Что значит скорость передачи данных. Скорость и каналы передачи данных

12.08.2019 Android


Все виды информации кодируются в последовательности электрических импульсов: есть импульс (1), нет импульса (0), то есть в последовательности нулей и единиц. Такое кодирование информации в компьютере называется двоичным кодированием, а логические последовательности нулей и единиц – машинным языком.

Эти цифры можно рассматривать как два равновероятностных состояния (события). При записи двоичной цифры реализуется выбор одного из двух возможных состояний (одной из двух цифр) и, следовательно, она несет количество информации, равное 1 биту.

Даже сама единица измерения количества информации бит (bit) получила свое название от английского словосочетания Binary digit, то есть двоичный разряд.

Важно, что каждая цифра машинного двоичного кода несет информацию в 1 бит. Таким образом две цифры несут информацию 2 бита, три разряда – 3 бита и т.д. Количество информации в битах равно количеству цифр двоичного машинного кода.

Передача информации в информационной системе.

Система состоит из отправителя информации, линии связи и получателя информации. Сообщение для передачи его в соответствующий адрес должно быть предварительно преобразовано в сигнал. Под сигналом понимается изменяющаяся физическая величина, отображающее сообщение. Сигнал – материальный переносчик сообщения, то есть изменяющаяся физическая величина, обеспечивающая передачу информации по линии связи. Физическая среда, по которой происходит передача сигналов от передатчика к приемнику, называется линией связи.

В современной технике нашли применение электрические, электромагнитные, световые, механические, звуковые, ультразвуковые сигналы. Для передачи сообщений необходимо принять тот переносчик, который способен эффективно распределяться по используемой в системе линии связи.

Преобразование сообщений в сигналы, удобные для прохождения по линии связи, осуществляется передатчиком.

В процессе преобразования дискретных сообщений в сигнал происходит кодирование сообщения. В широком смысле кодированием называется преобразование сообщений в сигнал. В узком смысле кодирование – это отображение дискретных сообщений сигналами в виде определенных сочетаний символов. Устройство, осуществляющее кодирование называется кодером.

При передаче сигналы подвергаются воздействию помех. Под помехами подразумеваются любые мешающие внешние возмущения или воздействия (атмосферные помехи, влияние посторонних источников сигналов), а также искажения сигналов в самой аппаратуре (аппаратурные помехи), вызывающие случайное отклонение принятого сообщения (сигнала) от передаваемого.

На приемной стороне осуществляется обратная операция декодирования, т.е. восстановление по принятому сигналу переданного сообщения.

Решающее устройство, помещенное после приемника, осуществляет обработку принятого сигнала с целью наиболее полного извлечения из него информации.

Декодирующее устройство, (декодер) преобразует принятый сигнал к виду удобному для восприятия получателем.

Совокупность средств, предназначенных для передачи сигнала, называется каналом связи. Одна и та же линия связи может использоваться для передачи сигналов между многими источниками и приемниками, то есть линия связи может обслуживать несколько каналов.

При синтезе систем передачи информации приходится решать две основные проблемы, связанные с передачей сообщений:

Обеспечение помехоустойчивости передачи сообщений

Обеспечение высокой эффективности передачи сообщений

Под помехоустойчивостью понимается способность информации противостоять вредному воздействию помех. При данных условиях, т.е. при заданной помехе, помехоустойчивость определяет верность передачи информации. Под верностью понимается мера соответствия принятого сообщения (сигнала) переданному сообщению (сигналу).

Под эффективностью системы передачи информации понимается способность системы обеспечивать передачу заданного количества информации наиболее экономичным способом. Эффективность характеризует способность системы обеспечить передачу данного количества информации с наименьшими затратами мощности сигнала, времени и полосы частот.

Теория информации устанавливает критерии оценки помехоустойчивости и эффективности информационных систем, а также указывает общие пути повышения помехоустойчивости и эффективности.

Скорость передачи данных - скорость, с которой передается или принимается информация в двоичной форме. Обычно скорость передачи данных измеряется количеством бит, переданных в одну секунду.

Биты в секунду - единица скорости передачи информации, равная количеству двоичных разрядов, пропускаемых каналом связи в 1 секунду с учетом и полезной и служебной информации.

Пропускная способность канала связи - максимальная скорость передачи данных от источника к получателю.

Символы в секунду - единица измерения скорости передачи (только) полезной информации.

