Виды сетевых технологий, а также сферы их применения. Преимущества использования сетевых технологий

30.07.2019 Проблемы

История появления вычислительных сетей напрямую связана с развитием компьютерной техники. Первые мощные компьютеры (т.н. Мэйнфреймы), занимали по объёму комнаты и целые здания. Порядок подготовки и обработки данных был очень сложен и трудоёмок. Пользователи подготавливали перфокарты, содержащие данные и команды программ, и передавали их в вычислительный центр. Операторы вводили эти карты в компьютер, а распечатанные результаты пользователи получали обычно только на следующий день. Такой способ сетевого взаимодействия предполагал полностью централизованную обработку и хранение.

Мэйнфрейм - высокопроизводительный компьютер общего назначения со значительным объемом оперативной и внешней памяти, предназначенный для выполнения интенсивных вычислительных работ. Обычно с мэнфреймом работают множество пользователей, каждый из которых располагает лишьтерминалом , лишенным собственных вычислительных мощностей.

Терминал (от лат. terminalis - относящийся к концу)

Компьютерный терминал - устройство ввода/вывода, рабочее место на многопользовательскихЭВМ, монитор с клавиатурой. Примеры терминальных устройств: консоль, терминальный сервер, тонкий клиент, эмулятор терминала,telnet.

Хост (от англ.host- хозяин, принимающий гостей)- любое устройство, предоставляющее сервисы формата «клиент-сервер» в режиме сервера по каким-либо интерфейсам и уникально определённое на этих интерфейсах. В более частном случае под хостом могут понимать любой компьютер, сервер, подключенный к локальной или глобальной сети.

Компьютерная сеть (вычислительная сеть, сеть передачи данных )- система связи компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило- различные виды электрических сигналов или электромагнитного излучения.

Для пользователей удобнее и эффективнее был бы интерактивный режим работы, при котором можно с терминала оперативно руководить процессом обработки своих данных. Но интересами пользователей на первых этапах развития вычислительных систем в значительной степени пренебрегали, поскольку пакетный режим - это самый эффективный режим использования вычислительной мощности, так как он позволяет выполнить в единицу времени больше пользовательских задач, чем любые другие режимы. К счастью эволюционные процессы не остановить, и вот в 60-х годах начали развиваться первые интерактивные много терминальные системы. Каждый пользователь получал в свое распоряжение терминал, с помощью которого он мог вести диалог с компьютером. И, хотя вычислительная мощность была централизованной, функции ввода и вывода данных стали распределёнными. Часто эту модель взаимодействия называют «терминал-хост» . Центральный компьютер должен работать под управлением операционной системы, поддерживающей такое взаимодействие, которое называетсяцентрализованным вычислением. Причём терминалы могли располагаться не только на территории вычислительного центра, но и быть рассредоточены по значительной территории предприятия. По сути это явилось прообразом первыхлокальных вычислительных сетей (ЛВС). Хотя такая машина полностью обеспечивает хранение данных и вычислительные возможности, подключение к ней удаленных терминалов не является сетевым взаимодействием, так как терминалы, являясь, по сути, периферийными устройствами, обеспечивают только преобразование формы информации, но не ее обработку.

Рисунок 1. Много терминальная система

Локальная вычислительная сеть (ЛВС), (локальная сеть, сленг. локалка; англ. Local AreaNetwork,LAN )- компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт)

Компьютер (англ. computer - «вычислитель»), ЭВМ (электронная вычислительная машина) - вычислительная машина для передачи, хранения и обработки информации.

Термин «компьютер» и аббревиатура «ЭВМ» (электронная вычислительная машина), принятая в СССР, являются синонимами. Однако, после появленияперсональных компьютеров, терминЭВМбыл практически вытеснен из бытового употребления.

Персональный компьютер, ПК (англ. personal computer, PC ), персональная ЭВМ- компьютер, предназначенный для личного использования, цена, размеры и возможности которого удовлетворяют запросам большого количества людей. Созданный как вычислительная машина, компьютер, тем не менее, всё чаще используется как инструмент доступа в компьютерные сети.

В 1969 году Министерство обороны США посчитало, что на случай войны Америке нужна надёжная система передачи информации. Агентство передовых исследовательских проектов (ARPA) предложило разработать для этого компьютерную сеть. Разработка такой сети была поручена Калифорнийскому университету в Лос-Анджелесе, Стэндфордскому исследовательскому центру, Университету штата Юта и Университету штата Калифорния в Санта-Барбаре. Первое испытание технологии произошло 29 октября 1969 года. Сеть состояла из двух терминалов, первый из которых находился в Калифорнийском университете, а второй на расстоянии 600 км от него - в Стэндфордском университете.

Компьютерная сеть была названаARPANET, в рамках проекта сеть объединила четыре указанных научных учреждения, все работы финансировались за счёт Министерства обороны США. Затем сетьARPANET начала активно расти и развиваться, её начали использовать учёные из разных областей науки.

В начале 70-х годов произошел технологический прорыв в области производства компьютерных компонентов - появились большие интегральные схемы (БИС). Их сравнительно невысокая стоимость и высокие функциональные возможности привели к созданию мини-ЭВМ (электронно-вычислительных машин), которые стали реальными конкурентами мэйнфреймов. Мини-ЭВМ, или мини-компьютеры (не надо путать с современными мини-компьютерами) , выполняли задачи управления технологическим оборудованием, складом и другие задачи уровня подразделения предприятия. Таким образом, появилась концепция распределения компьютерных ресурсов по всему предприятию. Однако при этом все компьютеры одной организации по-прежнему продолжали работать автономно.

Рисунок 2 . Автономное использование нескольких мини-компьютеров на одном предприятии

Именно в этот период, когда пользователи получили доступ к полноценным компьютерам, назрело решение объединения отдельных компьютеров для обмена данными с другими близко расположенными компьютерами. В каждом отдельном случае эту задачу решали по-своему. В результате появились первые локальные вычислительные сети.

Так как процесс творчества был спонтанным, да и не было единого решения по сопряжению двух и более компьютеров, то ни о каких сетевых стандартах не могло быть и речи.

А между тем к сети ARPANET в 1973 году были подключены первые иностранные организации из Великобритании и Норвегии, сеть стала международной. Параллельно сARPANET стали появляться и развиваться другие сети университетов и предприятий.

В 1980 году было предложено связать вместе ARPANET и CSnet (Computer Science ResearchNetwork) через шлюз с использованием протоколовTCP/IP, чтобы все подмножества сетей CSnet располагали доступом к шлюзу вARPANET.Это событие, приведшее к соглашению относительно способа межсетевого общения между содружеством независимых вычислительных сетей, можно считать появлениемИнтернета в современном его понимании.

Рисунок 3 . Варианты подключения ПКв первыхЛВС

В середине 80-х годов положение дел в локальных сетях стало меняться. Утвердились стандартные технологии объединения компьютеров в сеть - Ethernet,Arcnet,Token Ring,Token Bus, несколько позже -FDDI. Мощным стимулом для их развития послужилиперсональные компьютеры. Эти устройства стали идеальным решением для созданияЛВС. С одной стороны они имели достаточную мощность для обработки индивидуальных заданий, и в то же время явно нуждались в объединении своих вычислительных мощностей для решения сложных задач.

Все стандартные технологии локальных сетей опирались на тот же принцип коммутации, который был с успехом опробован и доказал свои преимущества при передаче трафика данных в глобальных компьютерных сетях - принцип коммутации пакетов .

Интернет(произносится как [интэрнэт]; англ. Internet , сокр. от Interconnected Networks -объединённые сети; сленг. инет, нет)- глобальная телекоммуникационная сеть информационных и вычислительных ресурсов. Служит физической основой дляВсемирной паутины (World Wide WEB) . Часто упоминается какВсемирная сеть, Глобальная сеть, либо простоСеть .

