Радиоволны и их распространение. Основные принципы радиосвязи

02.05.2019 Принтеры и сканеры

ИЗЛУЧЕНИЕ И ПРИЁМ РАДИОВОЛН

и приём радиоволн. Излучение радиоволн - процесс возбуждения бегущих электромагнитных волн радиодиапазона в пространстве, окружающем источник колебаний тока или заряда. При этом энергия источника преобразуется в энергию распространяющихся в пространстве электромагнитных волн. Приём радиоволн является процессом, обратным процессу излучения. Он состоит в преобразовании энергии электромагнитных волн в энергию переменного тока. И. и п. р. осуществляются с помощью передающих и приёмных антенн.

Излучение радиоволн. Источником первичных электрических колебаний могут быть переменные токи, текущие по проводникам, переменные поля и т. п. Однако переменные токи относительно низкой частоты (например, промышленной частоты 50 гц) для излучения непригодны: на этих частотах нельзя создать эффективный излучатель. Действительно, если электрические колебания происходят, например, в катушке индуктивности, размеры которой малы по сравнению с длиной волны l, соответствующей частоте колебаний тока, текущего в катушке, для каждого участка с одним направлением тока, например А (рис. 1), существует другой участок В, удалённый от А на расстояние, меньшее, чем l/2, в котором в тот же момент времени направление тока противоположно. На больших расстояниях от витка волны, излученные элементами А и В, ослабляют друг друга. Так как виток состоит из таких пар противофазных элементов, то он, а следовательно вся катушка, излучает плохо. Также плохо излучает колебательный контур, содержащий катушку индуктивности и конденсатор. В каждый момент времени заряды на обкладках конденсатора равны по величине, противоположны по знаку и удалены друг от друга на расстояние, значительно меньшее, чем l/2.

Из сказанного следует, что для эффективного излучения радиоволн необходима незамкнутая (открытая) цепь, в которой либо нет участков с противофазными колебаниями тока или заряда, либо расстояние между ними не мало по сравнению с l/2. Если размеры цепи таковы, что время распространения изменений электромагнитного поля в ней сравнимо с периодом колебаний тока или заряда (скорость распространения возмущений конечна), то условия квазистационарности не выполняются (см. Квазистационарный процесс) и часть энергии источника уходит в виде электромагнитных волн. Для практических целей обычно применяют электромагнитные волны с l < 10 км.

Излучатели. Простейший излучатель радиоволн состоит из двух отрезков А и В прямолинейного проводника, присоединённых к концам OO" двухпроводной линии, вдоль которой распространяется электромагнитная волна (рис. 2). В отрезках А и В под действием электрического поля волны возникает движение зарядов, т. е. переменный ток. В каждый момент времени заряды в точках О и О" равны по величине и противоположны по знаку, т. е. отрезки А и В образуют электрический диполь, что определяет конфигурацию создаваемого им электрического поля. С другой стороны, токи в отрезках А и В совпадают по направлению, поэтому силовые линии магнитного поля, как и в случае прямолинейного тока, - окружности (рис. 3). Таким образом, в пространстве, окружающем диполь, возникает электромагнитное поле, в котором поля Е и Н перпендикулярны друг другу. Электромагнитное поле распространяется в пространстве, удаляясь от диполя (рис. 4).

Волны, излучаемые диполем, имеют определённую поляризацию. Вектор напряжённости электрического поля Е волны в точке наблюдения О (рис. 3) лежит в плоскости, проходящей через диполь и радиус-вектор r , проведённый от центра диполя к точке наблюдения. Вектор магнитного поля Н перпендикулярен этой плоскости.

Переменное электромагнитное поле возникает во всём пространстве, окружающем диполь, и распространяется от диполя во всех направлениях. Диполь излучает сферическую волну, которую на большом расстоянии от диполя можно считать плоской (локально-плоской). Однако амплитуды напряжённостей электрического и магнитного полей, создаваемых диполем, а следовательно и излучаемая энергия, в разных направлениях различны. Они максимальны в направлениях, перпендикулярных диполю, и постепенно убывают до нуля вдоль оси диполя. В этом направлении диполь практически не излучает. Распределение излучаемой мощности по различным направлениям характеризуется диаграммой направленности. Пространственная диаграмма направленности диполя имеет вид тороида (рис. 5).

Полная мощность, излучаемая диполем, зависит от подводимой мощности и соотношения между его длиной l и длиной волны l. Для того чтобы диполь излучал значительную долю подводимой к нему мощности, его длина не должна быть мала по сравнению с l/2. С этим связана трудность излучения очень длинных волн. Если l подобрано правильно и потери энергии на нагрев проводников диполя и линии малы, то преобладающая доля мощности источника тратится на излучение. Таким образом, диполь является потребителем мощности источника, подобно включенному в конец линии активному сопротивлению, потребляющему подводимую мощность. В этом смысле диполь обладает сопротивлением излучения R и, равным тому активному сопротивлению, в котором потреблялась бы такая же мощность.

Описанный выше диполь является простейшей передающей антенной и называется симметричным вибратором. Впервые такой вибратор использовал Г. Герц (1888) в опытах, обнаруживших существование радиоволн. Электрические колебания в диполе Герца (см. Герца вибратор) возбуждались с помощью искрового разряда - единственного известного в то время источника электрических колебаний. Наряду с симметричным вибратором применяется (для более длинных волн) несимметричный вибратор (рис. 6), возбуждаемый у основания и излучающий равномерно в горизонтальной плоскости.

Наряду с проволочными антеннами (проволочными вибраторами) существуют и другие виды излучателей радиоволн. Широкое применение получила магнитная антенна. Она представляет собой стержень из магнитного материала с высокой магнитной проницаемостью m , на который намотана катушка из тонкого провода. Силовые линии магнитного поля магнитной антенны повторяют картину силовых линий электрического поля проволочного диполя (рис. 7 , а, б), что обусловлено принципом двойственности.

Если в стенках радиоволновода или объёмного резонатора, где текут переменные поверхностные токи сверхвысоких частот, прорезать щель так, чтобы она пересекла направление тока, то распределение токов резко искажается, экранировка нарушается и электромагнитная энергия излучается наружу. Распределение полей щелевого излучателя подобно распределению полей магнитной антенны. Поэтому щелевой излучатель называется магнитным диполем (рис. 7 , в, г; см. также Щелевая антенна). Диаграмма направленности магнитного и щелевого излучателей, так же как и электрического диполя, представляет собой тороид.

Более направленное излучение создают антенны, состоящие из нескольких проволочных или щелевых излучателей. Это - результат интерференции радиоволн, излучаемых отдельными излучателями. Если токи, питающие их, имеют одинаковые амплитуду и фазу (равномерное синфазное возбуждение), то на достаточно далёком расстоянии в направлении, перпендикулярном излучающей поверхности, волны от отдельных излучателей имеют одинаковые фазы и дают максимум излучения. Поле, созданное в других направлениях, значительно слабее. Некоторое увеличение напряжённости поля имеет место в тех направлениях, где разность фаз волн, приходящих от крайних излучателей, равна (n + 1) p/2, где n - целое число. В этом случае сечение диаграммы направленности плоскостью содержит ряд лепестков (рис. 8), наибольший из которых называется главным и соответствует максимуму излучения, остальные называются боковыми.

В современной антенной технике применяются антенные решётки, содержащие до 1000 излучателей. Поверхность, на которой они расположены, называется апертурой (раскрывом) антенны и может иметь любую форму. Задавая различное распределение амплитуд и фаз токов на апертуре, можно получить любую форму диаграммы направленности. Синфазное возбуждение излучателей, образующих плоскую решётку, позволяет получить очень высокую направленность излучения, а изменение распределения тока на апертуре даёт возможность изменять форму диаграммы направленности.

Для повышения направленности излучения, которое характеризуется шириной главного лепестка, необходимо увеличивать размеры антенны. Связь между шириной главного лепестка q , наибольшим размером апертуры L и излучаемой длиной волны l определяется формулами:

для синфазного возбуждения и

если излучатели расположены вдоль некоторой оси, а сдвиг фаз в них подобран так, что максимум излучения направлен вдоль этой оси (рис. 9). С - постоянные, зависящие от распределения амплитуды токов по апертуре.

Если радиоволновод постепенно расширяется к открытому концу в виде воронки или рупора (рис. 10), то волна в волноводе постепенно преобразуется в волну, характерную для свободного пространства. Такая рупорная антенна даёт направленное излучение.

Очень высокая направленность излучения (до долей градуса на дециметровых и более коротких волнах) достигается с помощью зеркальных и линзовых антенн. В них благодаря процессам отражения и преломления сферический фронт волны, излучаемой электрическим или магнитным диполем либо рупорным излучателем, преобразуется в плоский. Однако из-за дифракции волн в этом случае диаграмма также имеет главный и боковые лепестки направленности. Зеркальная антенна представляет собой металлическое зеркало 1 , чаще в виде части параболоида вращения или параболического цилиндра, в фокусе которого находится первичный излучатель (рис. 11). Линзы для радиоволн представляют собой трёхмерные решётки из металлических шариков, стерженьков и т.п. (искусственные диэлектрики) или набор прямоугольных волноводов.

Приём радиоволн. Каждая передающая антенна может служить приёмной. Если на электрический диполь действует распространяющаяся в пространстве волна, то её электрическое поле возбуждает в диполе колебания тока, которые затем усиливаются, преобразуются по частоте и воздействуют на выходные приборы. Можно показать, что диаграммы направленности диполя в режимах приёма и передачи одинаковы, т. е. что диполь принимает лучше в тех направлениях, в которых он лучше излучает. Это является общим свойством всех антенн, вытекающим из принципа взаимности: если расположить две антенны - передающую А и приёмную В - в начале и в конце линии радиосвязи, то генератор, питающий антенну А, переключенный в приёмную антенну В, создаёт в приёмном устройстве, переключенном в антенну А, такой же ток, какой, будучи включенным в антенну А, он создаёт в приёмнике, включенном в антенну В. Принцип взаимности позволяет по свойствам передающей антенны определить её характеристики как приёмной.

Энергия, которую диполь извлекает из электромагнитной волны, зависит от соотношения между его длиной l , длиной волны l и углом y между направлением v прихода волны и диполем. Существен также угол j между направлением вектора электрической волны и диполем (рис. 12). Наилучшие условия приёма, при j 0.При j p/2 электрический ток в диполе не возбуждается, т. е. приём отсутствует. Если же 0 < j < p/2, то очевидно, что энергия, извлекаемая приёмной антенной из поля ~ (Ecos j)2. Иными словами, эта энергия связана с поляризацией приходящей волны. Из сказанного выше следует, что в случае излучающего и принимающего диполей для наилучших условий приёма необходимо, чтобы оба диполя лежали в одной плоскости и чтобы приёмный диполь был перпендикулярен направлению распространения волны. При этом приёмный диполь извлекает из приходящей волны столько энергии, сколько несёт с собой эта волна, проходя через сечение в форме квадрата со стороной равной

Шумы антенны. Приёмная антенна всегда находится в таких условиях, когда на неё, кроме полезного сигнала, воздействуют шумы. Воздух и поверхность Земли вблизи антенны, поглощая энергию, в соответствии с Рэлея - Джинса законом излучения создают электромагнитное излучение. Шумы возникают и за счёт джоулевых потерь в проводниках и диэлектриках подводящих устройств.