Переход к более крупным единицам измерения

Ограничения на максимальную мощность алфавита не существует, но есть алфавит, который можно считать достаточным (на современном этапе) для работы с информацией, как для человека, так и для технических устройств. Он включает в себя: латинский алфавит, алфавит языка страны, числа, спецсимволы - всего около 200 знаков. По приведенной выше таблице можно сделать вывод, что 7 битов информации недостаточно, требуется 8 битов, чтобы закодировать любой символ такого алфавита, 256 = 28. 8 бит образуют 1 байт. То есть для кодирования символа компьютерного алфавита используется 1 байт. Укрупнение единиц измерения информации аналогично применяемому в физике - используют приставки «кило», «мега», «гига». При этом следует помнить, что основание не 10, а 2.

1 Кб (килобайт) = 210 байт = 1024 байт,

1 Мб(мегабайт) = 210 Кб = 220 байт и т. д.

Умение оценивать количество информации в сообщении поможет определить скорость информационного потока по каналам связи. Максимальную скорость передачи информации по каналу связи называют пропускной способностью канала связи. Самым совершенным средством связи на сегодня являются оптические световоды. Информация передается в виде световых импульсов, посылаемых лазерным излучателем. У этих средств связи высокая помехоустойчивость и пропускная способность более 100Мбит/с.

С течением технического прогресса расширились и возможности интернета. Однако для того, чтобы пользователь мог ими воспользоваться в полной мере, необходимо стабильное и высокоскоростное соединение. В первую очередь оно зависит от пропускной способности каналов связи. Поэтому необходимо выяснить, как измерить скорость передачи данных и какие факторы на нее влияют.

Что такое пропускная способность каналов связи?

Для того чтобы ознакомиться и понять новый термин, нужно знать, что представляет собой канал связи. Если говорить простым языком, каналы связи - это устройства и средства, благодаря которым осуществляется передача на расстоянии. К примеру, связь между компьютерами осуществляется благодаря оптоволоконным и кабельным сетям. Кроме того, распространен способ связи по радиоканалу (компьютер, подключенный к модему или же сети Wi-Fi).

Пропускной же способностью называют максимальную скорость передачи информации за одну определенную единицу времени.

Обычно для обозначения пропускной способности используют следующие единицы:

Измерение пропускной способности

Измерение пропускной способности - достаточно важная операция. Она осуществляется для того, чтобы узнать точную скорость интернет-соединения. Измерение можно осуществить с помощью следующих действий:

  • Наиболее простое - загрузка объемного файла и отправление его на другой конец. Недостатком является то, что невозможно определить точность измерения.
  • Кроме того, можно воспользоваться ресурсом speedtest.net. Сервис позволяет измерить ширину интернет-канала, «ведущего» к серверу. Однако для целостного измерения этот способ также не подходит, сервис дает данные обо всей линии до сервера, а не о конкретном канале связи. Кроме того, подвергаемый измерению объект не имеет выхода в глобальную сеть Интернет.
  • Оптимальным решением для измерения станет клиент-серверная утилита Iperf. Она позволяет измерить время, количество переданных данных. После завершения операции программа предоставляет пользователю отчет.

Благодаря вышеперечисленным способам, можно без особых проблем измерить реальную скорость интернет-соединения. Если показания не удовлетворяют текущие потребности, то, возможно, нужно задуматься о смене провайдера.

Расчет пропускной способности

Для того чтобы найти и рассчитать пропускную способность линии связи, необходимо воспользоваться теоремой Шеннона-Хартли. Она гласит: найти пропускную способность канала (линии) связи можно, рассчитав взаимную связь между потенциальной пропускной способностью, а также полосой пропускания линии связи. Формула для расчета пропускной способности выглядит следующим образом:

I=Glog 2 (1+A s /A n).

В данной формуле каждый элемент имеет свое значение:

  • I - обозначает параметр максимальной пропускной способности.
  • G - параметр ширины полосы, предназначенной для пропускания сигнала.
  • A s / A n - соотношение шума и сигнала.

Теорема Шеннона-Хартли позволяет сказать, что для уменьшения внешних шумов или же увеличения силы сигнала лучше всего использовать широкий кабель для передачи данных.

Способы передачи сигнала

На сегодняшний день существует три основных способа передачи сигнала между компьютерами:

  • Передача по радиосетям.
  • Передача данных по кабелю.
  • Передача данных через оптоволоконные соединения.

Каждый из этих способов имеет индивидуальные характеристики каналов связи, речь о которых пойдет ниже.

К преимуществам передачи информации через радиоканалы можно отнести: универсальность использования, простоту монтажа и настройки такого оборудования. Как правило, для получения и способом используется радиопередатчик. Он может представлять собой модем для компьютера или же Wi-Fi адаптер.

Недостатками такого способа передачи можно назвать нестабильную и сравнительно низкую скорость, большую зависимость от наличия радиовышек, а также дороговизну использования (мобильный интернет практически в два раза дороже «стационарного»).