Стандартные сетевые технологии сделали задачу построения локальной сети почти тривиальной. Для создания сети достаточно было приобрести сетевые адаптеры соответствующего стандарта, например Ethernet , стандартный кабель, присоединить адаптеры к кабелю стандартными разъемами и установить на компьютер одну из популярных сетевых операционных систем, напримерNovell NetWare. После этого сеть начинала работать, и последующее присоединение каждого нового компьютера не вызывало никаких проблем - естественно, если на нем был установлен сетевой адаптер той же технологии.

Рисунок 4 . Подключение нескольких компьютеров по схеме « общая шина».

Сетевая плата , также известная как сетевая карта, сетевой адаптер, Ethernet-адаптер,NIC(англ.networkinterface controller) - периферийное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети.

Операционная система, ОС(англ. operatingsystem)- базовый комплекс компьютерных программ, обеспечивающий интерфейс с пользователем, управление аппаратными средствами компьютера, работу с файлами, ввод и вывод данных, а также выполнение прикладных программ и утилит.

Для того, чтобы разобраться как устроена локальная сеть , необходимо разобраться в таком понятии, как сетевая технология .

Сетевая технология состоит из двух компонентов: сетевых протоколов и аппаратуры, обеспечивающей работу этих протоколов. Протоколом в свою очередь является набор «правил», с помощью которых компьютеры, находящиеся в сети, могут соединяться друг с другом, а также обмениваться информацией. С помощью сетевых технологий у нас есть Интернет, есть локальная связь между компьютерами, стоящими у вас дома. Еще сетевые технологии называют базовыми , но также имеют еще одно красивое название – сетевые архитектуры .

Сетевые архитектуры определяют несколько параметров сети , о которых необходимо иметь небольшое представление, чтобы разобраться в устройстве локальной сети:

1)Скорость передачи данных. Определяет, какое количество информации, которая обычно измеряется в битах, может быть передана через сеть за определенное время.

2)Формат сетевых кадров. Информация, передаваемая через сеть, существует в виде так называемых «кадров» — пакетов информации. Сетевые кадры в разных сетевых технологиях имеют различные форматы передаваемых пакетов информации.

3)Тип кодирования сигналов. Определяет каким образом с помощью электрических импульсов, информация кодируется в сети.

4)Среда передачи. Это материал (обычно кабель), через который проходит поток информации – той самой, которая в итоге выводится на экраны наших мониторов.

5)Топология сети. Это схема сети, в которой есть «ребра», представляющие собой кабеля и «вершины» — компьютеры, к которым эти кабеля тянутся. Распространены три основных вида схем сетей: кольцо, шина и звезда.

6)Метод доступа к среде передачи данных. Используется три метода доступа к сетевой среде: детерминированный метод, случайный метод доступа и приоритетная передача. Наиболее распространен детерминированный метод, при котором при помощи специального алгоритма, время использования передающей среды делится между всеми компьютерами находящимися в среде. В случае случайного метода доступа к сети компьютеры состязаются в доступе сети. Такой метод имеет ряд недостатков. Одним из таких недостатков является потеря части передаваемой информации из-за столкновения пакетов информации в сети. Приоритетный доступ обеспечивает соответственно наибольший объем информации к установленной приоритетной станции.

Набор этих параметров определяет сетевую технологию.

В настоящее время широко распространена сетевая технология IEEE802.3/Ethernet . Широкое распространение она получила, благодаря простым и недорогим технологиям. Также популярна за счёт того, что обслуживание таких сетей проще. Топология Ethernet сетей обычно строится в виде «звезды», либо «шины». Средой передачи в таких сетях применяются как тонкие, так и толстые коаксиальные кабеля , а также витые пары и оптоволоконные кабеля . Протяженность сетей Ethernet обычно колеблется от 100 до 2000 метров. Скорость передачи данных в таких сетях обычно около 10 мбит/с. В сетях Ethernet обычно используется метод доступа CSMA/CD, относящийся к децентрализованным случайным методам доступа к сети.

Существуют также высокоскоростные варианты сети Ethernet: IEEE802.3u/Fast Ethernet и IEEE802.3z/Gigabit Ethernet , обеспечивающие скорость передачи данных до 100 мбит/с и до 1000 мбит/с соответственно. В этих сетях в качестве среды передачи используется преимущественно оптоволокно , либо экранированная витая пара .

Существуют также менее распространенные, но при этом повсеместно использующиеся сетевые технологии.

Сетевая технология IEEE802.5/Token-Ring характерна тем, что все вершины или узлы (компьютеры) в такой сети объединены в кольцо, используют маркерный метод доступа к сети, поддерживают экранированную и неэкранированную витую пару , а также оптоволокно в качестве передающей среды. Скорость в сети Token-Ring до 16 мбит/с. Максимальное количество узлов, находящихся в таком кольце, составляет 260, а длина всей сети может достигать 4000 метров.

Прочитайте по теме следующие материалы:

Локальная сеть IEEE802.4/ArcNet особенна тем, что в ней для передачи данных используется метод доступа с помощью передачи полномочий. Эта сеть является одной из самых старейших и ранее популярных в мире. Такая популярность обусловлена надежностью и дешевизной сети. В наше время такая сетевая технология менее распространена, так как скорость в такой сети довольно низкая – около 2,5 мбит/с. Как и большинство других сетей в качестве передающей среды использует экранированные и неэкранированные витые пары и оптоволоконные кабеля, которые могут образовывать сеть длиной до 6000 метров и включать в себя до 255 абонентов.

Сетевая архитектура FDDI (Fiber Distributed Data Interface) , базируется на IEEE802.4/ArcNet и имеет большую популярность из-за своей высокой надежности. Такая сетевая технология включает в себя два оптоволоконных кольца , протяженностью до 100 км. При этом также обеспечивается высокая скорость передачи данных в сети – около 100 мбит/с. Смысл создания двух оптоволоконных колец состоит в том, что по одному из колец проходит путь с резервными данными. Таким образом снижается шанс потери передаваемой информации. В такой сети может находиться до 500 абонентов, что также является преимуществом перед другими сетевыми технологиями.

Транскрипт

1 Лекция 7 Компьютерные сети и сетевые технологии Лектор Ст. преподаватель Купо А.Н.

2 Виды компьютерных сетей. Возможности и преимущества сетевых технологий. Компьютерные сети (англ., network) - это совокупность ПК, распределенных на некоторой территории и взаимосвязанных для совместного использования ресурсов (данных, программ и аппаратных компонентов). Практически все услуги сети построены на принципе клиент-сервер. Сервером в сети называется компьютер, способный предоставлять клиентам (по мере прихода от них запросов) некоторые сетевые услуги. На сегодняшний день в мире существует более 130 млн. компьютеров и более 80 % из них объединены в различные информационно-вычислительные сети - от малых локальных сетей в офисах до глобальных сетей.

3 Существующие сети принято в настоящее время делить в первую очередь по территориальному признаку: 1. Локальные сети (LAN - Locate Area Network). Такая сеть охватывает небольшую территорию с расстоянием между отдельными компьютерами до 10 км. Обычно такая сеть действует в пределах одного учреждения. Под локальной вычислительной сетью (ЛВС) понимают совместное подключение нескольких отдельных компьютерных рабочих мест (рабочих станций) к единому каналу передачи/данных. Самая простая сеть состоит, как минимум, из двух компьютеров, соединенных друг с другом кабелем. Это позволяет им использовать данные совместно. 2. Региональные сети. Подобные сети существуют в пределах города, района. В настоящее время каждая такая сеть является частью некоторой глобальной сети и особой спецификой по отношению к глобальной сети не отличается. 3. Глобальные сети (WAN - Wide Area Network). Такая сеть охватывает, как правило, большие территории (территорию страны или нескольких стран). Компьютеры располагаются друг от друга на расстоянии десятков тысяч километров. В качестве линий связи в глобальных сетях используются как специально проложенные (например, трансатлантический оптоволоконный кабель), так и существующие линии связи (например, телефонные сети). Количество узлов в ГВС может достигать десятков миллионов. В состав глобальной сети входят отдельные локальные и корпоративные сети. Всемирная сеть - объединение глобальных сетей (Internet).

