Какие основные характеристики материнской платы. Количество и тип слотов оперативной памяти

15.04.2019 Разное

Продолжением этой серии будет и данная статья. Сегодня мы ответим на часто задаваемые вопросы о материнской плате. Вы узнаете что такое материнка, для чего она нужна, из чего состоит, а также характеристики, на которые стоит обращать внимание при ее выборе. Давайте по порядку.

Что такое материнская плата компьютера

Материнская плата (мать, материка, системная плата, главная плата) – это основная плата системного блока. На ней находятся разъемы для подключения всех остальных деталей – видеокарты, оперативной памяти, процессора и др.

Откидывая компьютерную терминологию, системная плата – база всего компьютера. Как мы говорили раньше — и оперативная память, и процессор играют главную роль в работе компьютера. Тем не менее, чтобы они полностью раскрыли свой потенциал, необходимо связывающее звено, коим и является материнская плата. Давайте более подробно разберем, для чего компьютеру нужна системная плата.

Зачем компьютеру материнская плата

Без лишних слов перечислим основные функции материнской платы:

  1. Объединяет все «внутренности» компьютера между собой (на ней установлен сокет для процессора, разъёмы под ОЗУ и графический адаптер и т.д).
  2. Материнка превращает мышку, дисплей, системный блок, клавиатуру и другие компоненты – в единую рабочую экосистему.
  3. Отвечает за то, чтобы ЦП контролировал работу других частей компьютера. То есть материнская плата не только превращает все компоненты ПК в одно целое, но еще и поддерживает связь между ними.
  4. Материнская плата отвечает за передачу картинки на монитор (в случае интегрирования в нее графической карты).
  5. Системная плата отвечает за звук компьютера, поскольку в настоящее время огромное число моделей плат имеет встроенную звуковую карту.
  6. Обеспечение доступа в интернет — современные материнки обладают встроенным сетевым адаптером.

Из чего состоит материнская плата

Разобравшись с предыдущими вопросами, время посмотреть из чего состоит материнка. И основными ее элементами можно назвать:

  • Разъем для установки процессора (сокет CPU ) — простыми словами — это гнездо для установки процессора;
  • Слоты PCI и PCI Express — первые из-за своей низкой производительности используют для подключения ТВ-тюнеров, аудио и сетевых карт, а также других устройств, которым достаточно пропускной способности данного интерфейса. PCI Express, как правило, используется для подключения к ПК видеокарт;
  • Слоты под ОЗУ — сюда вы устанавливаете планки оперативной памяти;
  • SATA и IDE разъемы — они служат для подключения к компьютеру различных накопителей ( , SSD). Также они используются для подключения привода оптических дисков;
  • Чипсет — это набор микросхем, так называемые северный и южный мосты. Северный мост осуществляет контроль над взаимосвязью между системной платой с ОЗУ, графическим ускорителем, ЦП. А также регулирует быстроту их работы и подсоединяет к южному мосту, который осуществляет контроль над сбережением энергии, BIOS, часами системы, интерфейсами IDE, SATA, USB, LAN, Embeded Audio;
  • Микросхема BIOS и батарейка питания CMOS памяти — здесь находится ПО для запуска компьютера и его тестирования. В CMOS хранятся настройки BIOS, а для того, чтобы они не сбивались когда вы выключаете компьютер (данная память энергозависима) используется специальная батарейка, которая и питает память.
  • Внешние разъемы — это все возможные выходы на наушники, микрофон, Ethernet, HDMI, USB и т.п;
  • Разъемы для подключения питания — собственно, как сама материнка, так и процессор и система охлаждения требуют питания.

В принципе это основной набор, который можно встретить, но также необходимо помнить, что у разных производителей и моделей он может отличаться, поэтому переходим к следующему пункту.

Виды материнских плат и их производители

Сегодня вы можете увидеть множество системных плат от разных производителей: ASUS, MSI, GIGABYTE, Asrock, Esonic, при этом все они делятся на множество видов. Например, под какой из типов процессоров они ориентированы – AMD, или Intel. Каждый из классов конкурирующих ЦП уникален и требует индивидуальный сокет. У AMD это: AM1, AM3+, АM4, FM2, FM2+. Системные платы, предназначенные для ЦП от Intel имеют разъемы: LGA 1150, LGA 1151, LGA 2011, LGA 2011-3. Еще материнские платы делятся по типу поддерживаемой памяти – DRR3 или DDR4.

Тем не менее самое известное разделение материнок на виды идет по форм-фактору — параметр определяющий площадь платы, а также места крепления и гнезда для снабжения электропитанием. Основные представители: E-ATX, Micro-ATX, Mini-ITX, Mini-STX, Standard-ATX:

  • Standard-ATX — самый распространенный среди пользователей форм-фактор, отлично подходит, для игровых машин и для рабочей системы. Средние размеры — 305/244 миллиметров. Хорошо совместим с большинством типов корпусов. Достаточно объемная площадь снижает вероятность перегрева, поскольку места для остальных деталей больше и им не придется быть зажатыми в ограниченном по размеру корпусе, что положительно сказывается на потоке воздуха между ними. Позволяет установить две видеокарты;
  • Micro-ATX уступают в размерах оригиналу (244/244 миллиметра). У них меньше PCI гнезд. В основном пригодны только для работы, но бывают образцы, подходящие для игр, но их меньше, чем у предыдущего представителя;
  • Mini-ITX — одни из наиболее компактных материнок, имеющие габариты 170/170 миллиметров. Больше годятся, как рабочие и мультимедийные решения, потому что разъем для графической платы может отсутствовать, следовательно, довольствуемся интегрированным вариантом. Гнезд под модули ОЗУ — одна пара;
  • E-ATX — отличное решение геймерам. Присутствует возможность установки сразу нескольких графических ускорителей, а на определенные модели можно поставить даже пару ЦП. Средние размеры 305/272 миллиметров. Также данные модели могут стать хорошим вариантом для серверной машины;
  • Mini-STX — решение для мини-ПК, не подходят для игр, но зато вполне приемлемый вариант для учебы и работы. Гнезд, куда будет установлено графический ускоритель нет, а под ОЗУ только два гнезда. Средний размер 140/147 миллиметров.

Характеристики материнских плат

Как обычно, не забываем затронуть вопрос основных характеристик материнской платы. Итак, начнем:

  • Форм-фактор – как было уже сказано, этот параметр, включает в себя размер, места крепления материнки, а также разъемы для дополнительных устройств;
  • Тип сокета материнской платы – гнездо, куда устанавливается ЦП. Важный параметр, поскольку мы знаем, что конкретный вид процессоров требует определенный разъем;
  • Число слотов и поддерживаемый тип ОЗУ — первое указывает на возможности увеличения объема оперативной памяти, второе — на скорость ее работы;
  • Частота системной шины — напрямую влияет на производительность компьютера. Чем больше — тем выше будет производительность ПК. Естественно, это не единственный фактор, влияющий на скорость работы компьютера, однако необходимо подбирать компоненты так, чтобы частота системной шины не была меньше, чем у других элементов;
  • Чипсет — один из главнейших пунктов при выборе материнской платы. По-большому счету, именно от него зависит тип процессора, который можно будет использовать, памяти, поддержка различной периферии и т.д;
  • Количество слотов PCI и PCI Express — от этого будет зависеть количество и возможность подключения как видеокарт, так и других плат расширений используемых данный интерфейс;
  • Число гнезд SATA – позволит понять сколько HDD, SDD, и приводов оптических дисков возможно подключить;
  • Наличие и характеристики интегрированных: сетевой, графической и звуковой карт — позволит понять на что будет способен ваш ПК без покупки их дискретных аналогов;
  • Наличие и количество внешних разъемов — как для стационарного компьютера, так и для ноутбука важно наличие хотя бы 3 USB портов, выхода на наушники и входа для микрофона. Кроме того зачастую также необходим Ethernet порт, VGA (уже довольно старый), HDMI. Хотя здесь больше необходимо отталкиваться от собственных потребностей.