Плюсами передачи данных по кабелю являются: надежность, простота эксплуатации и обслуживания. Информация передается посредством электрического тока. Условно говоря, ток под определенным напряжением перемещается из пункта А в пункт Б. А позже преобразуется в информацию. Провода отлично выдерживают перепады температур, сгибания и механическое воздействие. К минусам можно отнести нестабильную скорость, а также ухудшение соединения из-за дождя или грозы.

Пожалуй, самой совершенной на данный момент технологией по передаче данных является использование оптоволоконного кабеля. В конструкции каналов связи сети каналов связи применяются миллионы мельчайших стеклянных трубок. А сигнал, передаваемый по ним, представляет собой световой импульс. Так как скорость света в несколько раз выше скорости тока, данная технология позволила в несколько сотен раз ускорить интернет-соединение.

К недостаткам же можно отнести хрупкость оптоволоконных кабелей. Во-первых, они не выдерживают механические повреждения: разбившиеся трубки не могут пропускать через себя световой сигнал, также резкие перепады температур приводят к их растрескиванию. Ну а повышенный радиационный фон делает трубки мутными - из-за этого сигнал может ухудшаться. Кроме того, оптоволоконный кабель тяжело восстановить в случае разрыва, поэтому приходится полностью его менять.

Вышесказанное наводит на мысль о том, что с течением времени каналы связи и сети каналов связи совершенствуются, что приводит к увеличению скорости передачи данных.

Средняя пропускная способность линий связи

Из вышесказанного можно сделать вывод о том, что каналы связи различны по своим свойствам, которые влияют на скорость передачи информации. Как говорилось ранее, каналы связи могут быть проводными, беспроводными и основанными на использовании оптоволоконных кабелей. Последний тип создания сетей передачи данных наиболее эффективен. И его средняя пропускная способность канала связи - 100 мбит/c.

Что такое бит? Как измеряется скорость в битах?

Битовая скорость - показатель измерения скорости соединения. Рассчитывается в битах, мельчайших единицах хранения информации, на 1 секунду. Она была присуща каналам связи в эпоху «раннего развития» интернета: на тот момент в глобальной паутине в основном передавались текстовые файлы.

Сейчас базовой единицей измерения признается 1 байт. Он, в свою очередь, равен 8 битам. Начинающие пользователи очень часто совершают грубую ошибку: путают килобиты и килобайты. Отсюда возникает и недоумение, когда канал с пропускной способностью 512 кбит/с не оправдывает ожиданий и выдает скорость всего лишь 64 КБ/с. Чтобы не путать, нужно запомнить, что если для обозначения скорости используются биты, то запись будет сделана без сокращений: бит/с, кбит/с, kbit/s или kbps.

Факторы, влияющие на скорость интернета

Как известно, от пропускной способности канала связи зависит и конечная скорость интернета. Также на скорость передачи информации влияют:

  • Способы соединения.

Радиоволны, кабели и оптоволоконные кабели. О свойствах, преимуществах и недостатках этих способов соединения говорилось выше.

  • Загруженность серверов.

Чем больше загружен сервер, тем медленнее он принимает или передает файлы и сигналы.

  • Внешние помехи.

Наиболее сильно помехи оказывают влияние на соединение, созданное с помощью радиоволн. Это вызвано сотовыми телефонами, радиоприемниками и прочими приемниками и передатчиками радиосигнала.

Безусловно, способы соединения, состояние серверов и наличие помех играют важную роль в обеспечении скоростного интернета. Однако даже если вышеперечисленные показатели в норме, а интернет имеет низкую скорость, то дело скрывается в сетевом оборудовании компьютера. Современные сетевые карты способны поддерживать интернет-соединение со скоростью до 100 Мбит в секунду. Раньше карты могли максимально обеспечивать пропускную способность в 30 и 50 Мбит в секунду соответственно.

Как увеличить скорость интернета?

Как было сказано ранее, пропускная способность канала связи зависит от многих факторов: способа соединения, работоспособности сервера, наличия шумов и помех, а также состояния сетевого оборудования. Для увеличения скорости соединения в бытовых условиях можно заменить сетевое оборудование на более совершенное, а также перейти на другой способ соединения (с радиоволн на кабель или оптоволокно).

В заключение

В качестве подведения итогов стоит сказать о том, что пропускная способность канала связи и скорость интернета - это не одно и то же. Для расчета первой величины необходимо воспользоваться законом Шеннона-Хартли. Согласно ему, шумы можно уменьшить, а также увеличить силу сигнала посредством замены канала передачи на более широкий.