4 Также компьютерные сети можно классифицировать по различным признакам. I. По принципам управления: 1. Одноранговые - не имеющие выделенного сервера. В которой функции управления поочередно передаются от одной рабочей станции к другой; 2. Многоранговые - это сеть, в состав которой входят один или несколько выделенных серверов. Остальные компьютеры такой сети (рабочие станции) выступают в роли клиентов. II. По способу соединения: 1. "Прямое соединение"- два персональных компьютера соединяются отрезком кабеля. Это позволяет одному компьютеров (ведущему) получить доступ к ресурсам другого (ведомого); 2. "Общая шина" - подключение компьютеров к одному кабелю; 3. "Звезда" - соединение через центральный узел; 4. "Кольцо" - последовательное соединение ПК по двум направлениям.

5 Все многообразие компьютерных сетей можно классифицировать: 1) способ организации сети; 2) территориальная распространенность; 3) ведомственная принадлежность; 4) скорость передачи информации; 5) тип среды передачи; 6) топология; 7) организация взаимодействия компьютеров.

6 В основе построения любой современной компьютерной сети лежат три принципа: 1. Общий сетевой протокол (правила кодирования и обмена информацией). Компьютеры должны понимать друг друга. 2. Гибкость сети. Сеть должна сохранять работоспособность даже при выходе из строя некоторых узлов или линий связи. 3. Расширяемость сети. Сеть должна быть построена так, чтобы к ней легко можно было подключить новый компьютер. Под средствами передачи данных понимают: Устройства для приёма и передачи информации - модемы, сетевые адаптеры. Линии передачи данных. Средства маршрутизации передаваемой информации.

7 Все пользователи сети могут получить: доступ к информационным ресурсам узлов сети (доступ к файловым библиотекам, базам данных, электронным справочникам и т.п.). доступ к вычислительным ресурсам узлов сети (например, использование удаленного компьютера с мощным процессором для решения сложной вычислительной задачи). доступ к аппаратным ресурсам сети (сетевым принтерам, дискам и т.п.). возможность удалённого управления процессами (управление сборочной линией, реактором и т.п.). Взаимодействие клиент-сервер строится обычно следующим образом. По приходу запросов от клиентов сервер запускает различные программы предоставления сетевых услуг. По мере выполнения запущенных программ сервер отвечает на запросы клиентов. Все программное обеспечение сети также можно поделить на клиентское и серверное. При этом программное обеспечение сервера занимается предоставлением сетевых услуг, а клиентское программное обеспечение обеспечивает передачу запросов серверу и получение ответов от него.

8 В настоящее время компьютерные сети получили очень широкое распространение. Это вызвано несколькими причинами: объединение компьютеров в сеть позволяет значительно экономить денежные средства за счет уменьшения затрат на содержание компьютеров (достаточно иметь определенное дисковое пространство на файл-сервере (главном компьютере сети) с установленными на нем программными продуктами, используемыми несколькими рабочими станциями); компьютерные сети позволяют использовать почтовый ящик для передачи сообщений на другие компьютеры, что позволяет в наиболее короткий срок передавать документы с одного компьютера на другой; компьютерные сети, при наличии специального программного обеспечения (ПО), служат для организации совместного использования файлов (к примеру, бухгалтеры на нескольких машинах могут обрабатывать проводки одной и той же бухгалтерской книги). Кроме всего прочего, в некоторых сферах деятельности просто невозможно обойтись без компьютерных сетей. К таким сферам относятся: банковское дело, складские операции крупных компаний, электронные архивы библиотек и др. В этих сферах каждая отдельно взятая рабочая станция в принципе не может хранить всей информации (в основном, по причине слишком большого ее объема). Сеть позволяет избранным (зарегистрированным на файл-сервере) пользователям получать доступ к той информации, к которой их допускает оператор сети.

9 Топология локальных сетей. Интранет. Экстранет.

10 Топология локальных систем Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры. Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных. В настоящее время в локальных сетях используются следующие физические топологии: физическая "шина" (bus); физическая звезда (star); физическое кольцо (ring); физическая "звезда" и логическое "кольцо" (Token Ring).

11 Топология типа общая шина

12 «Общая шина» Сети с шинной топологией используют линейный моноканал (коаксиальный кабель) передачи данных, на концах которого устанавливаются оконечные сопротивления (терминаторы). Каждый компьютер подключается к коаксиальному кабелю с помощью Т- разъема (Т - коннектор). Данные от передающего узла сети передаются по шине в обе стороны, отражаясь от оконечных терминаторов. Терминаторы предотвращают отражение сигналов, т.е. используются для гашения сигналов, которые достигают концов канала передачи данных. Таким образом, информация поступает на все узлы, но принимается только тем узлом, которому она предназначается. В топологии логическая шина среда передачи данных используются совместно и одновременно всеми ПК сети, а сигналы от ПК распространяются одновременно во все направления по среде передачи. Так как передача сигналов в топологии физическая шина является широковещательной, т.е. сигналы распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной. Данная топология применяется в локальных сетях с архитектурой Ethernet (классы 10Base-5 и 10Base-2 для толстого и тонкого коаксиального кабеля соответственно).

13 Преимущества сетей шинной топологии: отказ или неисправность одного из узлов не влияет на работу сети в целом; сеть легко настраивать и конфигурировать; вся информация находится в сети и доступна каждому компьютеру; рабочие станции можно подключать независимо друг от друга. Т.е. при подключении нового абонента нет необходимости останавливать передачу информации в сети; построение сетей на основе топологии общая шина обходится дешевле, так как отсутствуют затраты на прокладку дополнительных линий при подключении нового клиента Недостатки сетей шинной топологии: разрыв единого кабеля (шины) может повлиять на работу всей сети; ограниченная длина кабеля и количество рабочих станций; трудно определить дефекты соединений; низкая скорость передачи данных, т.к. вся информация циркулирует по одному каналу (шине); для сетей, построенных на основе данной топологии, характерна низкая безопасность, так как информация на каждом компьютере может быть доступна с любого другого компьютера.

14 Топология типа звезда

15 «Звезда» Данные от передающей станции сети передаются через хаб по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физическая звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логическая топология данной локальной сети является логической шиной. Данная топология применяется в локальных сетях с архитектурой 10Base-T Ethernet

16 Преимущества данной топологии состоят в следующем: Высокое быстродействие сети, так как общая производительность сети зависит только от производительности центрального узла. легко подключить новый ПК; имеется возможность централизованного управления сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК. Недостатки: Низкая надежность, так как надежность всей сети определяется надежностью центрального узла. Если центральный компьютер выйдет из строя, то работа всей сети прекратится. Высокие затраты на подключение компьютеров, так как к каждому новому абоненту необходимо ввести отдельную линию.

17 Топология типа кольцо

18 «Кольцо» При топологии типа кольцо все компьютеры подключаются к линии, замкнутой в кольцо. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. Передача информации в такой сети происходит следующим образом. Маркер (специальный сигнал) последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, которому требуется передать данные. Получив маркер, компьютер создает так называемый "пакет", в который помещает адрес получателя и данные, а затем отправляет этот пакет по кольцу. Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя. После этого принимающий компьютер посылает источнику информации подтверждение факта получения данных. Получив подтверждение, передающий компьютер создает новый маркер и возвращает его в сеть.