Выводы

Подводя итог, можно сказать, что на сегодняшний день материнская плата — сложное устройство, которое соединяет между собой все компоненты компьютера, управляет их работой, а также отвечает за количество дополнительно подключаемого оборудования. Эта плата определяет характеристики вашего ПК и устанавливает ограничения по его апгрейду.

1) Прежде всего - поколением процессора, под который она предназначена. Специальная материнская плата существует для каждого поколения процессора. Установить процессор одного поколения в материнскую плату другого чаще всего просто невозможно.

2) Диапазоном поддерживаемых процессоров в рамках одного поколения. Чем дороже и качественнее плата, тем больше процессоров она сможет поддержать.

3) Частотой системной шины. Это - величина, прямо связанная с частотой и скоростью процессора. Процессор фактически умножает рабочую частоту материнской платы - в 2, 3 и более раз (на выборе сочетания одного из коэффициентов с частотой системной шины и основан способ так называемого разгона процессоров.

4) Базовым набором микросхем - чипсетом. Для каждого типа материнской платы существует несколько основных чипсетов, различающихся по предоставляемым ими возможностям и, соответственно, ценам.

5) Фирмой-производителем.

6) Форматом материнской платы (форм-фактором), то есть способом расположения на плате основных микросхем, слотов и т.д.

7) Базовым набором слотов и разъемов. При выборе платы следите, чтобы на ней имелось достаточно всех необходимых слотов.

8) Наличием интегрированных устройств. На многих современных материнских платах вы можете встретить целый ряд "встроенных" устройств - таких, например, как видеокарта и звуковая плата.

9) Поддержкой режима SATA(последовательный интерфейс), обеспечивающего возможность работы с "быстрыми" жесткими дисками.

10) Поддержкой "зеленого" (Green) режима экономии электроэнергии.

Микропроцессоры. Структура Intel x86: УУ, АЛУ, память, интерфейс. Классификация по архитектуре системы команд: CISC и RISC. Параллельная архитектура.

Центральный процессор (ЦПУ, CPU, от англ. Central Processing Unit) - это основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера.

Современные процессоры выполняются в виде микропроцессоров (МП).

Физически микропроцессор представляет собой интегральную схему - тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора.

Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.

Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённогоДжоном фон Нейманом .

Д. фон Нейман придумал схему постройки компьютера в 1946 году.

Этапы цикла выполнения:

Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства).

Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

Скорость перехода от одного этапа цикла к другому определяетсятактовым генератором . Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называетсятактовой частотой .

Основные компоненты микропроцессора

Устройство управления (УУ) – вырабатывает управляющие сигналы, поступающие по кодовым шинам инструкций во все блоки Э
ВМ

Регистр команд – запоминающий регистр, хранит код команды: код выполняемой операции и адреса операндов

Дешифратор операции – логический блок, выбирающий в соответствии с поступающим из регистра команд кодом операции (КОП) один из множества имеющихся у него выходов

ПЗУ микропрограмм – хранит управляющие сигналы, необходимые для выполнения в блоках ПК операций обработки информации

Узел формирования адреса - устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд и регистров МПП

КШД, КША и КШИ – часть внутренней интерфейсной шины микропроцессора

А
рифметико-логическое устройство (АЛУ) – предназначено для выполнения арифметических и логических операций преобразования информации.

Микропроцессорная память (кэш) – предназначена для кратковременного хранения информации, участвующей в вычислениях в ближайшие такты работы процессора. Имеет небольшой объём (до нескольких Мб), но очень высокое быстродействие (время доступа измеряется нс).

Интерфейсная часть микропроцессора – предназначена для связи и согласования МП с системной шиной ПК, а также для формирования полных адресов операндов и команд.

Конвейерная архитектура

Конвейерная архитектура (pipelining ) была введена в центральный процессор с целью повышения быстродействия. Обычно для выполнения каждой команды требуется осуществить некоторое количество однотипных операций, например: выборка команды изОЗУ , дешифрация команды, адресация операнда в ОЗУ, выборка операнда из ОЗУ, выполнение команды, запись результата в ОЗУ. Каждую из этих операций сопоставляют одной ступени конвейера.

После освобождения k -й ступени конвейера она сразу приступает к работе над следующей командой. Если предположить, что каждая ступень конвейера тратит единицу времени на свою работу, то выполнение команды на конвейере длиной вn ступеней займётn единиц времени, однако в самом оптимистичном случае результат выполнения каждой следующей команды будет получаться через каждую единицу времени.

Действительно, при отсутствии конвейера выполнение команды займёт n единиц времени (так как для выполнения команды по прежнему необходимо выполнять выборку, дешифрацию и т. д.), и для исполненияm команд понадобится единиц времени; при использовании конвейера (в самом оптимистичном случае) для выполненияm команд понадобится всего лишьn +m единиц времени.

Факторы, снижающие эффективность конвейера:

    простой конвейера, когда некоторые ступени не используются (напр., адресация и выборка операнда из ОЗУ не нужны, если команда работает с регистрами);

    ожидание: если следующая команда использует результат предыдущей, то последняя не может начать выполняться до выполнения первой (это преодолевается при использовании внеочередного выполнения команд, out-of-order execution);

    очистка конвейера при попадании в него команды перехода (эту проблему удаётся сгладить, используя предсказание переходов).

Некоторые современные процессоры имеют более 30 ступеней в конвейере, что увеличивает производительность процессора, однако приводит к большому времени простоя (например, в случае ошибки в предсказании условного перехода.)

Каждый день миллионы человек садятся за свои рабочие места, включают ПК и приступают к выполнению своих обязанностей. Однако большинство из них понятия не имеют о том, как устроен их компьютер, как всё это работает. Если спросить о его устройстве, то большинство пользователей ответят: монитор, клавиатура, мышка и системный блок. А на вопрос о том, без чего нельзя запустить машину, отвечают: без электричества. При этом мало кто догадывается о строении и способен различить хоть какие-то платы внутри.

В этой статье будет рассмотрена одна из основополагающих частей компьютера, без которой его работа была бы невозможна в принципе. Если вы - начинающий пользователь и собираетесь собрать свой ПК, а не пользоваться готовыми предложениями рынка, вам пригодятся советы по материнским платам, которые вы получите здесь.

Опора компьютера

Материнская плата - это не что иное, как основа вашего компьютера. Основополагающее и связывающее звено всех элементов. Другое её название - системная плата. Основной ее функцией является передача сигналов управления и данных между комплектующими - процессором, чипсетом, картами расширения, внешними устройствами.