Увеличение скорости интернет-соединения тоже возможно. Но оно осуществляется путем смены провайдера, замены способа подключения, усовершенствования сетевого оборудования, а также ограждения устройств для передачи и приема информации от источников, вызывающих помехи.

Объем текстового файла

Кодирование информации в ПК заключается в том, что каждому символу ставится в соответствие уникальный двоичный код. Таким образом, человек различает символы по их начертаниям, а компьютер — по их кодам.

КОИ-8: 1 символ - 1 байт = 8 бит

UNICODE : 1 символ - 2 байта = 16 бит

ЗАДАЧА 1. Считая, что каждый символ кодируется одним байтом, оцените информационный объем сообщения:

РЕШЕНИЕ: Считаем количество символов в сообщении с учетом пробелов и знаков препинания. Получаем N =35. Т.к. один символ кодируется 1 байтом, то всё сообщение будет занимать в памяти компьютера 35 байт.

ЗАДАЧА 2. Оценить информационный объем сообщения в Unicode : Без труда не вытащишь рыбку из пруда!

РЕШЕНИЕ: Количество символов в сообщении 35. Т.к. в Unicode один символ кодируется 2 байтами, то всё сообщение будет занимать в памяти компьютера 70 байт.

ЗАДАЧА 3. Определить информационный объем книги (в Мбайтах) подготовленной на компьютере, состоящей из 150 страниц (каждая страница содержит 40 строк, 60 символов в каждой строке).

РЕШЕНИЕ:

1) Подсчитаем количество символов в книге 40 * 60 * 150 = 360 000

2) Информационный объем книги составит 360 000 * 1 байт = 360 байт

3) Переведем в заданные единицы 360 000 байт / 1024 = 351,5625 Кбайт / 1024 = 0,34332275 Мбайт

Длина фразы составляет примерно 40 символов. Следователь но, ее объем можно приблизительно оценить в 40 х 2 = 80 байт. Такого варианта ответа нет, попробуем перевести результат в би ты: 80 байт х 8 = 640 бит. Наиболее близкое значение из пред ложенных — 592 бита. Заметим, что разница между 640 и 592 составляет всего 48/16 = 3 символа в заданной кодировке и его можно считать несущественным по сравнению с длиной строки.

З амечание: Подсчетом символов в строке можно убедиться, что их ровно 37 (включая точку и пробелы), поэтому оценка 592 бита = 74 байта, что соответствует ровно 37 символам в двухбайтовой кодировке, является точной.

Алфавит – это набор букв, символов препинания, цифр, пробел и т.п.

Полное число символов в алфавите называют мощностью алфавита

ЗАДАЧА 4. Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите мощностью 16 символов. Второй текст в алфавите мощностью 256 символов. Во сколько раз количество информации во втором тексте больше, чем в первом?

РЕШЕНИЕ: Если первый текст составлен в алфавите мощностью (К) 16 символов, то количество информации, которое несет 1 символ (1) в этом тексте, можно определить из соотношения: N = 2", таким образом, из 16 = 2" получим 1 = 4 бита. Мощность второго алфавита - 256 символов, из 256 = 2" получим 1 = 8 бит. Т.к. оба текста содержат одинаковое количество символов, количество информации во втором тексте больше, чем в первом, в 2 раза.

Скорость передачи информации

Скорость передачи данных по каналам связи ограничена пропускной способностью канала. Пропускная способность канала связи изменяется как и скорость передачи данных в бит/сек (или кратностью этой величины Кбит/с, Мбит/с, байт/с, Кбайт/с, Мбайт/с).
Для вычислении объема информации V переданной по каналу связи с пропускной способностью а за время t используют формулу:

V = а * t

ЗАДАЧА 1. Через ADSL- соединение файл размером 1000 Кбайт передавался 32 с. Сколько секунд потребуется для передачи файла размером 625 Кбайт.

РЕШЕНИЕ: Найдем скорость ADSL соединения: 1000 Кбайт / 32 с. = 8000 Кбит / 32 с. = 250 Кбит/с.
Найдем время для передачи файла объемом 625 Кбайт: 625 Кбайт / 250 Кбит/с = 5000 Кбит / 250 Кбит/с. = 20 секунд.

При решении задач на определении скорости и времени передачи данных возникает трудность с большими числами (пример 3 Мб/с = 25 165 824 бит/с), поэтому проще работать со степенями двойки (пример 3 Мб/с = 3 * 2 10 * 2 10 * 2 3 = 3 * 2 23 бита/с).

n

0
1
2
3
4
5
6
7
8
9
10

2 n

1
2
4
8
16
32
64
128
256
512
1024

ЗАДАЧА 2 . Скорость передачи данных через ADSL─соединение равна 512 000 бит/c. Передача файла через это соединение заняла 1 минуту. Определить размер файла в килобайтах.