19 Преимущества топологии типа кольцо состоят в следующем: Пересылка сообщений является очень эффективной, т.к. можно отправлять несколько сообщений друг за другом по кольцу. Т.е. компьютер, отправив первое сообщение, может отправлять за ним следующее сообщение, не дожидаясь, когда первое достигнет адресата. Протяженность сети может быть значительной. Т.е. компьютеры могут подключаться к друг к другу на значительных расстояниях, без использования специальных усилителей сигнала. К недостаткам данной топологии относятся: Низкая надежность сети, так как отказ любого компьютера влечет за собой отказ всей системы. Для подключения нового клиента необходимо отключить работу сети. При большом количестве клиентов скорость работы в сети замедляется, так как вся информация проходит через каждый компьютер, а их возможности ограничены. Общая производительность сети определяется производительностью самого медленного компьютера; физические ограничения на общую протяженность сети.

20 Топология типа Token Ring

21 «Token Ring» Эта топология основана на топологии "физическое кольцо с подключением типа звезда". В данной топологии все рабочие станции подключаются к центральному концентратору (Token Ring) как в топологии физическая звезда. Центральный концентратор - это интеллектуальное устройство, которое с помощью перемычек обеспечивает последовательное соединение выхода одной станции со входом другой станции. Другими словами с помощью концентратора каждая станция соединяется только с двумя другими станциями (предыдущей и последующей станциями). Таким образом, рабочие станции связаны петлей кабеля, по которой пакеты данных передаются от одной станции к другой и каждая станция ретранслирует эти посланные пакеты. В каждой рабочей станции имеется для этого приемо-передающее устройство, которое позволяет управлять прохождением данных в сети. Физически такая сеть построена по типу топологии звезда. Концентратор создаёт первичное (основное) и резервное кольца. Если в основном кольце произойдёт обрыв, то его можно обойти, воспользовавшись резервным кольцом, так как используется четырёхжильный кабель. Отказ станции или обрыв линии связи рабочей станции не влечет за собой отказ сети как в топологии кольцо, потому что концентратор отключит неисправную станцию и замкнет кольцо передачи данных. В архитектуре Token Ring маркер передаётся от узла к узлу по логическому кольцу, созданному центральным концентратором. Такая маркерная передача осуществляется в фиксированном направлении (направление движения маркера и пакетов данных представлено на рисунке стрелками синего цвета). Станция, обладающая маркером, может отправить данные другой станции. Для передачи данных рабочие станции должны сначала дождаться прихода свободного маркера. В маркере содержится адрес станции, пославшей этот маркер, а также адрес той станции, которой он предназначается. После этого отправитель передает маркер следующей в сети станции для того, чтобы и та могла отправить свои данные. Один из узлов сети (обычно для этого используется файл-сервер) создаёт маркер, который отправляется в кольцо сети. Такой узел выступает в качестве активного монитора, который следит за тем, чтобы маркер не был утерян или разрушен.

22 Преимущества сетей топологии Token Ring: топология обеспечивает равный доступ ко всем рабочим станциям; высокая надежность, так как сеть устойчива к неисправностям отдельных станций и к разрывам соединения отдельных станций. Недостатки сетей топологии Token Ring: большой расход кабеля и соответственно дорогостоящая разводка линий связи.

23 Интранет (англ. Intranet, также употребляется термин интрасеть) в отличие от сети Интернет, это внутренняя частная сеть организации. Как правило, интранет это Интернет в миниатюре, который построен на использовании протокола IP для обмена и совместного использования некоторой части информации внутри этой организации. Это могут быть списки сотрудников, списки телефонов партнёров и заказчиков. Чаще всего под этим термином имеют в виду только видимую часть интранет внутренний веб-сайт организации. Основанный на базовых протоколах HTTP и HTTPS и организованный по принципу клиент-сервер, интранет-сайт доступен с любого компьютера через браузер. Таким образом, интранет это «частный» Интернет, ограниченный виртуальным пространством отдельно взятой организации. Intranet допускает использование публичных каналов связи, входящих в Internet, (VPN), но при этом обеспечивается защита передаваемых данных и меры по пресечению проникновения извне на корпоративные узлы. Приложения в intranet основаны на применении Internet-технологий и в особенности Web-технологии: гипертекст в формате HTML, протокол передачи гипертекста HTTP и интерфейс серверных приложений CGI. Составными частями Intranet являются Webсе рверы для статической или динамической публикации информации и браузеры для просмотра и интерпретации гипертекста.

24 Очевидная выгода использования интранет Высокая производительность при совместной работе над какими-то общими проектами Легкий доступ персонала к данным Гибкий уровень взаимодействия: можно менять бизнес-схемы взаимодействия как по вертикали, так и по горизонтали. Мгновенная публикация данных на ресурсах интранет позволяет специфические корпоративные знания всегда поддерживать в форме и легко получать отовсюду в компании, используя технологии Сети и гипермедиа. Например: служебные инструкции, внутренние правила, стандарты, службы рассылки новостей, и даже обучение на рабочем месте. Позволяет проводить в жизнь общую корпоративную культуру и использовать гибкость и универсальность современных информационных технологий для управления корпоративными работами. Недостатки интранет Сеть может быть взломана и использована в целях хакера Непроверенная или неточная информация, опубликованная в интранет, приводит к путанице и недоразумениям. В свободном интерактивном пространстве могут распространяться нелегитимные и оскорбительные материалы. Легкий доступ к корпоративным данным может спровоцировать их утечку к конкурентам через недобросовестного работника. Работоспособность и гибкость интранет требуют значительных накладных расходов на разработку и администрирование.

25 Экстранет (англ. extranet) это защищенная от несанкционированного доступа корпоративная сеть, использующая Интернет-технологии для внутрикорпоративных целей, а также для предоставления части корпоративной информации и корпоративных приложений деловым партнерам компании. Вопросы обеспечения безопасности в Экстранет намного серьёзнее, чем в Интранет. Для сети Экстранет особенно важны аутентификация пользователя (который может и не являться сотрудником компании) и, особенно, защита от несанкционированного доступа, тогда как для приложений Интранет они играют гораздо менее существенную роль, поскольку доступ к этой сети ограничен физическими рамками компании. Корпоративное применение Экстранет это закрытые корпоративные порталы, на которых размещаются закрытые корпоративные материалы и предоставляется доступ уполномоченным сотрудникам компании к приложениям для коллективной работы, системам автоматизированного управления компанией, а также доступ к ограниченному ряду материалов партнерам и постоянным клиентам компании. Кроме того, в Экстранете возможно применение и других сервисов Интернет: электронной почты, FTP и т.д.


ТЕМА 3. ОСНОВНЫЕ СВЕДЕНИЯ О КОМПЬЮТЕРНЫХ СЕТЯХ Если два и более компьютера информационно соединены между собой с помощью взаимосвязанных каналов передачи данных, то такое соединение называется компьютерной

Глава 3 Сетевые топологии и способы доступа к среде передачи данных В этой главе вы найдете ответы на следующие вопросы: Какие существуют сетевые топологии? Каковы преимущества и недостатки различных топологий?