Основные характеристики материнской платы, на которые стоит обращать внимание - форм-фактор, количество разъёмов под платы расширения PCI Express, тип поддерживаемой оперативной памяти и её объём, тип разъёма процессора. И некоторые дополнительные, но не критичные детали - тип порта для мышки, версия USB-порта, наличие Wi-Fi и HDMI.

Исходя из этих характеристик, пользователь должен совершить выбор при покупке. Главное помнить, что лучшая материнская плата та, которая идеально подходит к выбранным вами остальным комплектующим.

Структура

Любая материнская плата разделяется на две основные взаимодействующие части - северный и южный мост.

Южный мост - это единая микросхема, которая связывает между собой большинство медленных взаимодействий в компьютере, а также связывает их с процессором посредством северного моста. Физически южный мост состоит из таких частей:

  • контроллеры PCI, LPC, Super I/O;
  • IDE и SATA контроллеры;
  • часы;
  • Bios;
  • управление питанием;
  • звук;
  • управление сетевыми картами.

В некоторых случаях может напрямую управлять мышью, клавиатурой, внешними портами, хотя зачастую они управляются через специальный контроллер ввода-вывода Super I/O.

Северный мост, иначе называемый контроллером-концентратором памяти, включает в себя:

  • процессор;
  • оперативную память, в случае если она не подключена напрямую к процессору;
  • видеоадаптер.

Именно северный мост в составе материнской платы выделяет наибольшее количество тепла, вследствие чего в большинстве случаев при реализации архитектуры компьютера для него требуется индивидуальная система охлаждения.

С развитием компьютерных технологий некоторые производители стали отказываться от северного моста в составе архитектуры. Например, материнские платы Intel, начиная с Intel Nehalem, убрали северный мост, перенеся часть его функций на центральный процессор, сократив, таким образом, количество активных компонентов материнской платы.

Собираем компьютер

Первое, что необходимо выяснить перед покупкой, это форм-фактор. В обязательном порядке уточняйте у продавцов размеры материнской платы. В большинстве современных персональных настольных компьютеров используется стандарт ATX. Подробнее, как подключить материнскую плату, рассмотрим ниже.

  1. Первым делом устанавливаете плату в корпус компьютера и закрепляете с помощью винтиков.
  2. В разъём 1 подключаете шлейф, идущий от вашего блока питания. Это основной элемент, осуществляющий питание материнской платы. Будьте внимательны, существуют разъёмы на 20 и 24 pin (количество штырьков), поэтому при покупке убедитесь, что ваш блок питания подходит к системной плате. В качестве совета стоит сказать, что в первую очередь стоит брать материнку. И уже к ней подбирать блок питания.
  3. Во второй разъём подключаем также идущий от блока питания шнур, предназначенный для питания центрального процессора. Также нажимаем до самого упора, чтобы защелка встала на место, и питание не отключилось во время работы.
  4. На третьем месте обозначен разъем на материнской плате, для немного устаревшего, но до сих пор встречающегося привода для чтения дискет. Этот разъём имеет незначительные отличия от разъёма 4, но если присмотреться, то сможете запросто увидеть отличия.
  5. Для подключения жесткого диска или CD/DVD-привода используется интерфейс IDE ATA. Шлейф для этого разъёма отличается тем, что у него два выходных интерфейса, поэтому при подключении одного шлейфа вы можете подключить сразу и CD-привод, и жесткий диск. В отличие от приведённого примера, большинство материнских плат имеют по несколько таких разъёмов.
  6. Еще один способ подключения жесткого диска и CD/DVD-привода - это SATA интерфейс. Подключается он через разъем №5. Он используется в новых устройствах, и перепутать его с другим разъёмом не представляется возможным.

Разобравшись, как подключить материнскую плату, переходим к подсоединению оставшихся устройств и интерфейсов.

Платы расширения

После подключения внешних и внутренних устройств, а также питания к материнской плате, можно приступать к подключению плат расширения - оперативной памяти, графического адаптера, сетевой карты.

При покупке вам должна была быть выдана полная спецификация и типы разъемов. Помните, что оперативную память необходимо выбирать того же стандарта, что и указан в документации. Память DDR2 невозможно подключить в разъем DDR3, поэтому при покупке убедитесь, что берёте современную материнскую плату, с новейшими интерфейсами. Найти комплектующие старых форматов проблематично, а новые не намного отличаются по ценовой категории.

Что касается графического адаптера, то здесь вы не ошибетесь. В большинстве случаев это самый большой разъем на материнской плате. В старых моделях подключение производилось простым защелкиванием видеокарты в паз. В современных мощных видеокартах присутствует своя независимая система охлаждения. Её также надо подключать непосредственно к материнской плате с помощью двухпинового шлейфа. Обычно разъём питания находится ближе к процессору, поскольку к нему же подключается и охлаждение самого процессора.

Самой важной частью, подключаемой к системной плате, станет ЦПУ. Процессоры также имеют свои уникальные разъемы. Например, материнская плата ASUS VANGUARD B85 имеет сокет LGA1150, к которому можно подключить процессоры Intel i7/i5/i3, в то время как с другими могут возникнуть проблемы.

Рассмотрим ниже понятие о том, какая же лучшая материнская плата. Несмотря на то, что компания Intel имеет огромный опыт в разработке оборудования для персональных компьютеров, сейчас она занимается разработкой именно комплектующих. Поэтому даже самые крупные компании вынуждены выпускать продукцию под материнские платы Intel.

ASUS Z97-A

На форуме 2014 года, проведённом компанией Asus, были, как обычно, представлены новинки. Среди них - эта бюджетная материнская плата, цена которой будет по карману большинству обывателей. Отказавшись от привычного дизайна, компания «Асус» выпустила материнку в бронзовых оттенках, с достаточно богатым оснащением. В состав этой недорогой платы входят:

  • три слота PCIe x16;
  • четыре слота DIMM под оперативную память, с поддержкой до 32 гигабайт;
  • один современный слот SATA Express;
  • а также, даже на такой невзрачной материнской плате, был установлен звуковой чипсет Crystal Sound 2.

Без сомнения, компания Asus повышает планки для своих материнских плат, оставаясь в той же ценовой категории, что и раньше. Это позволит им оставаться среди лидеров на рынке компьютерных комплектующих.

ASUS Z97-DELUXE

На той же выставке была представлена еще одна модель материнской платы. Можно сказать, что она достойна стать настоящим лидером среди своих сестер. Флагманская материнская плата ASUS предоставляет пользователю поистине безграничный потенциал расширения своего компьютера. Секретом такого успеха является количество интерфейсов, которых стало в два раза больше. Вот характеристики материнской платы:

  • два интерфейса Sata Express;
  • 6 дополнительных портов SATS 6G;
  • 8 портов USB 3.0;
  • 3 слота PCI Express 3.0 x16;
  • звук Crystal Sound 2.

Конечно, для рядового пользователя такая материнская плата, цена на которую может зашкаливать за 10 000 рублей, не подходит, поэтому, если вы стараетесь собрать себе бюджетный компьютер своими руками, то обязательно изучите варианты. Продавцы-консультанты в магазинах предоставляют разнообразнейший выбор в доступной ценовой категории от 2 000 до 8 000 рублей.