Все шумы внешнего происхождения описываются так называемой шумовой, или антенной, температурой T A. Мощность Р ш внешних шумов на входе антенны в полосе частот Dn приёмника равна:

(k - Больцмана постоянная). На частотах ниже 30 Мгц преобладающую роль играют атмосферные шумы. В области сантиметровых волн решающий вклад вносит излучение поверхности Земли, которое попадает в антенну обычно за счёт боковых лепестков её диаграммы направленности. Поэтому для слабонаправленных антенн антенная температура, обусловленная Землёй, высока; она может достигать 140-250 К; у остронаправленных антенн она составляет обычно 50-80 К, а специальными мерами её можно снизить до 15-20 К.

О конкретных типах антенн, их характеристиках и применении см. в ст. Антенна.

Лит.: Хайкин С. Э., Электромагнитные волны, 2 изд., М. - Л., 1964; Гольдштейн Л. Д., Зернов Н. В., Электромагнитные поля и волны, М., 1956; Рамо С., Уиннери Дж., Поля и волны в современной радиотехнике, пер. с англ., 2 изд., М. - Л., 1950.

Под редакцией Л. Д. Бахража.

Большая советская энциклопедия, БСЭ. 2012

Смотрите еще толкования, синонимы, значения слова и что такое ИЗЛУЧЕНИЕ И ПРИЁМ РАДИОВОЛН в русском языке в словарях, энциклопедиях и справочниках:

  • ПРИЕМ в Иллюстрированной энциклопедии оружия:
    ДЕКОРАТИВНЫЙ — изготовление клинка путем накладывания полосок стали узорчатой сварки на среднюю часть клинка с железной …
  • ПРИЕМ в Соннике Миллера, соннике и толкованиях сновидений:
    Если Вам снится, что Вы оказываетесь на каком-то приеме - это обещает Вам в скором времени приятную встречу. Если на …
  • ИЗЛУЧЕНИЕ в Словаре современной физики из книг Грина и Хокинга:
    Б. Грин Перенос энергии волнами или …
  • ПРИЁМ в Лексиконе нонклассики, художественно-эстетической культуры XX века, Бычкова:
    (литературный) Одни из принципов организации текстов художественных произведений. Понятие «П.» стало широко использоваться в научной литературе с 20-х гг. XX …
  • ИЗЛУЧЕНИЕ в Словаре экономических терминов:
    ИОНИЗИРУЮЩЕЕ - см ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ …
  • ПРИЕМ в Литературной энциклопедии:
    термин, введенный формалистами (Шкловский В., Искусство как прием, сб. «Поэтика», П., 1919) для обозначения всей совокупности средств, с помощью которых …
  • ИЗЛУЧЕНИЕ в Большой советской энциклопедии, БСЭ:
    электромагнитное, процесс образования свободного электромагнитного поля. (Термин "И." применяют также для обозначения самого свободного, т. е. излученного, электромагнитного поля - …
  • ИЗЛУЧЕНИЕ в Современном энциклопедическом словаре:
  • ИЗЛУЧЕНИЕ в Энциклопедическом словарике:
    электромагнитное, процесс образования свободного электромагнитного поля, а также само свободное электромагнитное поле, существующее в форме электромагнитных волн. Излучения испускают ускоренно …
  • ПРИЁМ в Энциклопедическом словаре:
    , -а, м. 1. см. принять. 2. Отдельное действие, движение. Выпить стакан в два приема. 3. Способ в осуществлении чего-н. …
  • ИЗЛУЧЕНИЕ в Большом российском энциклопедическом словаре:
    ИЗЛУЧ́ЕНИЕ электромагнитное, процесс образования свободного эл.-магн. поля; И. наз. также само свободное эл.-магн. поле. Излучают ускоренно движущиеся заряж. частицы (напр., …
  • ПРИЁМ
    приём, приёмы, приёма, приёмов, приёму, приёмам, приём, приёмы, приёмом, приёмами, приёме, …
  • ИЗЛУЧЕНИЕ в Полной акцентуированной парадигме по Зализняку:
    излуче"ние, излуче"ния, излуче"ния, излуче"ний, излуче"нию, излуче"ниям, излуче"ние, излуче"ния, излуче"нием, излуче"ниями, излуче"нии, …
  • ПРИЕМ в Словаре для разгадывания и составления сканвордов:
    Элемент спортивной …
  • ПРИЕМ в Тезаурусе русской деловой лексики:
  • ПРИЕМ в Тезаурусе русского языка:
    1. Syn: получение, приемка, принятие Ant: отправление, отсылка 2. Syn: уловка, хитрость, способ, ухищрение 3. Syn: вечер, встреча, аудиенция 4. …
  • ПРИЕМ в Словаре синонимов Абрамова:
    см. доза, еда, замашка, порция, привычка, способ, уловка, хитрость, часть || в один прием, за один прием, иметь тонкие приемы, …
  • ПРИЕМ
    агроприем, анафора, апач, артикул, аудиенция, блок, блокаж, взятие, вибрато, включение, встреча, гипербола, глиссандо, движение, действие, диалогизм, доза, допущение, дриппинг, замашки, …
  • ИЗЛУЧЕНИЕ в словаре Синонимов русского языка:
    альфа-излучение, альфа-лучи, гамма-излучение, изливание, излитие, испускание, источение, лучеиспускание, радиация, радиоизлучение, самоизлучение, свет, светоизлучение, сноп, теплоизлучение, …
  • ПРИЁМ
  • ИЗЛУЧЕНИЕ в Новом толково-словообразовательном словаре русского языка Ефремовой:
    ср. 1) Процесс действия по знач. глаг.: излучать (1), излучить. 2) Поток энергии, выделенной в окружающую …
  • ПРИЁМ
    приём, …
  • ИЗЛУЧЕНИЕ в Словаре русского языка Лопатина:
    излуч`ение, …
  • ПРИЁМ
    приём, …
  • ИЗЛУЧЕНИЕ в Полном орфографическом словаре русского языка:
    излучение, …
  • ПРИЁМ в Орфографическом словаре:
    приём, …
  • ИЗЛУЧЕНИЕ в Орфографическом словаре:
    излуч`ение, …
  • ПРИЕМ в Словаре русского языка Ожегова:
    отдельное действие, движение Выпить стакан в два приема. прием собрание приглашенных (обычно у официальных лиц) в честь кого-чего-нибудь П. в …
  • ИЗЛУЧЕНИЕ в Современном толковом словаре, БСЭ:
    электромагнитное, процесс образования свободного электромагнитного поля; излучением называют также само свободное электромагнитное поле. Излучают ускоренно движущиеся заряженные частицы (напр., …
  • ПРИЁМ
  • ПРИЁМ в Толковом словаре русского языка Ушакова:
    приёма, м. 1. только ед. действие по глаг. принять в 1, 2, 3, 4 и 13 знач. - принимать. Приём …
  • ПРИЕМ в Толковом словаре русского языка Ушакова:
    приемся, приешь, приешься, приест, приестся. Ед. ч. буд. вр. от приесть, …
  • ИЗЛУЧЕНИЕ в Толковом словаре русского языка Ушакова:
    излучения, ср. (книжн.). Действие по глаг. излучить-излучать и излучиться-излучаться. Излучение солнцем теплоты. Тепловое излучение. Нетепловое излучение. Радиоактивное …
  • ПРИЁМ
    м. 1) Действие по знач. глаг.: принимать (1,2,4,6-10,13,15), принять (2). 2) а) Характер встречи, оказываемый кому-л. б) Восприятие чего-л., отношение …
  • ИЗЛУЧЕНИЕ в Толковом словаре Ефремовой:
    излучение ср. 1) Процесс действия по знач. глаг.: излучать (1), излучить. 2) Поток энергии, выделенной в окружающую …
  • ПРИЕМ
  • ИЗЛУЧЕНИЕ в Новом словаре русского языка Ефремовой:
    ср. 1. процесс действия по гл. излучать 1., излучить 2. Поток энергии, выделенной в окружающую …
  • ПРИЕМ
    м. 1. действие по гл. принимать 1., 2., 4., 6., 7., 8., 9., 10., 13., 15., принять 2. 2. Характер …
  • ИЗЛУЧЕНИЕ в Большом современном толковом словаре русского языка:
    ср. 1. процесс действия по гл. излучать 1., излучить 2. Результат такого действия; поток энергии, выделенной в окружающую …

Многие люди, не обладая элементарными понятиями о видах энергии, их свойствах, часто рассуждают о способах беспроводной передачи энергии на расстояния. Другие, не зная, как распространяются радиоволны, изготавливают антенны к своим радиопередатчикам и радиоприемникам, пытаясь добиться максимальных характеристик передачи и приема, но у них ничего не получается. Одни читают умные книги, а другие основываются на опыте, или совете малограмотного товарища. Для того, чтобы развеять хотя бы часть заблуждений и дать представление об электромагнитных волнах и как их виде – радиоволнах посвящена эта статья.

Как обычно, я не буду расписывать формул Максвелла, Фарадея и других известных деятелей науки. Их в огромном количестве имеется в учебниках физики, читая которые, даже я – имеющий образование и опыт работы в радиоэлектронике не понимаю, почему в этих учебниках приводятся заумные формулы, а простейшая, имеющая полезное практическое значение информация отсутствует? Ведь на следующий день, или неделю после окончания школы, ученик эти формулы не вспомнит, а простых понятий, как не знал, так и знать не будет.

Начнём с того, что великий изобретатель-практик электрических машин Никола Тесла активно использовал в своих экспериментах электромагнитные колебания, про которые раньше никто не знал, и как мы знаем теперь из учебников физики средней школы — порождают вид электромагнитных волн — радиоволны. Но повторюсь, во времена Теслы о существовании электромагнитных волн никто не знал. Интуитивно, путём наблюдений, Тесла понимал, что в результате его экспериментов в окружающем пространстве появляется какой-то вид энергии. Но в те времена не существовало такой науки и оборудования позволяющего раскрыть понятие электромагнитных волн. Поэтому, это явление рассматривалось как философская категория, которую Тесла называл — эфиром .