РЕШЕНИЕ: Время передачи файла: 1 мин = 60 с = 4 * 15 с = 2 2 * 15 с
Скорость передачи файла: 512000 бит/c = 512 * 1000 бит/с = 2 9 * 125 * 8 бит/с (1 байт =8 бит)

2 9 * 125 байт/с = 2 9 * 125 бит/с / 2 10 = 125 / 2 Кб/с

Чтобы найти время объем файла, нужно умножить время передачи на скорость передачи:

(2 2 * 15 с) * 125 / 2 Кб/с = 2 * 15 * 125 Кб = 3750 Кб

Все неоднократно раз слышали про сети второго, третьего и четвертого поколения мобильной связи. Некоторые, возможно, уже читали и про сети будущего - пятого поколения. Но вопросы - что означает G, E, 3G, H, 3G+, 4G или LTE на экране смартфона и что среди этого быстрее до сих пор волнуют многих людей. Ответим на них.

Данные значки означают тип подключения вашего смартфона, планшета или модема к мобильной сети.

1. G (GPRS - General Packet Radio Services): самый медленный и давно устаревший вариант подключения пакетной передачи данных. Первый стандарт мобильного интернета, выполненный путем надстройки над GSM (после CSD-соединения до 9,6 кбит/с). Максимальная скорость GPRS-канала - 171,2 кбит/с. При этом реальная, как правило, на порядок ниже и интернет здесь не всегда работоспособен в принципе.

2. E (EDGE или EGPRS - Enhanced Data rates for GSM Evolution): более быстрая надстройка над 2G и 2,5G. Технология цифровой передачи данных. Скорость EDGE выше GPRS примерно в 3 раза: до 474,6 кбит/с. Однако она также относится ко второму поколению беспроводной связи и уже устарела. Реальная скорость EDGE обычно держится в районе 150-200 кбит/с и напрямую зависит от местонахождения абонента - то есть загруженности базовой станции в конкретном районе.

3. 3 G (Third Generation - третье поколение). Здесь по сети возможна не только передача данных, но и «голоса». Качество передачи речи в сетях 3G (если оба собеседника находятся в радиусе их действия) может быть на порядок выше, чем в 2G (GSM). Скорость интернета в 3G также значительно более высокая, а его качество, как правило, уже вполне достаточное для комфортной работы на мобильных устройствах и даже стационарных компьютерах через USB-модемы. При этом на скорость передачи данных может влиять ваше текущее положение, в т.ч. находитесь ли вы на одном месте или движетесь в транспорте:

  • Находитесь без движения: обычно до 2 Мбит/с
  • Движетесь со скоростью до 3 км/ч: до 384 кбит/с
  • Движетесь со скорость до 120 км/ч: до 144 кбит/с.

4. 3,5 G, 3 G+, H, H+ (HSPDA - High-Speed Downlink Packet Access): следующая надстройка высокоскоростной пакетной передачи данных - уже над 3G. В данном случае скорость передачи данных вплотную приближается к 4G и в режиме H она составляет до 42 Мбит/с. В реальной жизни мобильный интернет в таком режиме в среднем работает у мобильных операторов на скоростях 3-12 Мбит/с (иногда выше). Для не разбирающихся: это весьма быстро и вполне достаточно, чтобы при стабильном соединении смотреть онлайн-видео в не слишком высоком качестве (разрешении) или качать тяжелые файлы.

Также в 3G появилась функция видеозвонка:

5. 4G, LTE (Long-Term Evolution - долговременное развитие, четвертое поколение мобильного интернета). Данная технология используется только для передачи данных (не для «голоса»). Максимальная download-скорость здесь - до 326 Мбит/с, upload - 172,8 Мбит/с. Реальные значения опять же на порядок ниже заявленных, но все равно они составляют десятки мегабит в секунду (на практике часто сопоставимо с режимом H; в условиях загруженности Москвы обычно 10-50 Мбит/с). При этом более быстрый PING и сама технология делают 4G наиболее предпочтительным стандартом для мобильного интернета в модемах. Смартфоны и планшеты в сетях 4G (LTE) держат заряд батареи дольше, нежели в 3G.

6. LTE-A (LTE Advanced - модернизация LTE). Пиковая скорость передачи данных здесь - до 1 Гбит/с. В реальности интернет способен работать на скоростях до 300 Мбит/с (в 5 раз быстрее обычного LTE).

7. VoLTE (Voice over LTE - голос по LTE, как дополнительное развитие технологии): технология передачи голосовых вызовов по сетям LTE на базе IP Multimedia Subsystem (IMS). Скорость соединения - до 5 раз быстрее по сравнению с 2G/3G, а качество самого разговора и передачи речи - еще выше и чище.