Ноутбук

Материнская плата для ноутбука - это не просто тело, к которому подключены устройства. Это сама жизнь ноутбука. Если вы, не дай бог, прольёте на неё кофе или повредите, то в большинстве случаев готовьтесь распрощаться ещё и с половиной оборудования, установленного внутри.

Дело в том, что далеко не у всех ноутбуков на материнской плате возможно заменить компоненты. Встроенная видеокарта или оперативная память потребует дополнительных расходов в случае ремонта, поэтому всегда четко представляйте, для чего вам компьютер и нужен ли ноутбук дома.

Замена компонентов ноутбука представляется сложной даже для опытных системных администраторов, поэтому при поломке его части или, в особенности, материнской платы, в 90% случаев вам придётся обращаться в сервисный центр.

Уход за материнской платой

Многие полагают, что персональный компьютер - это своеобразный инструмент для работы, наподобие пилы или молотка. Понятное дело, что в таком случае пользователь абсолютно не прав. Компьютер, как и, в частности, материнская плата - это целая взаимодействующая система, состоящая из миллионов частей. Представьте себе, что материнская плата, лежащая на столе - это город, а миллиарды бит информации, ежедневно проходящих через неё - это жители. Понятно дело, что за своим инструментом нужно следить и ухаживать.

Когда производитель тестирует свой продукт, он не рассчитывает, что в нём поселятся насекомые или, хуже того, крысы. Наверно, польза профилактики компьютера очевидна, от того как вы относитесь к своему рабочему месту, будет зависеть то, как долго оно вам прослужит. Тем более, уход за материнской платой и внутренностями компьютера не займёт у вас много времени.

Хотя бы раз в месяц, а лучше чаще, полностью отключайте компьютер от сети и снимайте крышку с блока питания. В любом компьютерном магазине вы сможете купить баллон со сжатым воздухом, либо можете воспользоваться пылесосом, настроенным на выдув. Обязательно продуйте все радиаторы и уголки системного блока, избегая прямого контакта с платами и проводами.

Если вы давно не чистили системный блок, делайте это на улице и в марлевой повязке, чтобы не надышаться пыли. Ни в коем случае не используйте жидкости или аэрозоли. Помните, что пыль в системах охлаждения, да и на самих платах, способствует повышению температуры и может привести к их поломке. Поэтому уборка внутри компьютера - это не прихоть, а, скорее, жизненная необходимость.

Ремонт

Если вы все-таки не смогли уберечь свой компьютер от поломки и не способны определить самостоятельно, какая часть повреждена, лучше воспользуйтесь услугами сервисного центра. В большинстве случаев определить проблему самостоятельно можно, только если сломалось что-то из комплектующих. Если проблема в материнской плате, то с этим справится только электронщик.

Материнская плата - это важнейший компонент, для ремонта которого потребуются
специальные навыки и оборудование. Если же у вас сломался ноутбук, то еще и достаточно много места для его разборки.

Залог успешного ремонта это важнейшей детали - в правильной диагностике и поиске неполадок. Самой большой ошибкой рядового пользователя станет попытка самостоятельного ремонта. В таком случае человек может не только не починить плату, но и довести её до состояния, когда её придётся выкинуть на помойку.

Если же у вас появился сбой в работе ноутбука, как можно скорее доставьте его в сервисный центр. Материнская плата для ноутбука - сложный для замены элемент. Поэтому игнорирование мелких сбоев может привести к тому, что, оставшись безучастным к ошибке один раз, вам придется столкнуться с более серьёзными проблемами.

Важно осознавать, что материнская плата - это основная составляющая стоимости ноутбука. Поэтому при сбоях лучше обращаться к профессионалам сразу и не затягивать, они помогут вернуть вам ноутбук к жизни при минимальных затратах.

Заключение

Итак, материнская плата - это основа жизни вашего компьютера. Многие программисты утверждают, что у компьютеров есть своя душа и характер. Они признают только одного хозяина. Если поверить в эту теорию, то душа компьютера находится именно в материнской плате.

Выбранная с душой и вниманием материнская плата, при должном уходе, прослужит вам долго, несмотря на её стоимость или составляющие. О ней надо заботиться, ухаживать и тогда она прослужит вам очень долго. Никогда не стесняйтесь обращаться к специалистам и не проводите её ремонт самостоятельно.

Следуя советам этой статьи, вы без труда сможете собрать свой компьютер и не волноваться о том, что он вдруг откажет вам в самый неподходящий момент.

Материнская («материнка»/Motherboard), или, по-другому, системная плата - это неотъемлемая часть персонального компьютера. Своим внешним видом она напоминает обычную текстолитовую пластину, где в большом количестве расположились медные проводники, разъёмы, интерфейсы и прочие детали. Если выражаться сухим официальным языком, то системная плата - это главная сборочная единица.

В её разъёмы и интерфейсы устанавливаются все комплектующие персонального компьютера: главный процессор, платы расширения, видеокарта или карты, оперативная память, а также винчестер и другие накопители/считыватели информации.

Кроме того, системная плата - это некий проводник для внешних манипуляторов и служебной периферии. К различным разъёмам в задней части материнки подключается мышка, клавиатура, принтеры, монитор, сканеры, коммуникационное оборудование и другие устройства.

Для того чтобы всё это разнообразие работало как надо, необходим источник вторичного питания, то есть плата системного блока должна быть подключена к этому источнику посредством оригинального разъёма. Такие интерфейсы в большинстве своём оснащаются специальной «защитой от дурака», где приёмник имеет пластиковые ключи и вставить его можно исключительно одним, правильным, образом. Схожие принципы подключения имеют и другие разъёмы, то есть производитель предусмотрительно позаботился о том, чтобы дорогостоящие компоненты не вышли из строя из-за неправильного подключения. Такими особенностями отличаются многие именитые системные платы: Asrock, MSI, «Гигабайт», «Асус» и другие.

Форм-факторы материнской платы

Форм-фактор материнки определяет точки крепежа к системному блоку. Кроме того, разные типы плат имеют отличительное расположение разъёмов питания, количество интерфейсов для подключения периферии и внутренних компонентов, а также их местоположение. Всего можно начитать три основных типа материнок. Практически все бренды, которые, что называется, на слуху, полностью поддерживают эти стандарты, то есть системные платы MSI, «Асус», «Самсунг», «Гигабайт» Asrock и т. п.

Форм-факторы:

  1. Мини-ITX . Наименьший размер платы с минимальным числом интерфейсов и чаще всего с уже интегрированным процессором (бюджетный вариант).
  2. Микро-ATX . Характеристика системной платы определяется как средняя по функциональности. Отличается приемлемыми размерами и считается оптимальным вариантом для домашнего персонального компьютера, пусть и с небольшим набором интерфейсов для подключения сторонней периферии. Чаще всего на борту такой материнской платы устанавливается чипсет с некоторыми ограничениями, но они не критичны для полноценной работы именно домашнего ПК.
  3. Standart-АТХ . Самый большой размер из группы с полнофункциональным набором чипсетов. Имеет достаточное количество интерфейсов для полноценной работы со всевозможной периферией. Отличается удобным и беспроблемным монтажом наряду с широкими возможностями подключения.