Нынче рассуждают, что «эфир» и электромагнитные волны это разные понятия. Они совершенно не правы лишь потому, что абсолютно все изобретения Теслы основаны на использовании обыкновенного переменного электрического тока и электромагнитных полей, которые в свою очередь и порождают не «эфир», а самые обыкновенные электромагнитные волны в радиочастотном диапазоне. Именно то, что в настоящее время называется электромагнитными волнами, в те времена Никола Тесла называл эфиром. Других вариантов объяснений быть не может. Можно долго рассуждать о том, что это разные понятия. Например, кто то с пеной у рта пытается доказать что скорость распространения эфира больше скорости света, а доказательная база отсутствует. С помощью какого эксперимента Никола Тесла мог измерить скорость эфира? Нигде такой информации нет. Вывод один, он её не измерял, а лишь предполагал. Вы скажете, что эфир несёт в себе энергию? Отвечу, любая электромагнитная волна несёт в себе энергию! Мне попадались практические схемы радиоприёмников без батареек, предназначенные не для работы на наушники или динамическую головку, а для получения постоянного электрического тока «из воздуха» теми жителями мегаполисов, которые живут рядом с мощными телерадиоцентрами.

– синусоидальное электромагнитное колебание в пространстве. Общепринятое сокращение – ЭМВ . Электромагнитная волна – это свет, тепловые лучи невидимого инфракрасного диапазона, рентгеновские лучи и радиоволны. Разница лишь в мощности колебаний и длине волны. В частности Тесла имел дело с радиоволнами. Фактически он и является изобретателем радио, а не Маркони с Поповым. Последние смогли описать радиоволны, поэтому их и считают изобретателями радио. Тесла был первооткрывателем, но у него в те времена не было научных объяснений, которые намного позже появились у Попова и Маркони. Кроме того, они использовали радиоволны в практических полезных целях. Тесла, в своё время писал о переносе информационного сигнала с помощью передатчика и приемника, но увлёкшись молниями, дойти до изобретения их практических устройств просто не успел. Резонный вопрос, а что же колеблется в электромагнитных волнах? Отвечу, далеко не углубляясь в ядерную физику, это фотоны – сгустки энергии, обладающие электромагнитным полем, но не обладающие массой. Именно эти свойства позволяют фотонам быть переносчиками энергии. Учёные-ядерщики и дальше «раскладывают» фотоны на составляющие элементы. Мы не будем продолжать этот ход мыслей, пожелаем им успехов, потому что это не по теме статьи. Если Вы противник считать что «эфир», это – электромагнитные волны, тогда попытайтесь принять, что «эфир» это – фотоны, а электромагнитные волны, это по своей сути — направленный поток фотонов.

Источником радиоволны может быть любой электрический проводник, в котором движется переменный электрический ток. На практике, источником радиоволны является высокочастотный генератор, колебательная энергия которого, распространяется в пространство через радиоантенну. Первым действующим источником радиоколебаний, изобретённым человеком и используемым с очевидным и рациональным успехом, был радиопередатчик-радиоприёмник Маркони (или Попова), использующий в качестве высокочастотного генератора – высоковольтный накопитель с искровым разрядником, подключенным на антенну — обыкновенный вибратор Герца.


схема передатчика и приемника Попова — Маркони

Свойства распространения электромагнитных волн

Дальность распространения электромагнитной волны зависит от частоты колебания переменного электрического тока (электромагнитного колебания). На частотах от единиц до тысяч Герц, соответствующих звуковому диапазону волн, электромагнитная волна, созданная в пространстве с помощью индуктивности, распространяется на расстояние, не превышающее одного-двух десятков метров, поэтому полезного практического применения не имеет. На частотах от сотен килогерц и выше, что соответствует диапазонам радиоволн, электромагнитная волна способна распространяться более чем на тысячи километров.

Дальность распространения электромагнитной волны так же зависит от мощности протекающего по проводнику тока. Как было указано ранее, низкочастотная электромагнитная волна полезного практического применения не имеет, но зато имеет вредное влияние. В качестве примера вредного влияния можно привести влияние высоковольтной линии электропередач (ЛЭП) с напряжением в несколько десятков тысяч вольт на радиоприёмник проезжающего мимо автомобиля. Вокруг высоковольтных проводов формируется мощное электромагнитное поле, которое значительно превосходит по амплитуде электромагнитные колебания удалённых радиостанций и в приемнике вместо радиостанции слышен низкочастотный гул сетевого напряжения. Другой случай, когда происходит «глушение» радиоприёмника вблизи силовых линий электропередач при сетевом напряжении всего в 380 вольт, но токе свыше 100 ампер. В первом случае у нас большое напряжение, а во втором — большой ток. Из учебника физики средней школы известно, что мощность электрического тока в проводнике связана с напряжением и током через выражение Р=U*I . А чем больше мощность, тем дальше распространение электромагнитного поля и как следствие – электромагнитной волны, образуемой электромагнитным полем. Этим и объясняется влияние мощности на дальность распространения.

Почему волна, про которую здесь пишется, называется электромагнитной? Потому, что она состоит из электрического и магнитного синусоидального колебания. Эти два вида колебаний ориентированы в пространстве друг относительно друга перпендикулярно – ровно на 90 градусов.
Когда электрическая волна «горизонтальна» — сориентирована параллельно линии горизонта, а магнитная волна соответственно «вертикальна» — сориентирована перпендикулярно линии горизонта, тогда говорят, что электромагнитная волна имеет линейную горизонтальную поляризацию .

Когда электрическая волна «вертикальна» — сориентирована перпендикулярно линии горизонта, а магнитная волна соответственно «горизонтальна» — сориентирована параллельно линии горизонта, тогда говорят, что электромагнитная волна имеет линейную вертикальную поляризацию .

Если электрическая волна (соответственно и магнитная волна) имеет наклон относительно линии горизонта – угол не равный нулю или 90 градусов, тогда говорят, что электромагнитная волна имеет линейную наклонную поляризацию .

Существует так же другой вид поляризации, используемый для повышения дальности передачи (приема) и лучшей помехозащищённости радиоприёмной аппаратуры – круговая поляризация – вид поляризации электромагнитной волны, при котором за один период электромагнитного колебания радиоволна делает полный оборот на 360 градусов. Один из видов круговой поляризацииэллиптическая поляризация — «приплюснутая» в одной из плоскостей круговая поляризация.

Все указанные виды поляризации определяются устройством и ориентированием радиоантенны.

Практическая важность поляризации заключается в том, что если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой, или её вообще не будет.

Примером использования поляризации света – как вида электромагнитных колебаний является 3D-кинотеатр. Принцип действия систем 3D-видеоизображения основан на следующем: Фильм снимается на кинокамеры (видеокамеры) разнесённые в пространстве, как два глаза человека. При его показе в кинотеатре, два независимых проектора закрываются поляризационными светофильтрами, точно такие же светофильтры в виде плёнок стоят в очках кинозрителей. Правый проектор и правый глаз зрителя прикрыты светофильтром с вертикальной поляризацией, а левый проектор и глаз – фильтром с горизонтальной поляризацией. Таким образом, правый глаз видит картинку от правого проектора, а левый глаз от левого. В качестве фильтров могут использоваться и другие варианты разделения световых волн, но статья не об этом, поляризация света – один из способов селекции электромагнитных волн.

Электромагнитные волны (радиоволны) распространяются в разных средах с разной скоростью. Скорость распространения радиоволн в вакууме приблизительно равна скорости света 300 000 км/сек . В воздухе радиоволны распространяются с чуть меньшей скоростью, но не на много, поэтому принимается та же цифра – 300 000 км/сек. Поскольку обыкновенная вода обладает электропроводностью, то её поверхность для радиоволн является отражателем, а часть энергии радиоволн тратится на нагрев поверхностных слоев воды. Типичным примером этому является микроволновая печь, разогревающая молекулы воды, содержащиеся в подогреваемой пище. Металлы не пропускают радиоволны, отражая всю энергию электромагнитных колебаний.

Немаловажным, являются свойства радиоволн распространяться в зависимости от их длины волны. Напомню, длина электромагнитной волны связана с частотой колебаний через скорость её распространения в вакууме (скорость света):

где: f – частота, λ – длина волны, с – скорость света, равная 300 000 км/сек.

Радиоволны подразделяются на несколько диапазонов:

Сверхдлинные «СДВ» – частотой 3 – 30 кГц, с длиной волны 100 — 10 км;

Длинные «ДВ» – частотой 30 – 300 кГц, с длиной волны 10 — 1 км;

Средние «СВ» – частотой 300 – 3000 кГц, с длиной волны 1000 — 100 метров;

Короткие «КВ» – частотой 3 – 30 МГц, с длиной волны 100 — 10 метров;

Ультракороткие «УКВ» , включающие:

— метровые «МВ» – частотой 30 – 300 МГц, с длиной волны 10 — 1 метра;

— дециметровые «ДМВ» – частотой 300 – 3000 МГц, с длиной волны 10 — 1 дм;

— сантиметровые «СМВ» – частотой 3 – 30 ГГц, с длиной волны 10 — 1 см;

— миллиметровые «ММВ» – частотой 30 – 300 ГГц, с длиной волны 10 — 1 мм;

— субмиллиметровые «СММВ» – частотой 300 – 6000 ГГц, с длиной волны 1 – 0,05 мм;

Диапазоны от дециметровых, до миллиметровых волн, из-за их очень высокой частоты называют сверхвысокими частотами «СВЧ» .

Естественно все перечисленные диапазоны радиоволн, как отечественные, так и буржуйские могут подразделяться на поддиапазоны.

Для передачи информации радиоволну необходимо модулировать сигналом содержащим информацию. Длинные, средние и короткие волны обычно имеют амплитудную модуляцию, что на английском звучит — amplitude modulation «АМ» . Ультракороткие волны обычно имеют частотную модуляцию, что на английском звучит — frequency modulation , и у буржуев обозначаются как — «FМ» (по нашему «ЧМ» ).

Кроме деления радиоволн на диапазоны необходимо добавить, что в зависимости от направления и путей распространения радиоволн, они бывают поверхностные (земные) (1) – распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы и пространственные (2) – распространяющиеся через верхние слои атмосферы и с отражением от ионосферы (3).

Существует понятие, чем выше длина волны (меньше частота), тем она больше способна огибать препятствия. И наоборот, чем короче длина волны (выше частота), тем прямолинейнее(лучше по прямой) радиоволна распространяется.

Длинные волны способны распространяться вдоль поверхности земли и воды, но едва достигают ионосферы. Это свойство используется для организации связи с морскими судами – связь имеется практически в любой точке моря.

Средние волны распространяются вдоль поверхности земли и воды, а также отражаются ионосферой.

Короткие волны распространяются «скачками», периодически отражаясь от ионосферы и земной поверхности.

Ультракороткие волны и более высокие частоты распространяются прямолинейно, как свет от любого источника света, они не способны изгибаться вдоль земного шара, а ионосфера для них прозрачна.

Простым примером использования длинноволнового диапазона является радиосвязь с подводными лодками. Для того, чтобы не быть замеченной противником выходя на связь с командованием флота, лодка всплывает на очень короткое время. Но если бы волны, используемые для связи с подводной лодкой распространялись бы «скачками», то не в любой точке земного шара была бы связь. А на практике, в каком бы месте земного шара лодка бы не всплыла, связь появляется сразу. Конечно в последнее время с развитием техники, подводные лодки используют различные диапазоны, в том числе космическую связь (через спутники связи) на СВЧ-диапазоне.