8. 5 G (пятое поколение сотовой связи на базе IMT-2020). Стандарт будущего, пока находится на стадии разработки и тестирования. Скорость передачи данных в коммерческом варианте сетей обещается выше LTE до 30 раз: максимально передача данных сможет осуществляться до 10 Гбит/с.

Разумеется, воспользоваться любой из вышеперечисленных технологий вы сможете в случае ее поддержки вашим оборудованием. Также ее работа зависит от возможностей самого мобильного оператора в конкретной точке местонахождения абонента и его тарифного плана.

Думаете, скорость вашего широкополосного подключения к интернету быстрая? Осторожно, после прочтения данной статьи ваше отношение к слову "быстро" относительно передачи данных может сильно измениться. Представьте объем вашего жесткого диска на компьютере и определитесь, какая скорость его заполнения является быстрой -1 Гбит/с или может быть 100 Гбит/с, тогда 1 терабайтный диск заполнится уже через 10 сек? Если бы книга рекордов Гиннеса констатировала рекорды по скорости передачи информации, то ей бы пришлось обработать все приведенные далее эксперименты.

В конце ХХ в., то есть еще относительно недавно, скорости в магистральных каналах связи не превышали десятков Гбит/с. В то же время пользователи интернета с помощью телефонных линий и модемов наслаждались скоростью в десятки килобит в секунду. Интернет был по карточкам и цены за услугу были немаленькие - тарифы приводились, как правило, в у.е. На загрузку одной картинки порой даже уходило несколько часов и как точно подметил один из пользователей интернета того времени: "Это был интернет, когда за одну ночь можно было только несколько женщин в интернете посмотреть". Такая скорость передачи данных медленная? Возможно. Однако стоит помнить, что все в мире относительно. Например, если бы сейчас был 1839 г., то неким подобием интернета для нас бы представляла самая протяженная в мире оптическая телеграфная линии связи Петербург-Варшава. Длина этой линии связи для ХIХ века кажется просто заоблачной - 1200 км, состоит она из 150 ретранслирующих транзитных вышек. Любой гражданин может воспользоваться этой линией и послать "оптическую" телеграмму. Скорость "колоссальная" - 45 символов на расстояние 1200 км можно передать всего за 22 минуты, никакая конная почтовая связь здесь и рядом не стояла!

Вернемся в ХХI век и посмотрим, что в сравнении с описанными выше временами мы сегодня имеем. Минимальные тарифы у крупных провайдеров проводного интернета исчисляются уже не единицами, а несколькими десятками Мбит/с; смотреть видео с разрешением менее 480pi мы не уже хотим, такое качество картинки нас уже не устраивает.

Посмотрим среднюю скорость интернета в разных странах мира. Представленные результаты составлены CDN-провайдером Akamai Technologies. Как видно, даже в республике Парагвай уже в 2015 году средняя скорость соединения по стране превышала 1.5 Мбит/с (кстати, Парагвай имеет близкий для нас русских по транслитерации домен - *.py).

На сегодняшний день средняя скорость интернет соединений в мире составляет 6.3 Мбит/с . Наибольшая средняя скорость наблюдается в Южной Корее 28.6 Мбит/с, на втором месте Норвегия -23.5 Мбит/с, на третьем Швеция - 22.5 Мбит/с. Ниже приведена диаграмма, показывающая среднюю скорость интернета по лидирующим в этом показателе странам на начало 2017 года.

Хронология мировых рекордов скоростей передачи данных

Поскольку сегодня неоспоримым рекордсменом по дальности и скорости передачи являются волоконно-оптические системы передачи, акцент будет делаться именно на них.

С каких скоростей все начиналось? После многочисленных исследований в период с 1975 по 1980 гг. появилась первая коммерческая волоконно-оптическая система, работающая с излучением на длине волны 0,8 мкм на полупроводниковом лазере на основе арсенида галлия.

22 апреля 1977 года в Лонг-Бич, штат Калифорния, компания General Telephone and Electronics впервые использовала оптический канал для передачи телефонного трафика на скорости 6 Мбит/с . При такой скорости, можно организовать одновременную передачу до 94 простейших цифровых телефонных каналов.

Максимальная скорость оптических систем передачи в экспериментальных исследовательских установках этого времени доходило до 45 Мбит/с , максимальное расстояние между регенераторами - 10 км .

В начале 1980-х передача светового сигнала проходила в многомодовых волокнах уже на длине волны 1,3 мкм с помощью InGaAsP-лазеров. Максимальная скорость передачи была ограничена значением 100 Мбит/с вследствие дисперсии.