Обязательно нужно учитывать форм-фактор материнки, равно как и её размер, если вы самостоятельно комплектуете системный блок. Материнская плата типа мини-ITX может быть установлена в любой корпус, а вот остальные типы должны соответствовать размерам системного блока.

Разъёмы для процессоров («Сокет»/Socket)

Рассмотрим некоторые особенности разъёмов под процессоры. По большому счёту, системная плата - это вещь индивидуальная для каждого процессора и наоборот. Поэтому следует обязательно учитывать характеристики этого разъёма при выборе комплектующих, а именно процессора, для вашего компьютера.

Типовой ассортимент интерфейсов «Сокет» довольно велик и для каждого набора чипсетов подойдёт только свой тип. К примеру, системная плата Gigabyte GA с набором AMD имеет маркировки FX2, АМ3 и АМ3+. То есть, купив любой процессор с одной из этих «Сокет»-пометок, вы легко подключите его на эту материнскую плату. То же самое и с конкурентами из «Интел»: маркировки LGA 1150 и 1155 позволят вам выбрать нужный набор чипсетов, к примеру, под системные платы Samsung или «Асус».

БИОС (BIOS)

Далее мы рассмотрим отличительные черты каждой материнки. Неважно, какой у вас набор - первая или вторая системная плата, старая или новая и т. п. На ней в любом случае будет находиться микросхема БИОС для базовой систематизации ввода и вывода (BIOS - Basic Input-Output System).

Любая системная плата (Gigabyte, «Асус», «Самсунг», MSI и другие) несёт в себе несколько критичных подсистем, которые должны быть корректно настроены. Некоторый функционал может быть отключён, если, к примеру, вам не нужен встроенный графический ускоритель, потому как на борту установлена внешняя видеокарта.

Все настройки БИОСа сохраняются в специальном чипе-CMOS (о нём чуть ниже). Это своего рода запоминающее устройство «на века», работающее на литиевом элементе. Даже если вы на очень длительный срок выключите компьютер, данные в CMOS будут сохранены. В случае необходимости можно «грубо» сбросить все настройки, вынув батарейку из-под чипа. Этот момент нельзя назвать критичным, потому как все необходимые комплектующие для загрузки компьютера типа жёсткого диска или оперативной памяти определяются автоматически, - по крайней мере, в современных системах (после 2006 года). Настроенные ранее дата и время, естественно, сбросятся.

Микросхема CMOS

Практически любая системная плата (ASUS, «Гигабайт», MSI и другие) содержит в себе микросхему CMOS, запоминающую все изменения, внесённые в БИОС. Сам по себе чип потребляет крайне малый ток - чуть меньше микроампера, поэтому заряда батареи с лихвой хватает на год, а то и на несколько лет.

Иногда, если элемент полностью сел, компьютер может отказываться загружаться. Многие мастера-новички в этом случае сразу грешат на системную плату. Для того чтобы сразу исключить эту возможную причину (после длительного простоя компьютера), нужно вынуть аккумуляторный элемент из-под чипа CMOS и заново запустить систему. Если компьютер запустился или начал проявлять какие-то признаки жизни, то проблема была именно в севшей CMOS-батарейке.

Также нелишним будет заметить, что на элементе можно увидеть маркировку, где первые две цифры указывают диаметр батареи, а две следующие - ёмкость. Маркировкой CMOS-батареи должна оснащаться любая «уважающая себя» системная плата (Gigabyte, MSI, «Асус», «Самсунг» и т. д.). Если вы её не встретили - это повод насторожиться и усомниться в оригинальности и девственности купленного продукта. Чем больше ёмкость батареи, тем дольше будет работать элемент и тем он толще. Стандартная комплектация материнских плат чаще всего включает в себя аккумулятор типа 2032, то есть батарея с диаметром 20 мм и ёмкостью 32 мАч. Несколько реже можно встретить более скромные элементы вроде 2025.

Интерфейс IDE

Следующая не менее важная часть, которой оснащается каждая системная плата (ASUS, MSI, «Гигабайт», Asrock и другие), это интерфейсы для работы с жёсткими накопителями и считывателями данных, то есть в большинстве случаев с винчестерами, ДВД-приводами и другими носителями информации.

Домашние и офисные персональные компьютеры используют для этих случаев два основных интерфейса - это IDE и SATA. Разъём IDE (Integrated Drive Electronics) представляет собой 40-контактный приёмник и способен работать с жёстким диском или ДВД-приводом через гибкий ленточный кабель. Сегодняшние реалии заставляют потихоньку отказываться от интерфейса такого типа, но тем не менее его всё ещё можно встретить на некоторых материнских платах (чаще всего MSI и «Асус») для возможности подключения старых винчестеров и приводов.

Так же, как и в случае с разъёмом под блок питания, IDE-интерфейс имеет «защиту от дурака», то есть подключить его неправильно нельзя. Старые системные платы оснащались парой таких приёмников, то бишь первичным и вторичным (primary и secondary соответственно). Чаще всего жёсткий диск подключали к первичному контакту, а считывающие приводы - ко вторичному.

К каждому IDE-интерфейсу (каналу) можно подсоединить два внешний девайса - главный (master) и ведомый (slave). Выбор соответствующего параметра носителя выбирается с помощью специальных перемычек (джамперов) на самих устройствах. Причём если ошибочно выставить на одном канале двух «мастеров» или ведомых, то ни один из них работать не станет, поэтому всегда должен быть главный девайс и побочный.

Интерфейс SATA

Канал «САТА» - это последовательный набор интерфейсов, и в отличие от IDE, он позволяет работать на гораздо бОльших скоростях с подключаемыми устройствами. В настоящий момент он почти полностью исключил присутствие IDE-девайсов и продолжает развиваться дальше (SATA2, SATA3 и т. д.).

В зависимости от выбранного форм-фактора и производителя системной платы, на материнке может находиться разное количество разъёмов «САТА». Сегодняшняя стандартная комплектация подразумевает наличие как минимум четырех интерфейсов этого типа, в то время как более старые модели оснащались лишь двумя.

Интерфейс PS/2

Как уже говорилось выше, на системной плате находятся интерфейсы для работы с внешней периферией. Для подключения клавиатуры и манипуляторов типа «мышь» предназначены шестиконтактные приёмники PS/2 с соответствующими ключами и окрашенные в разные цвета. Этот момент также можно назвать «защитой от дурака», потому как каждый цвет соответствует типу подключаемого оборудования (мышь - зелёная, клавиатура - сиреневая), причём действует это в обе стороны, то есть, к примеру, на вашей мышке контакт должен быть зелёный.

Сразу стоит предупредить пользователей, что ни в коем случае нельзя подключать, равно как и отключать периферию от разъёма PS/2 во время работы компьютера, потому как это чревато выходом из строя не только клавиатуры или мыши, но и самой системной платы. Хорошо, если материнская плата оснащена группой предохранителей на этот случай, иначе может полететь вся система.

Такие чипы-предохранители имеют совсем небольшой номинал и легко горят при вышеописанных «переключательных» действиях. Для того чтобы проверить работоспособность предохранителя, его можно прозвонить обычным тестером. Если он вышел из строя, то его сравнительно легко (и дёшево) заменить, а впредь не рисковать, включая или отключая внешнюю периферию во время работы компьютера от порта PS/2. Также стоит отметить, что такими предохраняющими чипами оснащены далеко не все системные платы, поэтому обратить на этот момент внимание при покупке явно не лишний шаг.