Примером использования радиоволн диапазонов УКВ, ДМВ и СМВ является импульсная радиолокация, где свойство прямолинейного распространения радиоволн этих диапазонов используется для точного определения пространственных координат самолётов, стай птиц и других воздушных объектов. Даже проводится разведка погоды – уровня и интенсивности облачности на больших расстояниях.

От одного и того же радиопередающего устройства радиоволны отраженные от земной поверхности могут встретиться с неотражёнными волнами, или волнами, отражёнными от другого участка земной поверхности, или верхних слоёв атмосферы. В этом случае, происходит синфазное сложение радиоволн , или противофазное вычитание . В результате, в вертикальной плоскости пространства образуется изрезанная косекансная диаграмма направленности антенны. При синфазном переотражении радиоволн от земной поверхности на этих участках образуются зоны максимального переотражения – зоны Френеля . Если радиопередатчик имеет всенаправленную антенну (например штыревую), то зоны Френеля будут представлять из себя много колец на поверхности земли различного диаметра, в центре которых находится антенна. Диаметр колец может быть от десятков метров, до нескольких километров.

Для Вашей эрудиции: До военной агрессии в Югославии, американцы придавали большое значение противорадиолокационным ракетам, как средству уничтожения радаров противника. Противорадиолокационная ракета имеет самонаводящуюся радиоголовку, которая наводит ракету на сигнал радара. Но после этой своей миротворческой операции по превращению Югославии в марионеточное государство, они стали перевооружаться на ракеты с тепловыми головками самонаведения. Оказалось, что головки самонаведения противорадиолокационных ракет наводились на зоны Френеля, которые у вращающегося радара всё время меняются, в результате чего вычислитель ракеты не правильно определял координаты радара, и в лучшем случае ракета падала в одну из зон Френеля. Так, купленный у Советского Союза ещё в 80-х годах радар метрового диапазона волн, более 50 суток войны надежно обеспечивал Югославские ПВО информацией о полётах американцев. С его помощью был сбит не один чудо-самолёт-невидимка звёздно-полосатых. А по телевизору как обычно – врали, что американцы потерь не несут.

Сильное влияние на распространение радиоволн оказывают препятствия. Как правило, препятствия обладают отражающим свойством. В качестве препятствий могут выступать различные предметы как природного, так и искусственного происхождения. Как было написано ранее, радиоволны отражаются от земной поверхности. Стоит отметить, что если грунт сильно сухой (например в пустыне), то отражение радиоволн намного хуже, чем когда земля сырая от дождя. Так, расстояние связи у одной и той же аппаратуры связи на море на 50 – 70 процентов больше, чем на суше. Отражают радиоволны деревья и облака. Перечисленные естественные препятствия являются хорошими отражателями, потому, что в их состав входит вода. К искусственным препятствиям, отражающим радиоволны относятся различные металлические конструкции, в том числе арматура зданий и сооружений.

Влияние типа используемой антенны на качество и направленность приема (излучения) радиоволн

Куда и как будет распространяться радиоволна, определяется размерами и формой антенны-излучателя радиоволн. Самой простой радиоантенной является Вибратор Герца . Это элементарный «кубик», который является основой для построения всех типов антенн.

Вибратор Герца – это два проводника, расходящиеся в противоположные стороны от «точки подключения энергии». По своей сути это «развернутый» колебательный контур. Для лучшего излучения радиосигнала, расстояние от конца одного проводника до конца другого должно быть равно половине длины волны излучаемого (или принимаемого) электромагнитного колебания. Это необходимо для того, чтобы на концах вибратора была максимальная разность потенциалов напряжения сигнала, а в центре вибратора – максимальная амплитуда тока. Правда необходимо использовать коэффициент укорочения, который учитывает скорость распространения электрического сигнала по поверхности проводников, которая намного меньше чем в вакууме. В зависимости от частоты сигнала и металла, из которого изготовлен вибратор коэффициент укорочения может быть в пределах от 0,65 до 0,85. То есть вибратор должен быть равен половине длины волны, помноженной на коэффициент укорочения.

Для уменьшения габаритов антенны иногда используется вибратор, по длине равный одной четвёртой длины волны. Могут использоваться и другие соотношения, но при этом, качество приёма (передачи) и направленные свойства антенны изменяются.

Диаграмма направленности полуволнового вибратора имеет форму тороида вращения – форму «бублика». Если вибратор расположить горизонтально относительно земли, то зоны максимального приема (передачи) будут на линии перпендикулярной вибратору, а зоны минимального приема по торцовым сторонам вибратора. Но учтите, это без учёта влияния переотражения от земли. Если учитывать влияние переотражения от земной поверхности, проекция диаграммы направленности антенны (ДНА) вибратора окажется слегка вытянутой в направлениях максимумов.
На рисунке изображены тороид вращения и проекция диаграммы направленности антенны на горизонтальную поверхность с учётом влияния земли.

– это видоизменённый вибратор Герца, у которого в качестве одного проводника используется сам штырь, а в качестве другого противовес – кусок свисающего вниз провода, человек, у которого в руках мобильная рация, или поверхность земли. Диаграмма направленности штыревой антенны, это тот же торроид, находящийся в горизонтальной площади, только за счёт отражения от земли торроид приплюснут снизу. Зона максимального приёма будет во все стороны, а минимального – над штыревым вибратором. Зону минимального приема, находящуюся над антенной называют – мёртвая зона , или мёртвая воронка .

В зависимости от соотношения длины штыревой антенны к длине волны, диаграмма направленности антенны в вертикальной плоскости так же изменяется. На рисунке схематично изображено, влияние отношения длины штыря к длине волны на формирование диаграммы направленности антенны в вертикальной плоскости.

Вспомните практическую важность поляризации ЭМВ — если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой. К этому стоит добавить диаграмму направленности штыревой антенны, и тогда на примере двух радиотелефонов — переносных радиостанций (1 и 2) изображённых на рисунке ниже, можно сделать логическое заключение:

Если антенны радиопередатчика и радиоприемника ориентированы в пространстве относительно горизонта одинаково и диаграммы направленности антенн максимумами направлены друг на друга, то связь будет наилучшей. Если не выполняется одно из указанных условий, то связи либо не будет, либо она будет плохой.

На дальность радиосвязи также влияет ещё один параметр – толщина элементов вибратора, чем она больше, тем антенна широкополоснее – диапазон хорошо принимаемых частот шире, но уровень сигнала практически на всех частотах уменьшается. Это связано с тем, что дипольная антенна – это тот же колебательный контур, а при расширении полосы частот АЧХ резонанса, амплитуда резонанса уменьшается. Поэтому не удивляйтесь, что телевизионная антенна, сделанная из пивных алюминиевых банок в городе, где уровень сигнала телевизионной вышки большой, принимает телевизионный сигнал разных каналов не хуже, а зачастую лучше сложной профессиональной антенны.

Хорошие профессиональные радиоантенны обладают показателем – коэффициентом усиления антенны . Ведь обычный полуволновой вибратор не усиливает сигнал, его действие избирательно – на определённой частоте, в определённых направлениях и определённой поляризации. Чтобы в приемнике было меньше помех, увеличить дальность приема-передачи, одновременно при этом сузить диаграмму направленности антенны (общепринятое название — ДНА), простой полуволновой вибратор не годится. Антенну усложняют.

Ранее, я писал о влиянии различных препятствий — их отражательном свойстве. Если препятствие по своим размерам не соизмеримо (на порядок меньше) с длиной радиоволны, тогда это не является для радиосигнала препятствием, оно никак на него не влияет. Если препятствие находится в плоскости параллельной электрической волне и больше длины волны, тогда это препятствие отражает радиоволну. Если препятствие по протяженности кратно (равно четверти, половине или целой) длине волны, сориентировано параллельно электрической волне и перпендикулярно направлению распространения волны, тогда это препятствие действует как резонансный колебательный контур на целой длине волны или её гармониках, и имеет наибольшие отражательные свойства.

Именно эти описанные выше свойства и используются в сложных антеннах. Так, один из вариантов улучшения приемных свойств антенны является установка дополнительного рефлектора (отражателя), принцип действия которого основывается на отражении радиоволны и синфазного сложения двух сигналов – от телецентра (ТЦ) и от рефлектора. Диаграмма направленности при этом сужается и вытягивается. На рисунке изображена антенна, состоящая из петлевого полуволнового вибратора(1) и рефлектора(2). Длина вибратора (А) этой телевизионной антенны выбирается равной половине длины волны среднего телевизионного канала, помноженную на коэффициент укорочения. Длина рефлектора (Б) выбирается равной половине длины волны минимального телевизионного канала (с максимальной длиной волны). Расстояние между вибратором и рефлектором (С) выбирается таким, чтобы происходило синфазное сложение прямого и отражённого сигнала – половине длины волны.

Следующий способ дальнейшего усиления приемного сигнала путём сужения и вытягивания ДНА – добавление пассивного вибратора – директора . Принцип действия всё на том же синфазном сложении. Диаграмма направленности при этом ещё сильнее сужается и вытягивается. На рисунке изображена антенна «волновой канал» , состоящая из рефлектора (1), петлевого полуволнового вибратора (2) и одного директора (3). Дальнейшее добавление директоров ещё сильнее сужает и вытягивает диаграмму направленности. Длина директоров (В) выбирается чуть меньше длины активного вибратора. Для увеличения коэффициента усиления антенны и её широкополосности, перед активным вибратором добавляются директоры с постепенным уменьшением их длины. Обратите внимание, что длина активного вибратора равна половине средней длине волны принимаемого сигнала, длина рефлектора – больше половины длины волны, а длина директора – меньше половины длины волны. Расстояния между элементами выбирается также около половины длины волны.

В профессиональной технике часто применяется способ сужения ДНА и повышения усилительных свойств антенны – фазированная антенная решётка , в которой параллельно подключается несколько антенн (например простых диполей, или антенн типа «волновой канал»). В результате происходит сложение токов соседних каналов, и как результат – повышение мощности сигнала.

На сверхвысоких частотах в качестве вибратора антенны применяют волновод, а в качестве рефлектора применяют сплошное полотно, все точки которого равноудалены от плоскости вибратора (на одинаковом расстоянии) – параболоид вращения , или в простонародье – «тарелка». Такая антенна обладает очень узкой диаграммой направленности и высоким коэффициентом усиления антенны.