Глава 1. Основные типы сетей Одноранговая сеть Сеть на основе сервера 14 Часть 1. Теоретические сведения о сетях Появление компьютерных сетей было логичным шагом в истории компьютеризации общества. Благодаря

Компьютерные сети и телекоммуникации: лекция 2 1 ТЕМА ЛЕКЦИИ 2: «ЛОКАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СЕТИ» Целями лекции являются: изучить основные понятия локальных компьютерных сетей; рассмотреть виды локальных сетей

1. Сеть ARPANET появилась в году. 1959 1969 1979 2. Интернет - это сеть. локальная региональная глобальная корпоративная 3. Возможность использования сетевых ресурсов и предоставление ресурсов собственного

А.В. Абилов Сети связи и системы коммутации Лекция 12 Взаимодействие LAN, магистральные сети ивиртуальныеlan E-mail: [email protected] Web: http://www.istu.ru/unit/prib/net/edu/teach 2007 А.В. Абилов Лекция

Лекция 5 Понятие локальной компьютерной сети (ЛКС), классификация ЛКС и основные характеристики. Методы доступа и обмена данных в ЛКС. Технологии Ethernet и Arcnet. Классификация локальных компьютерных

Современные компьютерные информационные системы используют не только обработку данных на отдельных персональных и других компьютерах, но и качественно новые возможности, возникающие при объединении компьютеров

ИНФОРМАЦИОННЫЕ СЕТИ Л Е К Ц И Я 8. П Р И Н Ц И П Ы П О С Т Р О Е Н И Я О Б Ъ Е Д И Н Е Н Н Ы Х С Е Т Е Й. Г Л О Б А Л Ь Н Ы Е С Е Т И 1 ГЛОБАЛЬНЫЕ СЕТИ Глобальные сети (WAN) обеспечивают различные сервисы

Компьютерные сети и телекоммуникации. Лекция 1 1 ВВЕДЕНИЕ Учебная дисциплина «Компьютерные сети и телекоммуникации» является специальной, дающей базовые знания для освоения общепрофессиональных и специальных

АННОТАЦИЯ ПРИМЕРНОЙ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ПО ПРОФЕССИИ 09.01.02 (230103.03) Наладчик компьютерных сетей Правообладатель: Федеральное государственное автономное учреждение

Учреждение образования «Мозырский государственный педагогический университет имени И.П. Шамякина» УТВЕРЖДАЮ Проректор по учебной работе УО МГПУ им. И.П. Шамякина Н.А. Лебедев 2013 г. Регистрационный УД-

КОМПЬЮТЕРНЫЕ СЕТИ. ВИДЫ, СТРУКТУРА, ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ. Компьютерная сеть это система компьютеров, связанная каналами передачи информации. Компьютерные сети - это соединение 3-х и более компьютеров

ТОПОЛОГИЯ И РАСЧЕТ ПРОПУСКНОЙ СПОСОБНОСТИ СЕТИ И ЕЕ РЕАЛИЗАЦИЯ В СИСТЕМАХ IP ВИДЕОНАБЛЮДЕНИЯ В компьютерных сетях расположение оборудования относительно друг друга и способы соединения его линиями связи

Приложение 1 к приказу КГИОП от 03.05.2012 _8-196_ Инструкция по информационной безопасности в сфере информационного обмена с использованием международных информационных сетей, в том числе «Интернет» 1.

Администрирование локальных сетей Лекция 1. Вычислительные сети Основные вопросы лекции Понятие вычислительной сети. Вычислительные и телекоммуникационные технологии. Локальные, региональные и глобальные

Администрирование локальных сетей Тема 5. Протоколы семейства TCP/IP Основные вопросы лекции Сетевой уровень взаимодействия. Маршрутизируемые протоколы, их преимущества. Структура стека протоколов TCP/IP.

Основы Web-технологий Глоссарий Работу выполнил Захаров И. В. (МИФ ИНБ-11) Список терминов DNS (Domain Name System/Service)...3 HTML... 3 HTML-тэг... 3 HTTP... 3 IP-адрес... 3 JavaScript... 3 PHP... 3

Small Office Security 2 Сетевой экран Содержание Содержание... 1 Сетевой экран... 2 Что такое Сетевой экран... 2 Включение/отключение Сетевого экрана... 2 Изменение статуса сети... 3 Правила Сетевого экрана...

РУКОВОДСТВО ПО НАСТРОЙКЕ И РАБОТЕ С КОНВЕРТЕРОМ ИНТЕРФЕЙСА Т-11. Версия 1.0 Год 2011 Оглавление Введение... 3 Общие сведения... 3 Топология соединения конвертеров в СКУД «Реверс»... 4 Изменение настроек

Базовые принципы обеспечения безопасности локальной вычислительной сети Содержание 1 Основные узлы ЛВС 2 Базовые мероприятия по обеспечению безопасности ЛВС. 3 Безопасность локальной сети, подключенной

Администрирование локальных сетей Лекция 10. Анализ и устранение неисправностей Содержание лекции Определение проблем протоколов TCP/IP. Как клиентская конфигурация TCP/IP влияет на производительность

Администрирование локальных сетей Лекция 3. Каналы передачи данных и сетевые устройства Содержание лекции Кабельные системы, типы кабелей. Характеристики различных кабельных систем, их недостатки и преимущества.

Методика и этапы проектирования сети Последовательность этапов и варианты выбора при проектировании ЛС Исходные данные Требуемый размер сети Структура, иерархия и основные части сети Основные направления

КОМПЬЮТЕРНЫЕ СЕТИ: основные принципы построения и механизмы работы Содержание Компьютерные сети и их классификация Аппаратные компоненты компьютерной сети Особенности технологии Ethernet Сетевые операционные

Локальные и глобальные сети. Основные понятия С появлением компьютеров и Интернета начался процесс, который называют иногда цифровой революцией, - общий переход от аналоговой к цифровой технике хранения

Концепции СЕТИ (компьютерные сети и системы, состав сети, сетевая модель OSI) 1 Компьютерные сети и системы Компьютерная сеть - это совокупность компьютеров, объединенных средствами передачи данных (линиями

Компьютерные сети: Основные понятия, компоненты, организация Понятие компьютерных сетей. Назначение и показатели качества. Локальные и глобальные сети ЭВМ. Функциональные элементы компьютерных сетей. Передающие

Оборудование ЛВС компании Cisco Systems Содержание 1. Введение...2 2. Архитектура...2 3. Оборудование...5 3.1. Catalyst 6500...5 3.2. Catalyst 4500...6 3.3. Catalyst 3750...6 3.4. Catalyst 3560...7 3.5.

Технология ATM Введение ATM является технологией, позволяющей передавать по сети различные типы трафика голосовые, видео- и цифровые данные. При этом обеспечивается достаточная пропускная способность для

II. Аннотация 1. Цели и задачи дисциплины Целями освоения дисциплины (модуля) являются ознакомление студентов с основными этапами развития глобальной сети Интернет, ее текущим устройством и принципами

МИНОБРНАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра "Вычислительная техника"

СПЕЦИФИКАЦИЯ НА ОКАЗАНИЕ УСЛУГ «ИНТЕРНЕТ ADSL» 1. В настоящей Спецификации используются следующие определения: 1.1. Абонентская линия - линия связи, соединяющая Абонентское устройство с узлом связи Сети

1. Работа в Интернет 1.1. Работа с WWW 1.1.1. Web-браузер Для работы со службой WWW (или Web сайтами) используется программа web-браузер, например такая как Internet Explorer. В качестве дополнительной

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ УЧЕБНОЙ ДИСЦИПЛИНЫ Автор: О.В. Матянина, преподаватель специальных дисциплин Илекского зоотехнического техникума филиала ФГБОУ ВПО Оренбургский ГАУ. Специальность: 230401

Учитель: Кинзягулова Е.В. Цели урока: Конспект урока «Электронная почта» 1) Обучающая: ввести понятие «электронная почта», ознакомить учащихся с ее возможностями, функционированием, а также сформировать

ПОЛОЖЕНИЕ О ЗАЩИЩЁННОЙ ВИРТУАЛЬНОЙ СЕТИ VIPNET ТЕРРИТОРИАЛЬНОГО ФОНДА ОБЯЗАТЕЛЬНОГО МЕДИЦИНСКОГО СТРАХОВАНИЯ МУРМАНСКОЙ ОБЛАСТИ 1. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ViPNet [Администратор] - программное обеспечение,

Лекция 3. Архитектура ИС. Аннотация: Архитектура информационных систем. Базовые функции информационных систем.... 2 Традиционные архитектуры информационных систем.... 2 Файл-серверная архитектура... 2

Традиционные коммуникации Мгновенные сообщения Голосовая почта Телефония Почта и календари Вебконференции Видеоконференции Аудиоконференции Аутентификаци Аутентификаци я Аутентификаци Аутентификаци я Управление

FtpSync 4.0 W32 (С) Штрих-М 2008-2010 Краткое описание функций и настройка Build 2010_801 Оглавление Основные функции программы... 2 Дополнительные возможности программы... 2 Установка и запуск... 3 Настройки...