Интерфейс USB

Среди прочих внешних разъёмов особое место отведено USB-интерфейсу (универсальная последовательная шина). Он состоит из четырёх линий: две отведены под питание, а другие под передачу данных. В отличие от привередливого порта PS/2, периферию, подключённую посредством USB-разъёма, можно менять, что называется, на ходу. Сам интерфейс появился достаточно давно и успел обзавестись некоторыми модификациями и улучшениями.

Возможность подключать и отключать девайсы с USB-разъёмом во время работы компьютера достигается за счёт специфичной конструкции интерфейса. Основные контакты питания находятся заметно ближе к срезу разъёма, в отличие от блока для передачи данных. То есть в момент коммутации питание начинает поступать в первую очередь, а отключается в последнюю.

Посредством USB-интерфейса можно подключить уйму периферийных устройств: принтеры, смартфоны, планшеты, сканеры, камеры и многое другое, а также привычные клавиатуру и мышь (имейте это в виду, если чипы-предохранители погорели на PS/2-портах).

Немногим ранее для подключения принтеров и сканеров использовались а ещё реже - последовательные СОМ-интерфейсы. Сегодня они практически не используются, и встретить их можно только на старых материнских картах. Но оно и к лучшему, потому как при подключении такого рода оборудования во время работы компьютера можно было спалить и принтер, и сам порт.

Интерфейсы PCI и PCI Express

Слоты PCI и PCI Express предназначены для плат расширения: сетевые адаптеры, коммуникаторы, модемы, видеокарты и т. п. Все видеокарты устанавливаются, как правило, в интерфейс типа PCI Express в силу его быстродействия. Раньше для работы с графическими ускорителями использовался разъём типа AGP, но он морально устарел, и увидеть его на современных материнских платах практически нереально.

Также стоит отметить, что со временем могут ослабевать, нарушая нормальную работу устройства. Быстрое «лечение» здесь одно - вытащить девайс из пазов, протереть контакты спиртосодержащим раствором и вставить обратно. Более кардинальный ремонт - это замена системной платы, но это необходимо в исключительных и крайне редких случаях.

Также следует знать, что претерпела несколько изменений в ходе совершенствования, и в зависимости от года выпуска материнской платы разъёмы могут отличаться и внешним видом, и разрядностью.

Модули оперативной памяти (ОЗУ)

В настоящее время можно встретить несколько видов оперативной DDR3 и DDR4. Морально устаревшие планки DDR1 практически не используются, увидеть их можно только на самых старых системных платах.

Отличается память друг от друга рабочей частотой, размерами, контактами и напряжением питания. Каждый отдельно взятый тип имеет специфический вырез (ключ) в нижней части, по которому и определяется вид оперативной памяти. Некоторые системные платы могут поддерживать сразу два вида планок, что очень удобно для последующего апгрейда.

Сами разъёмы оснащены специальными защёлками для надёжной фиксации на плате. Планки устанавливаются с определённым усилием, где после успешного монтажа будет слышан специфичный щелчок, - значит, модуль корректно сел (или вы сломали защёлку, слишком сильно надавив на неё).

Модули оперативной памяти, кроме полезных гигабайт, содержат небольшие микросхемы SPD, отвечающие за тайминг, то есть задержу данных для этого типа ОЗУ (оперативное запоминающее устройство). В БИОСе можно самостоятельно задать какие-то свои тайминги или оставить это на усмотрение самой планки. При разгоне оперативной памяти или всей системы в целом (оверклокинг) устанавливают максимально укороченную задержку.

Так же, как и в случае с PCI-слотами, модули ОЗУ могут начать некорректно работать, и для этого необходимо выполнить аналогичную процедуру, описанную в разделе выше и всё должно заработать как надо.

Материнская плата обеспечивает взаимодействие всех компонентов, как единой системы, управляя их совместной работой.

Выделяют три основных компонента:

Северный мост

Южный мост

Северный мост

Специальная микросхема, монтируемая на материнскую плату. Основная задача северного моста - управлять работой оперативной памяти, центрального процессора и видеокарты. На многих моделях мат. плат, северный мост обеспечивают дополнительным охлаждением. Это связано с большим потреблением энергии.

Южный мост

Аналог северного моста. Эта микросхема отвечает за управление работой жесткого диска, Чипсет

Общий набор управляющих микросхем, установленных на материнской плате, называют чипсетом. От модели чипсета зависит то, какую модификацию центрального процессора можно установить на данную мат. плату.

интерфейсов (USB, PCI и пр.), управление BIOS.

Назначение и основные характеристики процессора ПК

Центральный процессор (ЦП) представляет собой сложную микросхему с миллионами транзисторов и множеством контактов занимающуюся обработкой машинного кода компьютерных программ. Центральное процессорное устройство (ЦПУ или CPU) является мозгом всей компьютерной системы, производя арифметические и логические операции с данными. Среди основных характеристик центрального процессора стоит отметить следующие: Тактовая частота - если по простому, то количество операций в единицу времени, которое может выполнить процессор. Непосредственно влияет на производительность CPU следовательно, чем выше частота быстрее работает центральный процессор. Напрямую сравнивать частоту можно только внутри одного ядра, так как на производительность влияет множество других факторов.

Сокет - разъем на материнской плате компьютера предназначенный для установки центрального процессора. Подходит только для строго определенного типа процессоров и характеризуется количеством контактов и производителем CPU. Так же физически не позволяет установить процессор неподходящего типа. Сокет является ограничивающим фактором при апгрейде процессора.



Количество ядер - центральный процессор может содержать в себе несколько ядер в одном корпусе, тогда его называют многоядерным. Ядром ЦПУ является главная часть, определяющая основные характеристики процессора и занимающаяся непосредственно вычислениями. Наличие нескольких ядер облегчает выполнение нескольких параллельных задач одновременно, так же при должной оптимизации компьютерной программы значительно увеличивает скорость работы в ней. Например, современные игры, обработка видео, архивирование, 3D-моделирование и многие другие положительно отзываются на наличие нескольких ядер. Так же существуют технологии создания нескольких виртуальных ядер из одного физического. Однако надо понимать, что увеличение количества ядер не приводит к пропорциональному росту производительности процессора, а на некоторых задачах возможно даже ухудшение по сравнению с одноядерным вариантом. Все зависит от возможности выполнять данную задачу несколькими параллельными потоками и насколько грамотно это реализовано в конкретном программном обеспечении. Многоядерность является наиболее перспективным путем повышения производительности на сегодняшний день.

Кэш - высокоскоростная память, интегрированная прямо в центральный процессор. Служит буфером между оперативной памятью компьютера и собственно вычислительным блоком процессора. Обеспечивает увеличение производительности за счет гораздо более высокой скорости работы. Кэш бывает трех уровней: L1, L2, L3. Чем больше объем кэша, тем быстрее работает ЦП при прочих равных условиях.