Выводы на основе распространения и сложности формирования радиоволн

Как и куда распространяются радиоволны можно рассчитать с помощью умных формул и преобразований только для идеальных условий – при отсутствии естественных препятствий. Для этого, элементы антенн, различные поверхности должны быть идеально ровные. На практике, из-за влияния многих факторов преломления и отражения, ещё ни один «учёный мозг» не смог с высокой достоверностью рассчитать распространение радиоволн в естественных природных условиях. Существуют области пространства уверенного приема и зоны радиотени – там, где прием вовсе отсутствует. Только в кино альпинисты не отвечают на вызов по радиосвязи потому, что у них заняты руки, или они сами заняты «спасением мира», на самом деле радиосвязь – дело не устойчивое и чаще альпинисты не отвечают потому, что связи просто нет – отсутствует прохождение радиоволн. Именно зависимость радиосвязи от природных явлений (дождь, низкая облачность, разряженность атмосферы и т.д.) привела к возникновению понятия «радиолюбитель» . Это сейчас понятие «радиолюбитель» – человек, который любит паять радиосхемы. Лет двадцать назад это был «связист-коротковолновик», который на изготовленном своими руками маломощном трансивере связывался с другим радиолюбителем (или по другому — радиокорреспондентом), находящимся на другой стороне Земли, за что получал «бонусы». Раньше даже проводились соревнования по радиосвязи. Нынче тоже проводятся, но с развитием техники это стало не так актуально. Среди этих радиолюбителей-связистов есть много недовольных тем, что обыкновенные «паялы», не сидящие в наушниках в поисках радиокорреспондентов для организации радиообмена, называют себя радиолюбителями.

Излучение радиоволн — процесс возбуждения бегущих электромагнитных волн радиодиапазона в пространстве, окружающем источник колебаний тока или заряда. При этом энергия источника преобразуется в энергию распространяющихся в пространстве электромагнитных волн. Приём радиоволн является процессом, обратным процессу излучения. Он состоит в преобразовании энергии электромагнитных волн в энергию переменного тока. И. и п. р. осуществляются с помощью передающих и приёмных антенн (См. Антенна).

Излучение радиоволн.

Рис. 1. Виток катушки индуктивности.

Источником первичных электрических колебаний могут быть переменные токи, текущие по проводникам, переменные поля и т. п. Однако переменные токи относительно низкой частоты (например, промышленной частоты 50 гц) для излучения непригодны: на этих частотах нельзя создать эффективный излучатель. Действительно, если электрические колебания происходят, например, в катушке индуктивности, размеры которой малы по сравнению с длиной волны λ, соответствующей частоте колебаний тока, текущего в катушке, для каждого участка с одним направлением тока, например А (рис. 1), существует другой участок В, удалённый от А на расстояние, меньшее, чем λ/2, в котором в тот же момент времени направление тока противоположно. На больших расстояниях от витка волны, излученные элементами А и В, ослабляют друг друга. Так как виток состоит из таких пар противофазных элементов, то он, а следовательно вся катушка, излучает плохо. Также плохо излучает Колебательный контур , содержащий катушку индуктивности и конденсатор. В каждый момент времени заряды на обкладках конденсатора равны по величине, противоположны по знаку и удалены друг от друга на расстояние, значительно меньшее, чем λ/2. Из сказанного следует, что для эффективного излучения радиоволн необходима незамкнутая (открытая) цепь, в которой либо нет участков с противофазными колебаниями тока или заряда, либо расстояние между ними не мало по сравнению с λ/2. Если размеры цепи таковы, что время распространения изменений электромагнитного поля в ней сравнимо с периодом колебаний тока или заряда (скорость распространения возмущений конечна), то условия квазистационарности не выполняются (см. Квазистационарный процесс) и часть энергии источника уходит в виде электромагнитных волн. Для практических целей обычно применяют электромагнитные волны с λ < 10 км.

Излучатели.

Рис. 2. Электрический диполь.

Простейший излучатель радиоволн состоит из двух отрезков А и В прямолинейного проводника, присоединённых к концам OO’ двухпроводной линии, вдоль которой распространяется электромагнитная волна (рис. 2). В отрезках А и В под действием электрического поля волны возникает движение зарядов, т. е. переменный ток. В каждый момент времени заряды в точках О и О’ равны по величине и противоположны по знаку, т. е. отрезки А и В образуют электрический диполь, что определяет конфигурацию создаваемого им электрического поля. С другой стороны, токи в отрезках А и В совпадают по направлению, поэтому силовые линии магнитного поля, как и в случае прямолинейного тока, — окружности (рис. 3).

Рис. 3. Структура электрического Е и магнитного H полей вблизи диполя: пунктир — силовые линии электрического поля; тонкие линии — силовые линии магнитного поля; О — точка наблюдения.

Таким образом, в пространстве, окружающем диполь, возникает электромагнитное поле, в котором поля Е и Н перпендикулярны друг другу. Электромагнитное поле распространяется в пространстве, удаляясь от диполя (рис. 4).

Рис. 4. Мгновенные картины электрических силовых линий вблизи диполя для промежутков времени, отстоящих друг от друга на 1/8 периода Т колебаний тока.

Волны, излучаемые диполем, имеют определённую поляризацию. Вектор напряжённости электрического поля Е волны в точке наблюдения О (рис. 3) лежит в плоскости, проходящей через диполь и радиус-вектор r, проведённый от центра диполя к точке наблюдения. Вектор магнитного поля Н перпендикулярен этой плоскости.

Переменное электромагнитное поле возникает во всём пространстве, окружающем диполь, и распространяется от диполя во всех направлениях. Диполь излучает сферическую волну, которую на большом расстоянии от диполя можно считать плоской (локально-плоской). Однако амплитуды напряжённостей электрического и магнитного полей, создаваемых диполем, а следовательно и излучаемая энергия, в разных направлениях различны. Они максимальны в направлениях, перпендикулярных диполю, и постепенно убывают до нуля вдоль оси диполя. В этом направлении диполь практически не излучает. Распределение излучаемой мощности по различным направлениям характеризуется диаграммой направленности. Пространственная диаграмма направленности диполя имеет вид тороида (рис. 5).

Рис. 5. Пространственная диаграмма направленности электрического диполя.

Рис. 6. Несимметричный вибратор; Г — генератор электрических колебаний.

Полная мощность, излучаемая диполем, зависит от подводимой мощности и соотношения между его длиной l и длиной волны λ. Для того чтобы диполь излучал значительную долю подводимой к нему мощности, его длина не должна быть мала по сравнению с λ/2. С этим связана трудность излучения очень длинных волн. Если l подобрано правильно и потери энергии на нагрев проводников диполя и линии малы, то преобладающая доля мощности источника тратится на излучение. Таким образом, диполь является потребителем мощности источника, подобно включенному в конец линии активному сопротивлению, потребляющему подводимую мощность. В этом смысле диполь обладает сопротивлением излучения Rи, равным тому активному сопротивлению, в котором потреблялась бы такая же мощность. Описанный выше диполь является простейшей передающей антенной и называется симметричным вибратором. Впервые такой вибратор использовал Г. Герц (1888) в опытах, обнаруживших существование радиоволн. Электрические колебания в диполе Герца (см. Герца вибратор) возбуждались с помощью искрового разряда — единственного известного в то время источника электрических колебаний. Наряду с симметричным вибратором применяется (для более длинных волн) несимметричный вибратор (рис. 6), возбуждаемый у основания и излучающий равномерно в горизонтальной плоскости.

Наряду с проволочными антеннами (проволочными вибраторами) существуют и другие виды излучателей радиоволн. Широкое применение получила магнитная антенна. Она представляет собой стержень из магнитного материала с высокой магнитной проницаемостью μ, на который намотана катушка из тонкого провода. Силовые линии магнитного поля магнитной антенны повторяют картину силовых линий электрического поля проволочного диполя (рис. 7, а, б), что обусловлено принципом двойственности.

Рис. 7. Сопоставление электрического диполя (а), магнитного (6) и щелевого (в, г) излучателей; 1 — проводник с током; 2 — стержень из материала с высокой магнитной проницаемостью; 3 — металлический экран, в котором прорезана щель; 4 — проводники, идущие от генератора высокочастотных электрических колебаний; 5 — силовые линии электрического поля; 6 — силовые линии магнитного поля.

На частотах ниже 30 Мгц преобладающую роль играют атмосферные шумы. В области сантиметровых волн решающий вклад вносит излучение поверхности Земли, которое попадает в антенну обычно за счёт боковых лепестков её диаграммы направленности. Поэтому для слабонаправленных антенн антенная температура, обусловленная Землёй, высока; она может достигать 140—250 К; у остронаправленных антенн она составляет обычно 50—80 К, а специальными мерами её можно снизить до 15—20 К.

О конкретных типах антенн, их характеристиках и применении см. в ст. Антенна .

Лит.: Хайкин С. Э., Электромагнитные волны, 2 изд., М. — Л., 1964; Гольдштейн Л. Д., Зернов Н. В., Электромагнитные поля и волны, М., 1956; Рамо С., Уиннери Дж., Поля и волны в современной радиотехнике, пер. с англ., 2 изд., М. — Л., 1950. Под редакцией Л. Д. Бахража.

Электромагнитные волны излучаются проводником, по которому проходит ток высокой частоты. В проводнике, изогнутом в виде петли (рис. 3.4, а ), токи I в двух его половинах направлены в противоположные стороны. Электромагнитные волны, создаваемые этими токами, противоположны по фазе, и если расстояние между проводами мало по сравнению с длиной волны, то эти волны будут в пространстве взаимно уничтожаться. Следовательно, провод в виде петли не излучает электромагнитные волны. То же можно сказать о колебательном контуре (рис. 3.4, 6).

Закрытый колебательный контур не излучает электромагнитных колебаний, так как электрическое поле сосредоточено в основном в конденсаторе и токи смещения в диэлектрике замыкаются наиболее коротким путем - между его обкладками. Магнитное поле сосредоточено в основном в катушке.

Если раздвинуть обкладки конденсатора и развернуть соединительные провода в прямую линию (рис. 3.4, в ), то токи в этих проводах будут иметь одинаковое направление. Такой контур называется открытым, он может излучать электромагнитные волны.

а - петлевой элемент провода, не излучающий электромагнитные волны; б - замкнутый колебательный контур; в - разомкнутый колебательный контур; г - прямолинейный элемент провода, излучающий электромагнитные волны; д - элемент индуктивной связи

с антенной

Увеличение излучения электромагнитных волн можно получить, если вытянуть провод катушки в прямую линию и вместо обкладок конденсатора для создания необходимой емкости применить провода достаточной длины (рис. 3.4, г ). Тогда направление токов во всех элементах провода будет одно и то же, т. е. электромагнитные колебания во всех частях провода будут совершаться в одинаковых фазах и излучение станет наибольшим. Таким образом, открытый контур в простейшем случае представляет собой прямолинейный провод. Практически же в нем оставляют небольшую катушку для индуктивной связи с генератором высокой частоты передатчика и с избирательным усилием радиоприемника, на входе которого, как правило, включается колебательный контур (рис. 3.4, д ).