Министерство общего и профессионального образования Свердловской области ГБОУ СПО СО «Ревдинский педагогический колледж» СОГЛАСОВАНО профсоюзный комитет ГБОУ СПО СО «РПК» протокол 70 от 05.09.2011 г. председатель

Приложение 1 к приказу ТФОМС Санкт-Петербурга от 22 декабря 2014 г. 520-А ПОЛОЖЕНИЕ О ЗАЩИЩЕННОЙ ВИРТУАЛЬНОЙ СЕТИ VIPNET ГОСУДАРСТВЕННОГО УЧРЕЖДЕНИЯ «ТЕРРИТОРИАЛЬНЫЙ ФОНД ОБЯЗАТЕЛЬНОГО МЕДИЦИНСКОГО СТРАХОВАНИЯ

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ Б1.Б5 ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ Направление подготовки: 09.04.01 Информатика и вычислительная техника Трудоемкость: 5 зе Промежуточная аттестация: экзамен

1. Общие положения 1.1. Положение о локальной вычислительной сети Государственного бюджетного образовательного учреждения среднего профессионального образования «Нижегородский автотранспортный техникум»

Официальный документ Интеграция ориентированной на приложения инфраструктуры Cisco с существующими сетями Обзор Ориентированная на приложения инфраструктура Cisco (ACI) предлагает революционный способ

УТВЕРЖДАЮ Директор МБОУ СОШ 22 И.Е. Гаврилова приказ 114 от «30» мая 2014 г. Положение о локальной информационной сети образовательного учреждения в Муниципальном бюджетном общеобразовательном учреждении

Лекция 5. Компьютерные телекоммуникации 1 План лекции П. 1. Компьютерные сети и принципы их организации... 1 П. 2. Услуги Интернет... 2 П. 3. Адресация документов... 3 П. 4. Работа в Интернет с помощью

Системы записи телефонных разговоров на жесткий диск компьютера по USB порту и Ethernet «Telest RL-C», «Telest RL4», «Telest RL4-E» ВВЕДЕНИЕ Системы «Telest RL-C», «Telest RL4», «Telest RL4-E» предназначены

Руководство пользователя по настройке абонентского устройства D-Link 524T для услуг высокоскоростного доступа в Содержание Внешний вид модема D-Link 524T и карты DiSeL...2 Подключение к ADSL линии...4

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный архитектурно-строительный университет"

Областное государственное автономное образовательное учреждение среднего профессионального образования Иркутский технологический колледж ПОЛОЖЕНИЕ о локальной сети колледжа г. Иркутск 2013 1. ОБЩИЕ ПОЛОЖЕНИЯ

Методические материалы по использованию АИС «Сетевой Город. Образование» для родителей и учащихся. Система Сетевой Город - Образование комплексная программная информационная система, объединяющая в единую

Глава восьмая Компьютерные сети, Интернет, компьютерная безопасность 8.1. Компьютерные сети При физическом соединении двух и более компьютеров образуется компьютерная сеть. В общем случае, для создания

Тест 4 «Интернет технологии» Критерии оценок: 100% - 90% - «5»- учащийся выполняет правильно три уровня 60% - «4» - учащийся выполняет правильно только два уровня 30% - «3» - учащийся выполняет правильно

Понятие телекоммуникационных технологий. Основные определения Начнём изучение темы с ряда определений. Слово технология произошло от греческих слов τέχνη, что значит искусство, хитрость и λόγος наука,

ПРОФИЛЬ ГРУППЫ КОМПАНИЙ «ЕВРАЗИЯ ТЕЛЕКОМ» Российская группа компаний «Евразия Телеком» универсальный поставщик комплексных телекоммуникационных услуг и решений для корпоративных клиентов и операторов связи

Инструкция по настройке дублирования охранной информации с помощью прибора Купол GSM Оглавление 1. Общие принципы......3 2. Настройка программного обеспечения......3 2.1. Настройка Интернет-подключения......3

Первые шаги с BECK IPC@CHIP. Часть I Давайте рассмотрим 4 шага, которые нужно пройти для того, чтобы создать web-сервер на базе BECK IPC@CHIP. Первые шаги мы будем проходить именно с DK51, но все ниже

Инструкция по настройке маршрутизатора D-Link DIR-300 (REV.B3) для услуг «Интернет-телевидениетелефон» 1. Подключение маршрутизатора DIR-300 A. Подключить один конец адаптера питания к разъему на задней

Инструкция по использованию электронной почтой РС-ЕГИСз 1. Общие положения Настоящая инструкция определяет основные правила использования систем электронной почты, которыми должен руководствоваться сотрудникам

Лабораторная работа 5 Настройка доступа к сети Интернет из локальной сети. Цель работы: Рассмотреть различные варианты подключения к сети Интернет локальной сети, использую различные программные средства.

Безопасность >стандарты средства защиты мероприятия Защита виртуальной инфраструктуры Валерий Андреев заместитель директора по науке и развитию ЗАО ИВК, к.ф-м.н. На м е т и в ш а я с я н а ИТ-рынк е у

Технология Ethernet

Ethernet – это самый распространенный на сегодняшний день стандарт локальных сетей .

Ethernet – это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году.

В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля, который стал последней версией фирменного стандарта Ethernet. Поэтому фирменную версию стандарта Ethernet называют стандартом Ethernet DIX, или Ethernet II, на основе которых был разработан стандарт IEEE 802.3.

На основе стандарта Ethernet были приняты дополнительные стандарты: в 1995 году Fast Ethernet (дополнение к IEEE 802.3), в 1998 году Gigabit Ethernet (раздел IEEE 802.3z основного документа), которые во многом не являются самостоятельными стандартами.

Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet, обеспечивающих пропускную способность 10 Мбит/с, используется манчестерский код (рис. 3.9).

В манчестерском коде для кодирования единиц и нулей используется перепад потенциала, то есть фронт импульса. При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала, происходящими в середине каждого такта. Единица кодируется перепадом от низкого уровня сигнала к высокому (передним фронтом импульса), а ноль ‑ обратным перепадом (задним фронтом).

Рис. 3.9. Дифференциальное манчестерское кодирование

В стандарте Ethernet (в том числе Fast Ethernet и Gigabit Ethernet) используется один и тот же метод разделения среды передачи данных ‑ метод CSMA/CD.

Каждый ПК работает в Ethernet согласно принципу «Слушай канал передачи, перед тем как отправить сообщения; слушай, когда отправляешь; прекрати работу в случае помех и попытайся еще раз».

Данный принцип можно расшифровать (объяснить) следующим образом:

1. Никому не разрешается посылать сообщения в то время, когда этим занят уже кто-то другой (слушай перед тем, как отправить).