При использовании одномодовых ОВ в 1981 году при лабораторных испытаниях добились рекордной для того времени скорости передачи 2 Гбит/с на расстоянии 44 км .

Коммерческое внедрение таких систем в 1987 году обеспечивало скорость до 1,7 Гбит/с с протяженностью трассы 50 км .

Как можно было заметить, оценивать рекорд системы связи стоит не только по скорости передачи, здесь также крайне важно на какое расстояние данная система способна обеспечить данную скорость. Поэтому для характеристики систем связи обычно пользуются произведением общей пропускной способности системы B [бит/с] на ее дальность L [км].


В 2001 году при применении технологии спектрального уплотнения была достигнута скорость передачи 10,92 Тбит/с (273 оптических канала по 40 Гбит/с), но дальность передачи была ограничена значением 117 км (B∙L = 1278 Тбит/с∙км).

В этом же году был проведен эксперимент по организации 300 каналов со скоростью 11,6 Гбит/с каждый (общая пропускная способность 3.48 Тбит/с ), длина линии составила свыше 7380 км (B∙L = 25 680 Тбит/с∙км).

В 2002 г. была построена межконтинентальная оптическая линия протяженностью 250 000 км с общей пропускной способностью 2.56 Тбит/с (64 WDM канала по 10 Гбит/с, трансатлантический кабель содержал 4 пары волокон).

Теперь с помощью единственного оптоволокна можно одновременно передавать 3 миллиона! телефонных сигналов или 90 000 сигналов телевидения.

В 2006 г. Nippon Telegraph и Telephone Corporation организовали скорость передачи 14 триллион бит в секунду (14 Тбит/с ) по одному оптическому волокну при длине линии 160 км (B∙L = 2240 Тбит/с∙км).

В этом эксперименте они публично продемонстрировали передачу за одну секунду 140 цифровых HD фильмов. Величина 14 Тбит/с появилась в результате объединения 140 каналов по 111 Гбит/с каждый. Использовалось мультиплексирование с разделением по длине волны, а также поляризационное уплотнение.

В 2009 г. Bell Labs достигли параметра B∙L = 100 пета бит в секунду умножить на километр, преодолев, таким образом, барьер в 100 000 Тбит/с∙км.

Для достижения таких рекордных результатов исследователи из лаборатории Bell Labs в Villarceaux, Франция, использовали 155 лазеров, каждый из которых работает на своей частоте и осуществляет передачу данных на скорости 100 Гигабит в секунду. Передача осуществлялась через сеть регенераторов, среднее расстояние между которыми составляло 90 км. Мультиплексирование 155 оптических канала по 100 Гбит/с позволило обеспечить общую пропускную способность 15,5 Тбит/с на расстоянии 7000 км . Чтобы осмыслить значение этой скорости, представьте, что идет передача данных из Екатеринбурга во Владивосток со скоростью 400 DVD-дисков в секунду.

В 2010 г. NTT Network Innovation Laboratories добились рекорда скорости передачи 69.1 терабит в секунду по одному 240-километровому оптическому волокну. Используя технологию волнового мультиплексирования (WDM), они мультиплексировали 432 потока (частотный интервал составил 25 ГГц) с канальной скоростью 171 Гбит/с каждый.

В эксперименте применялись когерентные приемники, усилители с низким уровнем собственных шумов и с ультра-широкополосным усилением в С и в расширенном L диапазонах. В сочетании с модуляцией QAM-16 и поляризационного мультиплексирования, получилось достичь значения спектральной эффективности 6.4 бит/с/Гц.

На графике ниже видна тенденция развития волоконно-оптических систем связи на протяжении 35 лет с начала их появления.

Из данного графика возникает вопрос: "а что дальше?" Каким образом можно еще в разы повысить скорость и дальность передачи?

В 2011 г. мировой рекорд пропускной способности установила компания NEC, передав более 100 терабит информации в секунду по одному оптическому волокну. Этого объема данных, переданного за 1 секунду, достаточно, чтобы просматривать HD фильмы непрерывно в течение трех месяцев. Или это эквивалентно передаче за секунду содержимого 250 двухсторонних Blu-ray дисков.

101,7 терабит были переданы за секунду на расстояние 165 километров с помощью мультиплексирования 370 оптических каналов, каждый из которых имел скорость 273 Гбит/с.

В этом же году National Institute of Information and Communications Technology (Токио, Япония) сообщил о достижении 100-терабного порога скорости передачи посредством применения многосердцевинных ОВ. Вместо того чтобы использовать волокно только с одной световедущей жилой, как это происходит современных коммерческих сетях, команда использовали волокно с семью сердцевинами. По каждой из них осуществлялась передача со скоростью 15.6 Тбит/с, таким образом, общая пропускная способность достигла 109 терабит в секунду.