Тепловыделение - количество теплоты, выделяемое при работе центральным процессором. Это тепло необходимо отводить с помощью системы охлаждения центрального процессора для поддержания его температуры в оптимальном диапазоне. Важный параметр, так как если система охлаждения будет не справляться, то процессор будет перегреваться вплоть до принудительного выключения компьютера. Особенно актуально при разгоне и в маленьких корпусах.

Основными производителями центральных процессоров для персональных компьютеров являются компании Intel и AMD. Процессоры этих компаний не взаимозаменяемые. В случае апгрейда компьютера, выбирать новый процессор нужно исходя из поддерживаемых данной материнской платой компьютера.

Поколения процессоров ПК

В настоящее время семейство х86 насчитывает 6 поколений процессоров у Intel и 7 - у AMD.

Первое поколение (процессоры 8086 и 8088 и математический сопроцессор 8087) задало архитектурную основу - набор неравноправных 16-разрядных регистров, сегментную систему адресации памяти в пределах 1 Мбайт с большим разнообразием режимов, систему команд, систему прерываний и некоторые другие черты. В процессорах применялась "малая" конвейеризация - пока одни узлы выполняли текущую инструкцию, блок предварительной выборки выбирал из памяти следующую. На выполнение каждой инструкции уходило в среднем по 12 тактов процессорного ядра.

Второе поколение (80286 с сопроцессором 80287) привнесло в семейство защищенный режим, позволяющий использовать виртуальную память размером до 1 Гбайт для каждой задачи, пользуясь адресуемой физической памятью в пределах 16 Мбайт. Защищенный режим является основой для построения многозадачных операционных систем (ОС), в которых система привилегий жестко регламентирует взаимоотношения задач с памятью, ОС и друг с другом. Защищенный режим 80286 не нашел массового применения - эти процессоры, в основном, использовались как "очень" быстрые 8086. Их производительность повысилась не только за счет роста тактовой частоты, но и за счет значительного усовершенствования конвейера. Здесь на выполнение инструкции уходило в среднем по 4,5 такта. Во втором поколении появились новые инструкции: системные (для обслуживания механизмов защищенного режима) и несколько прикладных (в том числе для блочного ввода/вывода). Наличие защищенного режима не отменяет возможности работы в реальном режиме 8086, и эта возможность сохраняется во всех последующих поколениях (дань совместимости с программным обеспечением, включая и MS DOS).

Третье поколение (386/387 с суффиксами DX и SX, определяющими разрядность внешней шины) ознаменовалось переходом к 32-разрядной архитектуре IA-32. Кроме расширения диапазона непосредственно представляемых величин (16 бит отображают целые числа в диапазоне 0-65535 или от -32767 до +32767, 32 бита - более чем 4 миллиарда) увеличился и объем адресуемой памяти (до 4 Гбайт реальной, 64 Тбайт виртуальной). Для этого почти все программно-доступные регистры были расширены и получили в названии приставку "Е" (ЕАХ, ЕВХ...). В систему команд ввели возможность переключения разрядности адресации и данных. Защищенный режим был несколько усовершенствован, но оставлена и обратная совместимость с 286. На таком процессоре стала "расцветать" система MS Windows - сначала оболочка, а потом и операционная система. В плане организации исполнения инструкций существенных изменений, повлекших за собой сокращение числа тактов на инструкцию, не произошло - те же средние 4,5 такта, но частота уже достигла 40 МГц.

Четвертое поколение (486, опять-таки DX и SX) в видимую архитектурную модель больших изменений не внесло, но зато принят ряд мер для повышения производительности. В этих процессорах значительно усложнен исполнительный конвейер - основные операции выполняет RISC-ядро, "задания" для которого готовят из входных CISC-инструкций х86. Этот конвейер стал способным выполнять инструкцию в среднем за два такта. Конечно, каждая инструкция проходит через весь конвейер процессора за гораздо большее количество тактов, но темп выполнения в потоке именно таков. Производительность конвейера процессора оторвалась от возможностей доставки инструкций и данных из оперативной памяти, и прямо в процессор ввели быстродействующий первичный кэш объемом 8-16 Кбайт. В этом же поколении отказались от внешнего сопроцессора: теперь он размещается либо на одном кристалле с центральным (называется FPU), либо его нет вообще. По сравнению с предыдущим поколением и сопроцессор стал работать значительно эффективнее. А тактовая частота в этом поколении достигла 133 МГц (у AMD, а у Intel - только 100).

Пятое поколение - процессор Pentium у Intel и К5 у AMD - привнесли суперскалярную архитектуру. Суперскалярность означает наличие более одного конвейера. У процессоров пятого поколения после блоков предварительной выборки и первой стадии декодирования инструкций имеется два конвейера, U-конвейер и V-конвейер. Каждый из этих конвейеров имеет ступени окончательного декодирования, исполнения инструкций и буфер записи результатов. U-конвейер "умеет" все, у V-конвейера возможности немного скромнее. Конвейеризирован и блок FPU. Процессор с такой архитектурой может одновременно "выпускать" до двух выполненных инструкций, но в среднем получается 1 такт на инструкцию. Не все инструкции могут выполняться парно, эффективность использования конвейеров (коэффициент их загрузки или простоя) зависит от программного кода - есть широкие возможности оптимизации. В процессорах применяется блок предсказания ветвлений (инструкций программы, выполняемых после очередного условного перехода или вызова), в обязанности которого входит не оставлять конвейеры без работы "на поворотах" алгоритмов. Для быстрого снабжения конвейеров инструкциями и данными из памяти шина данных процессоров имеет разрядность 64 бит, из-за чего поначалу их даже ошибочно называли 64-разрядными процессорами. На закате этого поколения появилось расширение ММХ, новизна которого заключается в принципе SIMD: одна инструкция выполняет действия сразу над несколькими (2, 4 или 8) комплектами операндов. В ММХ появился и новый тип арифметики - с насыщением (saturated): если результат операции не умещается в разрядной сетке, то вместо переполнения (антипереполнения) устанавливается максимально (минимально) возможное значение числа.

Шестое поколение процессоров Intel началось с Pentium Pro и продолжается по сей день в процессорах Pentium II, Pentium III, Celeron и Хеоn. Его лейтмотивом является динамическое исполнение, под которым понимается исполнение инструкций не в том порядке (out of order), как это предполагается программным кодом, а в том, как "удобно" процессору. Инструкции, поступающие на конвейер, разбиваются на простейшие микрооперации, которые далее выполняются суперскалярным процессорным ядром в порядке, удобном процессору. Ядро процессора содержит несколько конвейеров, к которым подключаются исполнительные устройства целочисленных вычислений, обращений к памяти, предсказания переходов и вычислений с плавающей точкой. Несколько различных исполнительных устройств могут объединяться на одном конвейере.

Результаты "беспорядочно" выполняемых микроопераций собираются в переупорядочивающем буфере и в корректном порядке записываются в память (и порты ввода/вывода). Чтобы можно было одновременно выполнять разные инструкции с одними и теми же программно-адресуемыми регистрами, внутри процессора выполняется аппаратное переименование регистров (их у процессора больше, чем доступных по программной модели). Конечно, при этом учитывается и связь по данным, которая сковывает "беспорядочные" параллельные исполнения, даже пользуясь дополнительными регистрами. В процессорах 6-го поколения реализовано исполнение по предположению: процессор пытается исполнить инструкцию, последующую (по его мнению) за переходом еще до самого перехода. В итоге всех этих ухищрений среднее число тактов на инструкцию у Pentium Pro сократилось до 0,5 такта. В систему команд были введены новые инструкции, позволяющие писать более эффективные коды (с точки зрения минимизации ветвлений).