2. Если два или несколько отправителей начинают посылать сообщения примерно в один и тот же момент, рано или поздно их сообщения «столкнутся» друг с другом в канале связи, что называется коллизией.

Коллизии нетрудно распознать, поскольку они всегда вызывают сигнал помехи, который не похож на допустимое сообщение. Ethernet может распознать помехи и заставляет отправителя приостановить передачу и подождать некоторое время, прежде, чем повторно отправить сообщение.

Причины широкой распространенности и популярности Ethernet (достоинства):

1. Дешевизна.

2. Большой опыт использования.

3. Продолжающиеся нововведения.

4. Богатство выбора оборудования. Многие изготовители предлагают аппаратуру построения сетей, базирующуюся на Ethernet.

Недостатки Ethernet:

1. Возможность столкновений сообщений (коллизии, помехи).

2. В случае большой загрузки сети время передачи сообщений непредсказуемо.

Технология Token Ring

Сети Token Ring, как и сети Ethernet, характеризует разделяемая среда передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо . Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером, или токеном (token) .

Технология Token Ring был разработана компанией IBM в 1984 году, а затем передана в качестве проекта стандарта в комитет IEЕЕ 802, который на ее основе принял в 1985 году стандарт 802.5.

Каждый ПК работает в Token Ring согласно принципу «Ждать маркера, если необходимо послать сообщение, присоединить его к маркеру, когда он будет проходить мимо. Если проходит маркер, снять с него сообщение и отправить маркер дальше».

Сети Token Ring работают с двумя битовыми скоростями ‑ 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Технология Token Ring является более сложной технологией, чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры ‑ посланный кадр всегда возвращается в станцию-отправитель.

Рис. 3.10. Принцип технологии TOKEN RING

В некоторых случаях обнаруженные ошибки в работе сети устраняются автоматически, например, может быть восстановлен потерянный маркер. В других случаях ошибки только фиксируются, а их устранение выполняется вручную обслуживающим персоналом.

Для контроля сети одна из станций выполняет роль так называемого активного монитора. Активный монитор выбирается во время инициализации кольца как станция с максимальным значением МАС-адреса. Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Сеть Token Ring может включать до 260 узлов.

Концентратор Token Ring может быть активным или пассивным. Пассивный концентратор просто соединяет порты внутренними связями так, чтобы станции, подключаемые к этим портам, образовали кольцо. Ни усиление сигналов, ни их ресинхронизацию пассивный MSAU не выполняет.

Активный концентратор выполняет функции регенерации сигналов, и поэтому иногда называется повторителем, как в стандарте Ethernet.

В общем случае сеть Token Ring имеет комбинированную звездно-кольцевую конфигурацию. Конечные узлы подключаются к MSAU по топологии звезды, а сами MSAU объединяются через специальные порты Ring In (RI) и Ring Out (RO) для образования магистрального физического кольца.

Все станции в кольце должны работать на одной скорости либо 4 Мбит/с, либо 16 Мбит/с. Кабели, соединяющие станцию с концентратором, называются ответвительными (lobe cable), а кабели, соединяющие концентраторы, – магистральными (trunk cable).

Технология Token Ring позволяет использовать для соединения конечных станций и концентраторов различные типы кабеля:

– STP Type 1 ‑ экранированная витая пара (Shielded Twistedpair).
В кольцо допускается объединять до 260 станций при длине ответвительных кабелей до 100 метров;

– UTP Туре 3, UTP Туре 6 ‑ неэкранированная витая пара (Unshielded Twistedpair). Максимальное количество станций сокращается до 72 при длине ответвительных кабелей до 45 метров;

– волоконно-оптический кабель.

Расстояние между пассивными MSAU может достигать 100 м при использовании кабеля STP Туре 1 и 45 м при использовании кабеля UTP Type 3. Между активными MSAU максимальное расстояние увеличивается соответственно до 730 м или 365 м в зависимости от типа кабеля.

Максимальная длина кольца Token Ring составляет 4000 м. Ограничения на максимальную длину кольца и количество станций в кольце в технологии Token Ring не являются такими жесткими, как в технологии Ethernet. Здесь эти ограничения в основном связаны со временем оборота маркера по кольцу.

Все значения тайм-аутов в сетевых адаптерах узлов сети Token Ring можно настраивать, поэтому можно построить сеть Token Ring с большим количеством станций и с большей длиной кольца.

Преимущества технологии Token Ring:

· гарантированная доставка сообщений;

· высокая скорость передачи данных (до 160% Ethernet).

Недостатки технологии Token Ring:

· необходимы дорогостоящие устройства доступа к среде;

· технология более сложная в реализации;

· необходимы 2 кабеля (для повышения надежности): один входящий, другой исходящий от компьютера к концентратору;

· высокая стоимость (160-200% от Ethernet).

Технология FDDI

Технология FDDI (Fiber Distributed Data Interface) – оптоволоконный интерфейс распределенных данных ‑ это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Технология появилась в середине 80-х годов .

Технология FDDI во многом основывается на технологии Token Ring, поддерживая метод доступа с передачей маркера.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец – это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца, этот режим назван режимом Thru ‑ «сквозным», или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI.

Рис. 3.11. ИВС с двумя циклическими кольцами в аварийном режиме

Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному – в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца – token ring.

Отличия метода доступа заключаются в том, что время удержания маркера в сети FDDI не является постоянной величиной. Это время зависит от загрузки кольца - при небольшой загрузке оно увеличивается, а при больших перегрузках может уменьшаться до нуля. Эти изменения в методе доступа касаются только асинхронного трафика, который не критичен к небольшим задержкам передачи кадров. Для синхронного трафика время удержания маркера по-прежнему остается фиксированной величиной.

Технология FDDI в настоящее время поддерживает типа кабелей:

– волоконно-оптический кабель;

– неэкранированная витая пара категории 5. Последний стандарт появился позже оптического и носит название TP-PMD (Physical Media Dependent).

Оптоволоконная технология обеспечивает необходимые средства для передачи данных от одной станции к другой по оптическому волокну и определяет:

Использование в качестве основной физической среды многомодового волоконно-оптического кабеля 62,5/125 мкм;

Требования к мощности оптических сигналов и максимальному затуханию между узлами сети. Для стандартного многомодового кабеля эти требования приводят к предельному расстоянию между узлами в 2 км, а для одномодового кабеля расстояние увеличивается до 10–40 км в зависимости от качества кабеля;

Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам;

Параметры оптических разъемов MIC (Media Interface Connector), их маркировку;

Использование для передачи света с длиной волны в 1,3 нм;

Максимальная общая длина кольца FDDI составляет 100 километров, максимальное число станций с двойным подключением в кольце ‑ 500.

Технология FDDI разрабатывалась для применения в ответственных участках сетей ‑ на магистральных соединениях между крупными сетями, например сетями зданий, а также для подключения к сети высокопроизводительных серверов. Поэтому главные требования, у разработчиков были (достоинства ):

‑ обеспечение высокой скорости передачи данных,

‑ отказоустойчивость на уровне протокола;

‑ большие расстояния между узлами сети и большое количество подключенных станций.

Все эти цели были достигнуты. В результате технология FDDI получилась качественной, но весьма дорогой (недостаток ). Даже появление более дешевого варианта для витой пары не намного снизило стоимость подключения одного узла к сети FDDI. Поэтому практика показала, что основной областью применения технологии FDDI стали магистрали сетей, состоящих из нескольких зданий, а также сети масштаба крупного города, то есть класса MAN.

Технология Fast Ethernet

Потребности в высокоскоростной и в то же время недорогой технологии для подключения к сети мощных рабочих станций привели в начале 90-х годов к созданию инициативной группы, которая занялась поисками нового Ethernet, такой же простой и эффективной технологии, но работающей на скорости 100 Мбит/с .