Всякий провод обладает собственными индуктивностью и емкостью, распределенными по его длине, а поэтому является своеобразным колебательным контуром. На схеме рис. 3.5, а в положении 1 переключателя П обе половины провода заряжаются от батареи Б. После перевода переключателя в положение 2 электроны будут двигаться вдоль провода в направлении от нижней его половины к верхней, а затем в обратном направлении, т.е. в проводе возникнут свободные затухающие колебания. Отдельные фазы колебательного процесса в проводе изображены на рис. 3.5, 6 . В верхней части рисунка показано распределение электрического и магнитного полей, а в нижней - график изменения тока и напряжения в антенне.

Рис. 3.5. Схема для возбуждения свободных колебаний в открытом

контуре и колебательный процесс в нем:

а - эквивалентная схема колебательного контура; б - схемы, поясняющие колебатель-

ный процесс в контуре; в - силовые линии магнитного и электрического полей

Напряжением в какой-либо точке антенны принято называть разность потенциалов между данной точкой и точкой, расположенной симметрично на другой половине провода. График тока показывает также изменение напряженности магнитного поля, а график напряжения - изменение напряженности электрического поля.

В начальный момент (точка 0 на рис. 3.5. 6) провод обладает потенциальной энергией электрического поля зарядов, сосредоточенных в его верхней и нижней половинах. Разность потенциалов имеет максимальную величину, а тока пока нет. При движении зарядов вдоль провода ток возрастает, а напряжение уменьшается, и энергия электрического поля переходит в кинетическую энергию магнитного поля, создаваемого током. Через четверть периода электрическое поле заменяется магнитным. В момент (точка 1 на рис. 3.5, 6) ток достигает максимума, а напряжение равно нулю. Затем ток и магнитное поле уменьшается, в результате чего возникает ЭДС самоиндукции, которая поддерживает движение электронов, и провод перезаряжается. Энергия переходит из магнитного поля в электрическое и т.д. В промежуточные моменты одновременно существуют электрическое и магнитное поля. Электрическое и магнитное поля имеются вдоль провода, причем магнитное поле наиболее сильное в середине провода, где ток наибольшей величины, а на концах провода ток равен нулю и магнитное поле отсутствует.

Токи смещения в открытом колебательном контуре замыкаются через окружающее пространство, удаляясь на значительное расстояние от своих источников (заряд на проводе). Поэтому переменное электрическое поле, созданное токами смещения, достигшее некоторого удаления от провода, может потерять связь с ним (оторваться). При этом линии тока смещения будут замыкаться сами на себя, т.е. образуется синусоидальное переменное электрическое поле, создающее переменное магнитное поле, которое, в свою очередь, создает электрическое поле, и т. д. (рис. 3.5, а). Возникает волновой процесс. Электромагнитные волны, не связанные со своими источниками (свободные волны), распространяются в пространстве. Таким образом, излучение возможно благодаря конечной скорости распространения электромагнитных волн, вследствие чего фаза поля в точке, находящейся на некотором расстоянии от излучателя, отстает от фазы своего источника. Чем больше частота колебаний питающего напряжения, тем легче происходит процесс излучения.

Если в проводах открытого контура и в непосредственной близости (расстояние, меньше длины волны) магнитное поле сдвинуто на 90 о по отношению к электрическому полю, то за пределами этого расстояния свободные магнитное и электрическое поля находятся в фазе, так как образование одного невозможно без другого.

Открытый контур в виде прямолинейного провода, в котором могут происходить электрические колебания, называют симметричным вибратором или просто вибратором (диполем). Чтобы электрические колебания были незатухающими, его соединяют с генератором (Ген) индуктивной связью (см. рис. 3.4, д ).

В простейшем случае антенное устройство для длинных, средних, а иногда коротких волн может быть выполнено так, как показано на рис. 3.6. Над землей на некоторой высоте (чем выше, тем эффективнее излучение) подвешивается антенна - провод или система проводов, играющая роль одной обкладки конденсатора. Второй обкладкой является земля или второй провод - противовес, подвешенный невысоко над землей.

Вибратор является главной частью антенн, работающих на коротких и ультракоротких волнах.

Мощность излучаемых электромагнитных волн рассчитывается по формуле

(3.1)

где I a - ток в пучности вибратора; Р изл - сопротивление излучения вибратора, величина которого составляет 73-80 Ом.

Рис. 3.6. Антенное устройство с заземлением (а ) и противовесом (б )

Сопротивление излучения вибратора определяется как

(3.2)

где l - длина провода антенны; l - длина электромагнитной волны.

Распространяющиеся от вибратора электромагнитные волны всегда имеют определенную поляризацию, т.е. электрические и магнитные силовые линии у них располагаются в соответствующих плоскостях.

На рис. 3.7 приведено графическое изображение радиоволн в виде двух синусоид, расположенных во взаимно перпендикулярных плоскостях. Векторы электрического поля Е расположены в вертикальной плоскости, а векторы магнитного поля Н - в горизонтальной, причем эти векторы перпендикулярны вектору П , называемому вектором Умова -Пойнтинга. Направление вектора П совпадает с направлением распространения электромагнитных волн, а его длина в принятом масштабе соответствует количеству электромагнитной энергии, которую переносят радиоволны:

По мере удаления от излучающей антенны плотность потока энергии радиоволны уменьшается:

где r - расстояние от излучения.

Частота собственных колебаний открытого контура зависит от емкости и индуктивности провода. Можно считать, что каждый метр провода имеет емкость около 5 пФ и индуктивность около 2 мкГн. Более длинному проводу соответствуют большие емкость и индуктивность, а следовательно, и меньшая частота (и большая длина электромагнитной волны) собственных колебаний антенны.

Рис. 3.7. Графическое изображение электромагнитной волны

Так как электромагнитная волна проходит вдоль провода антенны за полупериод определенное расстояние, то длина провода открытого контура совпадает с этим расстоянием и рассчитывается как

где l - длина электромагнитной волны.

Это же вытекает из распределения тока и напряжения в антенне. Следовательно, длина радиоволны равна

Учитывая, что

получаем

Максимальная мощность, излучаемая антенной, может быть достигнута при условии равенства частоты генератора и частоты собственных колебаний открытого контура (антенны). Именно по этой причине радиостанции, работающие в диапазоне длинных волн, нуждаются в длинных антеннах.

На практике для удлинения электромагнитной волны собственных колебаний антенны в нее последовательно включают катушку, что равносильно увеличению длины провода (рис. 3.8, а). Последовательно включенный в антенну конденсатор вызовет укорочение собственной длины электромагнитной волны антенны, так как при последовательном включении емкостей общая емкость уменьшается (рис. 3.8, 6).

Для заземленной антенны длина радиоволны составит

С учетом влияния земли и окружающих предметов длина радиоволн составит

l=(5-6)l.

Рис. 3.8. Схемы удлинения (а) и укорочения (б) длин радиоволн собственных

колебаний антенн (L св - катушка связи)

На прохождение электромагнитных волн, используемых для связи на земной поверхности, оказывают влияние рельеф поверхности земли и электрические свойства грунта, а также свойства самых нижних слоев атмосферы (тропосферы) и верхних ионизированных слоев атмосферы (ионосферы). Тропосфера - это слой атмосферы высотой до 16 км, примыкающий к поверхности земли, и с некоторым допущением принимаемый за диэлектрик без потерь. Потери могут быть за счет перемещения молекул (ингредиентов), обладающих электрическими и магнитными моментами. Потери увеличиваются на сверхвысоких частотах при дожде и тумане.

Ионосфера располагается на высоте около 60 км от поверхности земли и простирается до высоты 600 км. Степень ионизации ионосферы сильно зависит от воздействия ультрафиолетовых лучей солнца. Между тропосферой и ионосферой находится стратосфера .

Радиоволны от передающей антенны достигают ионосферы и отражаются от нее. При встрече непрозрачных препятствий электромагнитные волны стремятся огибать их. Это явление называют дифракцией . Чем длиннее электромагнитная волна, тем сильнее сказывается дифракция. Радиоволны, распространяющиеся по поверхности земного шара, огибающие его вследствие дифракции, называют земными радиоволнами (поверхностными). Радиоволны, распространяющиеся вокруг земного шара благодаря однократному или многократному отражению от ионосферы, называют пространственными или ионосферными .

Если бы земля была идеально плоской и обладала высокой электропроводностью, а воздух был идеальным диэлектриком, радиоволны распространялись бы в этом воздушном диэлектрике, отражаясь от поверхности земли, как от экрана, не проникал в глубь ее. Но так как земля не является идеальным проводником, то силовые линии радиоволн частично проникают в нее и образуют там токи, в результате чего возникают потери энергии на нагревание почвы.

Кроме того, радиоволны поглощаются твердыми диэлектриками, полупроводниками и проводниками при встрече с ними. Поглощение радиоволн проводником объясняется тем, что электромагнитная волна приводит в движение электроны проводника и создает в нем ток высокой частоты. На образование этого тока и расходуется электромагнитная энергия радиоволны. Если электромагнитная волна движется вдоль проводника, то поглощение энергии гораздо меньше. Поэтому над проводящей поверхностью, например водой, железнодорожными рельсами, радиоволны распространяются дальше, чем над сухой землей.

При распространении радиоволны (особенно в городах) поглощаются не только землей, но и металлическими крышами, железобетонными сооружениями и другими электропроводящими сооружениями. Радиоволны при встрече с электропроводящими телами способны отражаться. Физический смысл отражения радиоволн заключается в том, что падающая радиоволна создает в поверхностном слое отражающего тела токи, которые дают излучение новых, т.е. отраженных радиоволн.

Таким образом, радиоволны, распространяющиеся от передающей антенны к приемной, ослабевают по мощности из-за поглощения землей, поглощения и отражения другими препятствиями.

Радиоволны различных радиопередатчиков могут накладываться (складываться) друг на друга в точке приема. Именно по этой причине в приемнике прослушиваются писки, свисты, гудение и т.д. Явление сложения двух или нескольких радиоволн называют интерференцией. Интерференция радиоволн от одного и того же передатчика ввиду разницы фаз приходящих радиоволн приводит к усилению или ослаблению результирующей радиоволны в точке приема, а следовательно, и к изменению выходного сигнала приемника (в частности, к изменению громкости звучания речи при телефонной радиосвязи).


Владельцы патента RU 2598866:

Способ приёма радиоволн включает в себя преобразование электромагнитного излучения в электрический ток. Причём для увеличения напряженности электрического поля в месте приема размещают антенну, в которой активные элементы изготавливают из тонкой, заточенной с двух краев, обоюдоострой металлической ленты. Технический результат заключается в увеличении напряженности электрического поля. 4 ил.

Изобретение относится к области радиосвязи и телевизионного приема.

Известен способ приема радиоволн, в котором конвертация электромагнитного излучения радиочастотного диапазона в электрический ток производится с помощью антенны, представляющей собой одиночный вибратор (см. книгу: Миллер Г. Антенны. Практическое руководство. - СПб.: Наука и техника, 2012, стр. 24-25).