Проблему доставки "сырья" для работы процессоров 6-го поколения фирма Intel стала решать, используя так называемую двойную независимую шину (DIB). Одна из шин процессора, "фасадная" (FSB - Front Side Bus), связывает его с системной платой, на которой находится и оперативная память. Другая шина связывает процессор со вторичным кэшем, который находится в одной упаковке с процессором (для пользователя вторичный кэш неотделим от процессора). Частота FSB долгое время оставалась в пределах 66 МГц, что обеспечивало пиковую пропускную способность 528 Мбайт/с. Лишь совсем недавно эта частота поднялась до 100 и даже 133 МГц. А вот тактовая частота второй шины пропорциональна частоте ядра - либо полная частота, либо ее половина. Пиковую пропускную способность этой шины можно оценить, умножив ее тактовую частоту на 8 - число байт данных на шине (у новых процессоров Pentium III разрядность этой шины уже 32 байта). Наличие двойной независимой шины у Intel является одним из атрибутов шестого поколения. Системная шина при этом имеет протокол, принципиально отличающийся от протокола шины процессоров Pentium.

Фирма AMD в своих процессорах шестого поколения (К6) реализовала "беспорядочное исполнение", но двойную независимую шину применять не стала. Вместо этого была увеличена тактовая частота той же шины, которой пользовался Pentium - весьма эффективной в однопроцессорных конфигурациях. Двойная шина появилась лишь в процессорах K6-III. Благодаря такому решению сокет-7 (Super7) пережил целых два поколения процессоров. По микроархитектуре (способу реализации "беспорядочного исполнения") процессоры К6 заметно отличаются от своих Intеl"овских собратьев.

Как пятое поколение по ходу развития было "сдобрено" расширением ММХ (целочисленное), так шестое поколение получило расширение 3DNow! (AMD) и SSE (Intel). Однако в отличие от единого ММХ, эти два расширения не эквивалентны. У них общая идея "потоковой" направленности и реализации SIMD для чисел с плавающей точкой. Поток в данном контексте подразумевает, что с его данными должны выполняться однотипные операции. Кроме того, данные, уже прошедшие обработку, в дальнейшем этим вычислительным процессом использоваться не будут и ими не следует засорять кэш. Теперь появились инструкции загрузки данных в кэш, а также записи в память, минуя кэш. Прежде такого явного управления кэшированием не было.

Седьмое поколение (по AMD) началось с процессора Athlon. Причисление его к новому поколению мотивировано развитием суперскалярности и суперконвейерности, которая теперь охватила и блок FPU (в прежних поколениях FPU если и конвейеризировали, то не распараллеливали).

Завершает линию процессоров IA-32 от фирмы Intel процессор Willamette (в начале 2000 года демонстрировался опытный образец с частотой ядра 1,5 ГГц). Его микроархитектура существенно отличается от привычной архитектуры Р6. Конвейер этого процессора имеет 20 ступеней, в то время как у Pentium III 12-ступенчатый целочисленный конвейер и 17-ступенчатый FPU. Длинный конвейер упрощает микрооперации каждой стадии, что позволяет повышать тактовую частоту. Однако при этом растет задержка прохождения инструкции, и, что особенно критично, растут потери времени при ошибках в предсказании ветвлений. Чтобы минимизировать вероятность этих ошибок, в процессоре существенно улучшены узлы, отвечающие за загрузку конвейеров, - блок предсказания переходов, буферы микроинструкций. Первичный кэш имеет объем 256 Кбайт, и в кэше применяется упорядочивание инструкций (чтобы инструкция, следующая за ветвлением, всегда оказывалась в кэше). Существенно повышена производительность исполнительных блоков целочисленных инструкций, но у стандартного FPU (не SIMD) производительность практически та же, что и у Pentium III (в пересчете на эквивалентную тактовую частоту). Для чисел с плавающей точкой основной упор сделан на инструкции SIMD. В процессоре появился набор инструкций SSE2: 76 новых инструкций обработки данных и управления кэшированием. Новые инструкции обработки работают с числами разных форматов, включая учетверенные слова (64 бит) и числа двойной точности с плавающей точкой (64 бит). Процессор имеет совершенно новую шину с тактовой частотой 100 МГц, но передающую до четырех 64-битных пакетов за такт (Quad Pumped) - производительность до 3,2 Гбайт/с. Эта шина является переходной к шине процессоров IA-64. Процессор устанавливается в Socket-462, естественно, не совместимый ни с каким из существующих сегодня сокетов или слотов. В 2001 году ожидается мобильный вариант Willamette - Northwood, а также серверный вариант - Foster.

Фирма Intel сейчас занимается 64-разрядной архитектурой - такая разрядность позволит считать целые числа с числом разрядов почти до 2ґ1019. Первый представитель 64-разрядных процессоров - Itanium, разрабатываемый под кодовым названием Merced. Его архитектура - IA-64 - обеспечивает совместимость с существующим программным обеспечением для используемой ныне архитектуры IA-32.

Микропроцессор Itanium использует 10-уровневый конвейер и может выполнить до шести инструкций за один такт. В новой архитектуре предусмотрено 128 регистров для вычислений с плавающей запятой и столько же для целых чисел, 64 регистра для предсказания переходов и 8 регистров ветвления. На кристалле расположены два блока вычислений с плавающей запятой, обеспечивающие производительность до 6 Гфлоп при операциях с одинарной точностью и до 3 Гфлоп - с повышенной точностью на частоте 1ГГц. Они существенно ускоряют и обработку графической ЗD-информации. Вся сверхоперативная память разделена на три уровня, два из которых интегрированы на самом кристалле. Кэш-память третьего уровня, выполненная на дискретных микросхемах SRAM общим объемом до 4 Мб, располагается в картридже микропроцессора.

В начале 2000 года фирма Transmeta заявила процессор Crusoe, который является аппаратно-программным комплексом. Этот комплекс работает нетрадиционным способом: инструкции х86 транслируются в длинные слова VLIW (Very Long Instruction Word) регулярной структуры длиной 64 или 128 бит, которые исполняются процессорным ядром. При этом оттранслированные инструкции хранятся в кэш-памяти и при многократном исполнении транслируются лишь единожды. Ядро процессора исполняет элементы кода в строгом порядке. С этим процессором уже могут работать ОС Windows 9x/NT/2000, Linux. Плавающее энергопотребление составляет от 10-20 мВт до 1-3 Вт, в зависимости от выполняемой работы. Процессор имеет наилучшее отношение производительности к потреблению энергии и предназначается для мобильных систем.

Семейство х86 фирмы Intel началось с 16-разрядного процессора 8086. Все следующие модели процессоров, в том числе 32-разрядные (386, 486, Pentium, Pentium Pro, Pentium II, Celeron) и с 64-разрядным расширением ММХ, включают в себя систему команд и программную модель предыдущих, обеспечивая совместимость с ранее написанным программным обеспечением.