита или толстого картона

Вот его схема, питается она от 3-9 вольт


Перечень радио деталей для схемы на фото, они очень распространенные и найти их не составит особого труда. Деталь AMS1117 не нужна (просто не обращайте на нее внимание)


Катушку следует мотать по таким параметрам (7-8 витков проводом диаметром 0.6-1 мм, на оправке 5мм, я мотал на сверле 5мм)

Концы катушки обязательно зачистить от лака.


В качестве корпуса для передатчика был взят корпус из под батареек




Внутри было все убрано. Для удобства монтажа


Далее берем текстолит, обрезаем его и сверлим много отверстий (отверстий лучше просверлить побольше, так будет легче собирать)


Теперь спаиваем все компоненты согласно схеме


Берем аудио штекер


И припаиваем к нему провода, которые на схеме показаны как (вход)


Далее располагаем плату в корпусе (надежнее всего будет приклеить ее) и подключаем батарейку




Теперь подключаем наш передатчик к телевизору. На FM приемнике находим свободную частоту (ту на которой нет никакой радио станции) и настраиваем наш передатчик на эту волну. Делается это подстроенным конденсатором. Потихоньку крутим его пока не услышим на FM приемнике звук с телевизора.


Все наш передатчик готов к работе. Что бы было удобно настраивать передатчик, я сделал в корпусе отверстие




Так же вместо аудио штекера, можно поставить микрофон и тогда наш передатчик превратится в жучок или радио няню. Размещаем передатчик в комнате с ребенком, а на кухне настраиваем радио и слушаем, что ребенок там делает.