Недостатком такого способа приема радиоволн является то, что такая антенна не концентрирует электрическое поле в точке приема сигнала, то есть не увеличивает напряженность электрического поля в непосредственной близости от вибратора. Другим недостатком такого способа приема радиоволн является низкая реальная чувствительность одиночных вибраторов. Усиление таких антенн при приеме сигнала по отношению к изотропному излучателю колеблется в диапазоне 1-3 dB.

Наиболее близкой по технической сущности к предлагаемому изобретению является способ приема радиоволн, в котором приемное устройство представляет собой двухзеркальную антенну (см. книгу: Миллер Г. Антенны. Практическое руководство. - СПб.: Наука и техника, 2012, стр. 272-276). Двухзеркальная антенна (Backfire Antenna) была предложена в 1960 году Эреншпеком. Существуют две версии этой антенны. В качестве прототипа наиболее подходит короткая двухзеркальная антенна. Антенна имеет один активный элемент и два плоских отражателя. Антенна обеспечивает усиление 13 dB. Оба отражателя выполнены из мелкоячеистой металлической сетки. Активный элемент (вибратор) размещен на расстоянии 0,25λ от главного и вспомогательного отражателей. Здесь λ - длина волны. При работе антенны возникает стоячая волна за счет отражения от главного и вспомогательного отражателей. Вибратор установлен в пучности стоячей волны, где амплитуда сигнала в два раза выше, чем в пришедшей электромагнитной волне. Тем самым в прототипе обеспечивается концентрация электромагнитного поля в месте расположения антенны за счет создания стоячей волны отражателями. Однако сам активный элемент двухзеркальной антенны не увеличивает напряженность электрического поля в районе расположения вибратора.

Недостатком прототипа является то, что вибратор антенны не концентрирует электрическое поле в точке приема, то есть не увеличивает напряженность электрического поля около активного элемента.

Цель предлагаемого способа приема радиоволн - увеличение напряженности электрического поля в месте приема, что позволяет увеличить дальность уверенного телевизионного и радиоприема.

Технический результат от использования предложенного способа приема радиоволн состоит в увеличении дальности уверенного телевизионного и радиоприема. Это обеспечивается тем, что слабое электрическое поле усиливается путем его концентрации на острой кромке лезвия вибратора до величины, при которой обеспечивается нормальное функционирование антенны. Концентрация электрического поля в месте приема увеличивает напряженность электрического поля около антенны. Приемник, реализующий заявляемый способ приема радиоволн, способен уверенно принимать сигнал, который другими приемниками, размещенными в этой же точке, принят не будет, поскольку для них сигнал в точке приема не увеличивается и поэтому будет слабее собственных шумов антенны и первого каскада усиления и после усиления будет подавлен более мощным шумом. Заявляемый способ приема радиоволн обладает повышенной реальной чувствительностью и может использоваться при дальнем распространении радиоволн. При дальнем распространении радиоволн на уровень сигнала начинают влиять множество условий: изменение погоды, наличие дождя или снежных осадков, магнитные бури, пятна на Солнце. Требования к комнатной телевизионной антенне еще более жесткие, чем к внешней антенне. Если внешняя антенна может быть любых размеров, то комнатная антенна должна быть компактной. Это не позволяет использовать высокоэффективные типы антенн, имеющие большие габариты. На нижних этажах зданий в условиях многоэтажной городской застройки сигнал очень слабый, подвержен многократным отражениям, сильно (в десятки - сотни раз) изменяется во времени, а также при перемещении людей, животных, перестановке мебели в помещении. Напряженность электрического поля в помещении отличается даже в пределах десяти сантиметров. Затухание вносят стены, окна. Сигнал может отражаться от соседних зданий, автомобилей и других подвижных объектов и поэтому приходит к антенне не от телецентра, а с другого направления, которое постоянно изменяется. Особенно слабый сигнал будет в случае дальнего распространения радиоволн, то есть вне пределов прямой видимости. Считается, что расстояние прямой видимости не превышает 25 км. Комнатная антенна, реализующая заявляемый способ приема радиоволн, изготовлена для работы на 28 дециметровом телевизионном канале с целью обеспечения телевизионного приема цифрового сигнала первого мультиплекса в условиях крупного города. Расстояние от антенны до телецентра составляет более 45 км. При этом обеспечивается устойчивый высококачественный телевизионный прием 10 цифровых телеканалов и трех цифровых радиостанций на втором этаже девятиэтажного кирпичного дома, окруженного такими же девятиэтажными зданиями. Антенна принимает сигнал, отраженный от стены здания напротив. Использование комнатных антенн промышленного производства для приема цифрового сигнала первого мультиплекса успехом не увенчалось. Цифровой сигнал не принимался, поскольку все комнатные антенны рассчитаны на работу в зоне уверенного приема в пределах прямой видимости на расстояниях до 25 км. Применение комнатной антенны для приема цифрового телевидения имеет хорошие экономические перспективы, поскольку позволяет отказаться от услуг коллективной антенны, систем спутникового или кабельного телевидения. Названные источники сигналов являются коммерческими, их услуги постоянно дорожают. Поэтому использование комнатной антенны для дальнего приема цифрового телевидения дает хороший экономический эффект и быстро окупается. Тем более что происходит дальнейшее развитие цифрового телевизионного вещания, вводится в действие второй мультиплекс, который удвоит количество бесплатно принимаемых каналов. Применение заявляемого способа приема радиоволн позволяет увеличить дальность уверенного телевизионного и радиоприема не только для вновь проектируемых антенн, но также и для находящихся в эксплуатации, путем замены штатных активных элементов на ленточные вибраторы. Замена может быть произведена для большинства типов антенн: всех типов простейших и групповых излучателей, антенн типа «волновой канал», рамочных и активных антенн. Такая замена является экономически эффективной, поскольку стоимость вибратора намного меньше стоимости всей антенны. Правильнее заменить в антенне только один вибратор, чем полностью заменять старую антенну на более эффективную и, соответственно, более сложную и дорогую новую антенну. Из тонкой, обоюдоострой, заточенной с двух сторон металлической ленты можно выполнять все известные типы вибраторов и пассивных элементов приемных антенн. Другой результат от применения заявляемого способа приема радиоволн заключается в возможности уменьшения мощности передатчиков при той же дальности уверенного приема.

Заявляемый технический результат способа приема радиоволн путем конвертации электромагнитного излучения в электрический ток достигается тем, что для увеличения напряженности электрического поля в месте приема размещают антенну, в которой активные элементы изготавливают из тонкой, заточенной с двух краев, обоюдоострой металлической ленты.

Предлагаемый способ приема радиоволн иллюстрируется чертежами:

фиг. 1 - концентрация электрического поля в области острой кромки лезвия;

фиг. 2 - схема ленточного вибратора на проволочном каркасе;

фиг. 3 - схематический чертеж антенны;

фиг. 4 - схема ленточного вибратора в экспериментальной антенне.

Физический принцип работы способа приема радиоволн

Для увеличения напряженности электрического поля в месте приема помещают антенну, в которой активный элемент изготавливают из очень тонкой (не более 0,05 мм), заточенной с двух краев, обоюдоострой металлической ленты. Лента должна быть заточена с двух сторон, и острота лезвия после заточки не должна превышать 1-2 мкм. Острое ребро ленточного вибратора устанавливают перпендикулярно направлению распространения волны. У острого края ленточного вибратора происходит резкое возрастание напряженности электрического поля, как показано на фиг. 1. Высокое значение напряженности электрического поля в месте расположения вибратора приводит к возрастанию напряжения на выходе вибратора. Напряжение на выходе антенны с вибратором, выполненным из обоюдоострой тонкой металлической ленты, значительно превышает напряжение на выходе аналогичного вибратора, выполненного из проволоки, трубок или других материалов. Напряжение на выходе вибратора, выполненного из обоюдоострой очень тонкой, заточенной с двух краев, металлической ленты повышается вследствие известного физического эффекта: резкого увеличения напряженности электрического поля возле очень острых выступов (см. книгу: Фриш С.Э., Тиморева А.В. Курс общей физики: Учебник. В 3-х тт. Т. 2. Электрические и электромагнитные явления. 11-е изд., стер. - СПб.: Издательство «Лань», 2007, стр. 54). Лезвие концентрирует электрическое поле на острых гранях, увеличивает поле около антенны и напряжение на выходе антенны. Этот эффект широко используется, например, при устройстве систем защиты промышленных объектов от ударов молнии, когда высокие мачты с острыми штырями на конце, размещенные в непосредственной близости от защищаемых объектов, искривляют электрическое поле, увеличивая напряженность электрического поля в районе своего расположения. При этом напряженность электрического поля над защищаемыми объектами уменьшается до безопасной величины. В средние века эффект резкого увеличения напряженности электрического поля в окрестности объектов с острыми краями часто наблюдали на верхушках корабельных мачт в виде свечения, которое получило название огней Святого Эльма (см. книгу: Фриш С.Э., Тиморева А.В. Курс общей физики: Учебник. В 3-х тт. Т. 2. Электрические и электромагнитные явления. 11-е изд., стер. - СПб.: Издательство «Лань», 2007, стр. 54). В настоящее время элементы мощных радиопередающих антенных устройств, для уменьшения искрения на острых кромках, также стараются делать без острых выступов. Однако все эти примеры и рассуждения касались статического электрического поля. Будет ли существовать такой эффект для электромагнитного поля? Ответ дает система уравнений Максвелла, которая описывает все многообразие взаимодействий электромагнитного поля с веществом и условия распространения электромагнитного поля в веществе. Связь между электрической составляющей электромагнитного поля и объемной плотностью заряда в среде распространения описывается одним из уравнений Максвелла, которое называется уравнением дивергенции:

Часто уравнение (1) записывают следующим образом:

Из уравнения (2) следует, что сумма частных производных электрического поля по координатным осям равна 4πρ. Когда внешних или наведенных зарядов нет, то ρ=0. Наведенные заряды возникают вследствие воздействия электромагнитного поля на вибратор антенны. По антенне протекает высокочастотный переменный ток. Вследствие скин-эффекта, токи, обусловленные воздействием электромагнитного поля на металлический вибратор, протекают по поверхности проводника. Протекающий по вибратору ток обусловлен перемещением зарядов. Эти заряды и называются наведенными зарядами. Распределение зарядов по поверхности антенны неравномерное и определяется, в первую очередь, размерами вибратора. Кроме того, плотность наведенных зарядов зависит от толщины ленты вибратора. Чем тоньше лента, тем больше плотность наведенных зарядов. Заряд, обусловленный воздействием электромагнитного поля, будет распределяться в меньшем объеме, что и увеличивает объемную плотность заряда ρ. Особенно значительное возрастание объемной плотности наведенного заряда будет наблюдаться на острой кромке тонкой ленты. Уравнение (2) показывает, что электрическое поле зависит от наличия наведенных или привнесенных внешних зарядов. При появлении объемной плотности заряда (ρ>0) будут изменяться производные электрического поля по направлениям. Частная производная напряженности электрического поля по направлению показывает, как меняется электрическое поле в этом направлении. Если частная производная по данному направлению положительна, то напряженность электрического поля в этом направлении увеличивается, а если отрицательна, то электрическое поле в этом направлении уменьшается. Если правая часть уравнения (2) возрастает и становится больше нуля, то одна или несколько частных производных напряженности электрического поля тоже должны возрастать. Другими словами при возрастании плотности объемного заряда напряженность электрического поля по некоторым направлениям также будет возрастать. Невозмущенное электрическое поле вдали от объемного заряда будет иметь меньшую напряженность, чем в окрестности объемного заряда. Решение уравнения (1) возможно для конкретных случаев через уравнение Пуассона. Однако даже качественное рассмотрение уравнения (2) подтверждает наличие эффекта возрастания напряженности электрического поля на острой кромке ленточного вибратора. Плотность объемного заряда на острой кромке проводника резко возрастает. Объемная плотность заряда будет увеличиваться по направлению к острой кромке. Следовательно, в направлении наибольшего градиента объемной плотности заряда будет наблюдаться и наиболее резкое возрастание напряженности электрического поля. Наибольшее значение напряженности электрического поля будет иметь место в непосредственной близости от острой кромки. Ленточный вибратор, реализующий заявляемый способ приема радиоволн, представлен на фиг. 2. Для повышения механической прочности ленту можно приварить точечной сваркой к проволочному или трубчатому каркасу. Рассмотрим более подробно, к чему приводит явление концентрации электрического поля на острой кромке ленточного вибратора. В теории телевизионного и радиоприема существует понятие реальной чувствительности приемника. Она характеризует способность приемника принимать слабые сигналы в условиях шумов и внешних помех. Реальная чувствительность приемника равна эдс сигнала в антенне, при которой напряжение сигнала на выходе приемника превышает напряжение помех настолько, что обеспечивается качественное воспроизведение сигнала. Внешние помехи и собственные шумы накладываются на принимаемый сигнал и снижают реальную чувствительность приемника. Поэтому чувствительность принято характеризовать наименьшим уровнем входного сигнала, обеспечивающим на выходе усилителя заданное соотношение сигнал-шум. В радиовещании принято, что уровень входного сигнала должен превышать уровень шумов на 20 дБ (в 10 раз), а в диапазоне УКВ на 26 дБ (в 20 раз). Реальная чувствительность радиовещательных приемников высшего класса в диапазонах ДВ, СВ и KB составляет 50 мкВ, а для более низких классов 200-300 мкВ. Если прием ведется на внутреннюю магнитную антенну, то чувствительность приемника должна находиться в пределах 1-3 мВ/м. Чувствительность радиовещательных приемников среднего класса в УКВ диапазоне составляет 10-30 мкВ, а у радиовещательных приемников высшего класса 5 мкВ. Современные телевизионные приемники обладают реальной чувствительностью порядка 40 мкВ. Современные приемники мобильной связи обладают чувствительностью на уровне десятых долей микровольта. Аддитивная смесь «сигнал плюс шум» с выхода антенны поступает на первый каскад усиления телевизионного приемника. Из-за нелинейности усилителя результат усиления будет разный в зависимости от соотношения между сигналом и помехой. Важными являются два случая: С/Ш>1 и С/Ш<1. В СВЧ-диапазоне в качестве помехи выступают собственные шумы антенны и первого каскада усиления. Если эффективное значение входного сигнала больше эффективного значения напряжения собственных шумов антенны и первого каскада усиления, то после усилителя отношение сигнал/шум еще более возрастет. Сильный сигнал усиливается в большей степени, чем слабая помеха. Поэтому сильный сигнал подавляет слабую помеху. Качество изображения и звукового сопровождения не будет ухудшаться из-за шумов и помех. Если уровень сигнала настолько мал, что его эффективное значение меньше эффективного значения напряжения собственных шумов антенны и первого каскада усиления, то на выходе усилителя слабый сигнал будет еще более подавлен мощным шумом. Усилитель усиливает и сигнал, и шум. Но мощный шум из-за нелинейности усилителя возрастет в значительно большей степени, чем слабый входной сигнал и отношение сигнал/шум на выходе усилителя еще более упадет. В результате сигнал будет настолько искажен шумами, что телевизионный приемник не сможет воспроизвести изображение и звук телеканала, хотя уровень сигнала на выходе усилителя будет находиться в требуемых пределах. Неважно, каким коэффициентом усиления обладает антенна, но если эффективное значение входного сигнала будет меньше уровня собственных шумов антенны и первого каскада усиления, то сигнал будет настолько искажен усилителем, что приемник не сможет его воспроизвести. Повышать отношение сигнал/шум можно двумя способами. Чаше всего стараются уменьшить собственные шумы антенны и первого каскада. В первых каскадах усиления применяют высокочастотные малошумящие диоды, транзисторы и микросхемы. Для уменьшения тепловых шумов первого каскада усиления в системах космической и тропосферной связи усилитель охлаждают почти до абсолютного нуля в криостате с жидким гелием. Очевидно, что такой метод уменьшения собственных шумов можно применять не везде и не всегда. Второй способ увеличения отношения сигнал/шум на входе системы заключается в увеличении уровня входного сигнала в точке приема. Например, в прототипе для увеличения напряженности электрического поля в точке приема используют явление интерференции между прямой и отраженной (от экрана) электромагнитной волной. При интерференции прямой и отраженной волн образуется стоячая волна, амплитуда которой зависит не только от времени, но и от координаты точки наблюдения. Так в узлах уровень сигнала равен нулю, а в пучностях напряженность электрического поля в два раза превышает напряженность электрического поля в прямой и обратной волне. Если вибратор поместить в пучность стоячей волны, то напряжение на выходе антенны удвоится. Однако для увеличения напряженности электрического поля в точке приема можно использовать и другие физические законы. Так в заявляемом способе приема радиоволн задачу увеличения уровня сигнала на входе антенны решают за счет концентрации напряженности электрического поля на острой кромке антенного вибратора. При этом собственные шумы антенны и первого каскада усиления не возрастают, следовательно, отношение сигнал/помеха увеличивается. Это означает, что заявляемый способ приема радиоволн способен работать с более низкой напряженностью электрического поля, при которой другие антенны даже с более высоким коэффициентом усиления не будут нормально функционировать, поскольку в них собственные шумы и внешние помехи будет подавлять слабый полезный сигнал и принимаемая информация будет искажена. Применение заявляемого способа приема радиоволн позволяет также уменьшить мощность передающего устройства при заданной дальности связи. Замена вибраторов в существующих и уже установленных антеннах позволит резко улучшить качество приема и повысить дальность уверенного приема сигнала. Во многих случаях вместо внешних антенн можно применять малогабаритные комнатные антенны с ленточными вибраторами. Это особенно важно при переходе на цифровой формат вещания.

Устройство, реализующее предлагаемый способ приема радиоволн, представлено на фиг. 3. Антенна представляет собой вибратор, расположенный за плоским отражателем. Отражатель содержит три панели из фольгированного стеклотекстолита. Основная панель отражателя установлена параллельно плоскости вибратора, а две другие размещены сверху и снизу относительно основной панели отражателя под углом к ней. Отражатель и вибратор размещены на шасси. Активный элемент антенны представляет собой проволочный полуволновый петлевой вибратор, на котором размещены пластины с очень острыми кромками. В качестве таких пластин использованы обоюдоострые лезвия для безопасной бритвы. Лезвия установлены на проволочном каркасе по всей длине вибратора. Плоскость лезвия перпендикулярна плоскости вибратора (фиг. 4). Полуволновый петлевой вибратор имеет на резонансной частоте сопротивление 300 Ом, поэтому для согласования с коаксиальным кабелем сопротивлением 75 Ом использовано полуволновое U-колено. Такой вид согласования хорош тем, что при этом происходит и симметрирование антенны. Для увеличения входного сигнала, вибратор установлен в пучности стоячей электромагнитной волны на расстоянии от отражателя. Здесь λ - длина волны, на которую настроен вибратор. В пучности стоячей волны амплитуда сигнала удваивается. Для увеличения входного сигнала используются два физических явления. Во-первых, используется явление возрастания электромагнитного поля у острой кромки тонкого ленточного вибратора, заточенного с двух сторон. Вторым физическим явлением, повышающим уровень сигнала в антенне, является использование стоячих волн (см. книгу Литвинов О.С., Горелик B.C. Электромагнитные волны и оптика. Учеб. Пособие. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2006, стр. 155-156). Обратная электромагнитная волна, возвращаясь от отражателя интерферирует с прямой волной. В результате интерференции образуется стоячая волна, где амплитуда сигнала меняется в зависимости от координаты точки измерения. В частности, в пучностях стоячей волны амплитуда сигнала удваивается. Если активный элемент антенны, например полуволновый петлевой вибратор, расположить в пучности стоячей волны, то напряженность электромагнитного поля в этой точке будет в 2 раза выше амплитудного значения поля в прямой волне (см. книгу: Ландсберг Г.С. Оптика. М.: Физматлит, 2003), что удваивает сигнал на выходе антенны. Верхний и нижний отражатели также вызывают явление интерференции прямой и отраженной волны, дополнительно повышая напряжение сигнала в антенне. В стоячей волне прямая и отраженная волна должны иметь одинаковые значения амплитуды. Для этого коэффициент отражения экрана должен равняться единице. Медный фольгированный стеклотекстолит, использованный для отражателя в антенне, реализующей заявляемый способ приема радиоволн, имеет коэффициент отражения 0,65. Для повышения коэффициента отражения было проведено серебрение поверхности фольгированного стеклотекстолита. Коэффициент отражения серебра равен 0,95, что увеличило сигнал на выходе антенны на 3 dB. Серебрение очень часто применяют при изготовлении СВЧ-волноводов и СВЧ-резонаторов, поскольку это позволяет уменьшить потери в волноводном тракте и повышает добротность резонаторов. В результате проведенных мероприятий происходит: увеличение амплитуды сигнала в антенне за счет размещения вибратора в пучности стоячей волны; увеличение напряжения полезного сигнала в антенне за счет концентрации напряженности электрического поля на острой кромке лезвия петлевого полуволнового вибратора; увеличение напряжения за счет резонансных явлений в вибраторе, настроенного на частоту 530 МГц; увеличение амплитуды стоячей волны за счет серебрения отражателя. Результаты эксперимента показали, что сигнал на выходе антенны с ленточным вибратором, реализующим заявляемый способ приема радиоволн, в три раза (на 10 dB) больше сигнала на выходе полуволнового проволочного вибратора, настроенного так же на частоту 530 МГц. Измерения проводились с помощью высокочастотного СВЧ-милливольтметра В3-36 и СВЧ-генератора Г4-129. Полученный результат позволяет констатировать несомненное преимущество антенны с вибратором, выполненным из обоюдоострой тонкой металлической ленты. Такая антенна обладает в три раза более высокой реальной чувствительностью.