Специалисты разбились на два лагеря, что в конце концов привело к появлению двух стандартов, принятых осенью 1995 года: комитет 802.3 утвердил стандарт Fast Ethernet, почти полностью повторяющий технологию Ethernet 10 Мбит/с.

Технология Fast Ethernet сохранила в неприкосновенности метод доступа CSMA/CD, оставив в нем тот же алгоритм и те же временные параметры в битовых интервалах (сам битовый интервал уменьшился в 10 раз). Все отличия Fast Ethernet от Ethernet проявляются на физическом уровне.

В стандарте Fast Ethernet определены три спецификации физического уровня:

‑ 100Base-TX для 2-х пар UTP категории 5 или 2-х пар STP Type 1 (метод кодирования 4В/5В);

‑ l00Base-FX для многомодового волоконно-оптического кабеля с двумя оптическими волокнами (метод кодирования 4В/5В);

‑ 100Base-T4, работающую на 4-х парах UTP категории 3, но использующую одновременно только три пары для передачи, а оставшуюся ‑ для обнаружения коллизии (метод кодирования 8В/6Т).

Стандарты l00Base-TX/FX могут работать в полнодуплексном режиме.

Максимальный диаметр сети Fast Ethernet равен приблизительно 200 м, а более точные значения зависят от спецификации физической среды. В домене коллизий Fast Ethernet допускается не более одного повторителя класса I (позволяющего транслировать коды 4В/5В в коды 8В/6Т и обратно) и не более двух повторителей класса II (не позволяющих выполнять трансляцию кодов).

Технология Fast Ethernet при работе на витой паре позволяет за счет процедуры автопереговоров двум портам выбирать наиболее эффективный режим работы - скорость 10 Мбит/с или 100 Мбит/с, а также полудуплексный или полнодуплексный режим.

Технология Gigabit Ethernet

Технология Gigabit Ethernet добавляет новую, 1000 Мбит/с, ступень в иерархии скоростей семейства Ethernet. Эта ступень позволяет эффективно строить крупные локальные сети, в которых мощные серверы и магистрали нижних уровней сети работают на скорости 100 Мбит/с, а магистраль Gigabit Ethernet объединяет их, обеспечивая достаточно большой запас пропускной способности.

Разработчики технологии Gigabit Ethernet сохранили большую степень преемственности с технологиями Ethernet и Fast Ethernet. Gigabit Ethernet использует те же форматы кадров, что и предыдущие версии Ethernet, работает в полнодуплексном и полудуплексном режимах, поддерживая на разделяемой среде тот же метод доступа CSMA/CD с минимальными изменениями.

Для обеспечения приемлемого максимального диаметра сети в 200 м в полудуплексном режиме разработчики технологии пошли на увеличение минимального размера кадра в 8 раз (с 64 до 512 байт). Разрешается также передавать несколько кадров подряд, не освобождая среду, на интервале 8096 байт, тогда кадры не обязательно дополнять до 512 байт. Остальные параметры метода доступа и максимального размера кадра остались неизменными.

Летом 1998 года был принят стандарт 802.3z, который определяет использование в качестве физической среды трех типов кабеля:

‑ многомодового оптоволоконного (расстояние до 500 м),

‑ одномодового оптоволоконного (расстояние до 5000 м),

‑ двойного коаксиального (twinax), по которому данные передаются одновременно по двум медным экранированным проводникам на расстояние до 25 м.

Для разработки варианта Gigabit Ethernet на UTP категории 5 была создана специальная группа 802.3ab, которая уже разработала проект стандарта для работы по 4-м парам UTP категории 5. Принятие этого стандарта ожидается в ближайшее время.

Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения вычислительных сетей.

Протокол – это набор правил и соглашений, определяющий каким образом в сети устройства обмениваются данными.

В настоящее время доминируют следующие сетевые технологии: Ethernet, Token Ring, FDDI, ATM.

Технология Ethernet

Технология Ethernet создана фирмой XEROX в 1973 году. Основной принцип, положенный в основу Ethernet - случайный метод доступа к разделяемой среде передачи данных (метод множественного доступа).

Логическая топология сети Ethernet всегда шинная, поэтому данные передаются на все узлы сети. Каждый узел видит каждую передачу и отличает предназначенные ему данные по адресу своего сетевого адаптера. В каждый момент времени только один узел может осуществить успешную передачу, поэтому между узлами должно существовать некое соглашение, как им вместе пользоваться одним кабелем, чтобы не мешать друг к другу. Такое соглашение и определяет стандарт Ethernet.

По мере роста загрузки сети все больше возникает необходимость передавать данные в одно и то же время. Когда такое случается, то две передачи входят в конфликт, заполняя шину информационным мусором. Такое поведение известно под термином «коллизия», то есть возникновение конфликта.

Каждая передающая система, обнаружив коллизию, немедленно прекращает посылать данные, и предпринимаются действия, чтобы исправить эту ситуацию.

Хотя большинство коллизий, которые возникают в типичной сети Ethernet, разрешаются в течение микросекунд и их возникновение естественно и ожидаемо, но основной недостаток заключается в том, что чем больше трафик в сети, тем больше коллизий, тем резко падает производительность сети и может наступить коллапс, то есть сеть забита трафиком.

Трафик – поток сообщений в сети передачи данных.

Технология Token Ring

Технология Token Ring была разработана компанией IBM в 1984 году. Технология Token Ring использует совершенно другой метод доступа. Логическая сеть Token Ring имеет кольцевую топологию. Специальное сообщение, известное как маркер (Token) – это специальный трех байтовый пакет, который постоянно циркулирует по логическому кольцу в одном направлении. Когда маркер проходит через узел, готовый передать данные в сеть, он захватывает маркер, присоединяет к нему данные, предназначенные для передачи, и затем передает сообщение снова в кольцо. Сообщение продолжает свое «путешествие» по кольцу до тех пор, пока не достигнет места назначения. Пока сообщение не будет принято, ни один узел не сможет пересылать данные. Этот метод доступа известен как передача маркера. Он исключает коллизии и произвольные периоды ожидания как Ethernet.


Технология FDDI

Технология FDDI (Fiber Distributed Data Interface) – оптоволоконный интерфейс распределённых данных - это первая технология локальных сетей, в которой средой передачи данных является оптоволоконный кабель. Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец – это основной способ повышения отказоустойчивости в сети FDDI и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности должны быть подключены к обоим кольцам.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного кольца, вторичное кольцо в этом режиме не используется. В случае какого- либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла) первичное кольцо объединяется со вторичным, вновь образуя единое кольцо.

Кольца в сетях FDDI рассматриваются как общая среда передачи данных, поэтому для нее определен специальный метод доступа очень близкий к методу доступа сетей Token Ring. Отличие заключается в том, что время удержания маркера в сети FDDI не является постоянной величиной, как в Token Ring. Оно зависит от загрузки кольца - при небольшой загрузке оно увеличивается, а при больших перегрузках может уменьшаться до нуля для асинхронного трафика. Для синхронного трафика время удержания маркера остаётся фиксированной величиной.

Технология АТМ

АТМ (Asynchronous Transfer Mode– асинхронный режим передачи) – самая современная сетевая технология. Она разработана для передачи речи, данных и видео с использованием высокоскоростного, ориентированного на установление соединения протокола с коммутацией ячеек.

В отличие от других технологий трафик АТМ разбивается на 53 - байтовые ячейки (cells). Применение структуры данных предопределенного размера делает сетевой трафик более легко измеряемым количественно, предсказуемым и управляемым. АТМ построена на передаче информации по оптоволоконному кабелю с использованием звездообразной топологии.