Как заявили тогда исследователи, использование многосердцевинных волокон пока является достаточно сложным процессом. Они имеют большое затухание и критичны к взаимным помехам, поэтому сильно ограничены по дальности передачи. Первое применение таких 100 терабитных систем будет внутри гигантских центров обработки данных компаний Google, Facebook и Amazon.

В 2011 г. команда ученых из Германии из технологического института Karlsruhe Institute of Technology (KIT) без использования технологии xWDM передала данные по одному ОВ со скоростью 26 терабит в секунду на расстояние 50 км . Это эквивалентно передачи в одном канале одновременно 700 DVD-дисков в секунду или 400 миллионов телефонных сигналов.

Начали появляться новые услуги, такие как облачные вычисления, трехмерное телевидение высокой четкости и приложения виртуальной реальности, что опять требовало беспрецедентной высокой емкости оптического канала. Для решения этой проблемы исследователи из Германии продемонстрировали применение схемы оптического быстрого преобразования Фурье для кодирования и передачи потоков данных со скоростью 26.0 Тбит/с. Для организации такой высокой скорости передачи была использована не просто классическая технология xWDM, а оптическое мультиплексирование с ортогональным частотным разделением каналов (OFDM) и соответственно декодирование оптических OFDM потоков.

В 2012 г. японская корпорация NTT (Nippon Telegraph and Telephone Corporation) и три ее партнера: фирма Fujikura Ltd., университет Hokkaido University и университет Technical University of Denmark установили мировой рекорд пропускной способности, передав 1000 терабит (1 Пбит / с ) информации в секунду по одному оптическому волокну на расстояние 52.4 км . Передача одного петабита в секунду эквивалентна передаче 5000 двухчасовых HD фильмов за одну секунду.

С целью значительного улучшения пропускной способности оптических коммуникационных систем, было разработано и протестировано волокно с 12-тью сердцевинами, расположенных особым образом в виде соты. В данном волокне благодаря его особой конструкции взаимные помехи между соседними сердцевинами, которые обычно являются главной проблемой в обычных многосердцевинных ОВ, значительно подавлены. В результате применения поляризационного мультиплексирования, технологии xWDM, квадратурной амплитудной модуляции 32-QAM и цифрового когерентного приема, ученые успешно повысили эффективность передачи в расчете на одну сердцевину более чем в 4 раза, в сравнении с предыдущими рекордами для многосердцевинных ОВ.

Пропускная способность составила 84.5 терабит в секунду на одну сердцевину (скорость канала 380 Гбит/с х 222 каналов). Общая пропускная способность на одно волокно составила 1.01 петабит в секунду (12 х 84.5 терабит).

Также в 2012 г. немного позднее исследователи из лаборатории NEC в Принстоне, Нью-Джерси, США, и Нью-Йоркского научно-исследовательского центра Corning Inc., успешно продемонстрировали сверхвысокую скорость передачи данных со скоростью 1.05 петабит в секунду. Данные передавались с помощью одного многосердцевинного волокна, которое состояло из 12 одномодовых и 2 маломодовых сердцевин.

Данное волокно было разработано исследователями Corning. Объединив технологии спектрального и поляризационного разделения с пространственным мультиплексированием и оптической системы MIMO, а также используя многоуровневые форматы модуляции, исследователи в результате достигли общей пропускной способности 1.05 Пбит/с, поставив, таким образом, новый мировой рекорд самой высокой скорости передачи по одному оптическому волокну.

Летом 2014 года рабочая группа в Дании, используя новое волокно, предложенное японской компанией Telekom NTT, установила новый рекорд -организовав с помощью одного лазерного источникаскорость в 43 Тбит/с . Сигнал от одного лазерного источника передавался по волокну с семью сердцевинами.

Команда Датского технического университета совместно с NTT и Fujikura ранее уже достигала самой высокой в мире скорости передачи данных в 1 петабит в секунду. Однако тогда были использованы сотни лазеров. Сейчас же рекорд в 43 Тбит/с был достигнут с помощью одного лазерного передатчика, что делает систему передачи более энергоэффективной.

Как мы убедились, в связи есть свои интересные мировые рекорды. Для новичков в этой области стоит отметить, что многие представленные цифры до сих пор не встречаются повсеместно в коммерческой эксплуатации, поскольку были достигнуты в научных лабораториях в единичных экспериментальных установках. Однако и сотовый телефон когда-то был прототипом.

Чтобы не перегружать ваш носитель информации, пока остановим текущий поток данных.

Продолжение следует…